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A BST R AC T  

This study presents a four-parameter linear basis model to analyse and control the dynamic response 

of an FGM Timoshenko beam exposed to the accelerating / decelerating mass using the finite 

element method. The dynamic effects of the foundation's mass and damping are taken into account 

and the foundation is assumed to consist of four parts: mass, spring, viscous damper and shear layer. 

Considering the actual physical neutral axis, the combined motion equations of the FGM beam-

mass-base-base system are obtained by combining terms of first order shear deformation (FSDT) 

and mass and base interactions. In view of the resulting high-speed motion and acceleration 

conditions of the moving mass, some new findings are presented for both the moving load and the 

moving mass assumptions to highlight the differences that may be useful in the analysis of new 

high-speed transport applications today. Due to their effects, the frequency change of the FGM 

Timoshenko beam-base system is emphasized to show the main cause of the changes. 

Keywords: FGM beams, mass inertia, high-speed moving mass, four-parameter linear foundation, 

finite element. 

 

Fonksiyonel olarak derecelendirilmiş Timoshenko kirişlerinin değişken 

hızlara sahip yüksek hızlı hareketli kütle etkisi nedeniyle dört 

parametreli doğrusal elastik bir temel üzerindeki dinamik davranışı  

Ö Z  

Bu çalışma, sonlu elemanlar yöntemini kullanarak hızlanan / yavaşlayan kütle etkisi altındaki bir 

FGM Timoshenko kirişinin dinamik cevabını analiz etmek ve kontrol etmek için dört parametreli 

bir doğrusal temel model sunmaktadır. Temelin kütlesinin ve sönümlemesinin dinamik etkileri 

dikkate alınarak ve temelin dört bölümden oluştuğu varsayılarak: kütle, yay, viskoz sönümleyici ve 

kayma tabakası göz önünde bulundurulmuştur. Gerçek fiziksel nötr eksen göz önüne alındığında, 

FGM kiriş-kütle-taban-temel sisteminin birleşik hareket denklemleri, birinci dereceden kayma 

deformasyonu (FSDT) ve kütle ve taban etkileşimleri terimleri birleştirilerek elde edilmiştir. 

Hareketli kütlenin ortaya çıkan yüksek hızlı hareket ve ivme koşulları göz önüne alındığında, yeni 

yüksek hızlı taşıma uygulamalarının analizinde faydalı olabilecek farklılıkları vurgulamak için hem 

hareketli yük hem de hareketli kütle varsayımları için bazı yeni bulgular sunulmuştur. Etkileri 

nedeniyle, FGM Timoshenko kiriş-temel sisteminin frekans değişimi, değişikliklerin ana nedenini 

göstermek için vurgulanmıştır. 

 Anahtar Kelimeler: FGM kirişler, kütle ataleti, yüksek hızlı hareketli kütle, dört parametreli doğrusal 

temel, sonlu elemanlar.
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1 Introduction 

Dynamic behaviour of the structures under the influence of moving loads has been widely discussed in the 

literature as an important topic of interest [1–4]. Moving mass and structure interaction is also an important 

study subject in military applications of the mechanics, and in some studies [5–8] one can found some 

FEM and heuristic methods for determining muzzle displacements resulting from projectile and gun barrel 

interaction by considering the Coriolis, centripetal and inertia effects of the high-speed moving  projectile 

inside the gun barrel Functionally graded materials are a new type of composite material consisting of 

gradual mixing of multiple materials according to a mixing law. Unlike conventional composite materials, 

they have superior mechanical properties with a material distribution that does not cause stress 

concentration. This composite material, which is composed of a mixture of metal and ceramic to obtain 

strength and temperature resistance, can be produced to operate under the harsh conditions of demanding 

aerospace, defence and space systems. 

The dynamic response of supported structures on a basis is an important issue due to their widespread use 

in engineering applications. In particular, beams supported by foundations have an important place in 

structural mechanics such as the design and analysis of rails, roads and runways. Therefore, dynamic 

response analysis problems of beam-foundation systems under dynamic loads have attracted the attention 

of many researchers. [9] has examined the dynamic behaviour of sigmoid - functionally graded (S-FGM) 

sandwich plates on a Pasternak elastic foundation in a thermal environment. The effects of thermal 

media, damping and Winkler-Pasternak elastic base on the nonlinear dynamic responses of a non-

nanocomposite organic solar cell (NCOSC) were investigated by [10]. Using non-local Timoshenko 

beam theory, the buckling of non-uniform axially functionally graded Timoshenko beams on the 

Winkler-Pasternak foundation has been investigated by [11]. [12]  has presented the post-buckling 

behaviour of a thin-walled open section beam supported by the Winkler-Pasternak base due to an axial 

clamping load. A 3D hyperbolic theory was developed by  [13] to analyse the free vibration analysis of 

porous (FG) plates on elastic foundations for Winkler, Pasternak and Kerr models. The nonlinear 

vibration and dynamic buckling of a graphene platelet-reinforced sandwich plate by the effect of thermal 

media, damping and Winkler-Pasternak base have been investigated by  [14]. 

Using the von Karman  strains with Reddy’s HSDT, the impact analysis of Voigt model-FGM beams 

resting on elastic bases  has been  presented by [15].  The dynamic stability of an exponential law (FG) 

cylindrical shell encircled by the two-parameter elastic cover due to an incremental load has been 

analytically studied by [16] including the effect of damping. The dynamic response of (FG) truncated 

conical shells on the two-parameter elastic bases has been investigated by [17] using the FSTD. To 

eliminate the need of shear correction factors,  the buckling of FG plates on elastic foundations has been 

presented by [18] using  a hyperbolic deformation function. Using an advanced plate theory with the 

implementation of nonlocal elasticity, the free vibration behaviour of a FGM nanoplate supported by 

elastic bases has been studied by [19]. 

[20] has investigated the dynamic behaviour of prismatic beams on a two-parameter foundation by 

implementing the Timoshenko beam theory (TBT) in modelling and Runge–Kutta and Regula–Falsi 

methods in the numerical solutions. Using different beam theories with the modified couple stresses, 

[21] has studied thermo elastic dynamic response of thick microbeams encircled by elastic covers. Using 

thin plate theory for the nonstationary dynamics of pavements on Pasternak foundation due to 

accelerating loads, [22] has presented a PE-PIM method combining the power spectral density (PSD) 

with Duhamel's integral and a precise integration method (PIM). For four different law of the gradation, 

the vibration behaviour of FG carbon nanotube reinforced composite (FG-CNTRC) rectangular plates 

on Winkler–Pasternak foundations have been investigated by [23] using the FSTD with Navier solution. 

Modelling the railway ballast as a Coulomb type friction, the dynamics of an Euler-Bernoulli beam on 

a frictional-elastic base exposed to a uniformly moving concentrated force has been investigated by [24]. 

According to the TSDT in combination with the von Karman strains, the elastic deformations of  FG-

CNTRC variable thickness annular plates on a two-parameter base has been investigated by [25], using 

an analytical iterative method. Considering Reddy’s HSDT and the von Karman strains for a graphene 

reinforced composite FG plates supported by a two parameter base in a thermal environment,  [26] has 

studied the nonlinear vibration behaviour by adopting non local effects and extended Halpin-Tsai 

material model. Using Reddy’s HSDT and the von Karman type kinematic nonlinearity and  [27] has 
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studied the impact response of Voigt model temperature dependent material FG plates on an elastic base 

with three-parameters. [28] has proposed a new refined deformation shape in order to examining the 

dynamic response of a FG plate supported by an elastic base. For the free response of thick plates 

supported by a two-parameter elastic base, [29] has used the FSDT with the Galerkin Method. Using 

the direct Liapunov method, the vibration response of a Timoshenko beam on a three-parameter 

viscoelastic base and exposed to axial loading has been presented by [30]. Using the Fourier 

transformation and the Adomian methods, the vibrations of endless Timoshenko beams supported by a 

cubic elastic base subjected to a moving load has been studied by    [31]. The dynamics of the shells on  

a Pasternak foundation has been studied by [32] using matrix transformation method. Using Galerkin 

and superposition methods, the bending of composite shells on a Pasternak foundation due to an external 

pressure and axial compression has been analysed by [33].  Using an analytical method, a  new HSDT 

has been proposed by  [34] for sigmoid (S), power-law (P) , and exponential (E) FGM plates supported 

by elastic bases. Considering the depth change of the flexural distortions of the beam-columns on the 

Winkler foundation, the fundamental frequencies and buckling stresses have been analysed by [35].  The 

vibration  and stability of  initially stressed beams on the Winkler foundation has been studied by  [36] 

using the FEM.   

Considering the separation which can be occur when the contact force chances its sing, [37] has 

investigated the vibration response of a Timoshenko beam supported by spring foundation and exposed 

to a moving mass, and it has shown that the possible separation in velocities of the mass can be 

suppressed by higher spring coefficient of the  elastic foundation. Considering the various models of the 

soils, [38] has compared the available models in the literature. Although Winkler is one of the simplest 

models for defining elastic soil behavior, one of the major shortcomings of the Winkler model is the 

discontinuity of displacement between the loaded and unloaded parts of the surface. To overcome the 

lack of the Winkler model, some researchers [39–43] have proposed different foundation models to 

define the more real response of the soil by establishing independent mass-free springs. Under a 

harmonic moving force, the vibrations of an infinite Timoshenko beam on a viscoelastic base has been 

investigated by [44]. [45] has presented the response of a FG Timoshenko beam supported by an elastic 

foundation. [46] has studied the dynamics of a FG Timoshenko beam supported by an elastic base. 

Considering braking and acceleration of the vehicle a modelling of vehicle–bridge interaction (VBI) has 

been proposed by [47] using FEM,  while a numerical  method for VBI analysis of cars in abrupt 

deceleration has been studied by [48]. The dynamic response of functionally graded beams subjected to 

a variable speed moving load is studied by [49]. They considered only transverse effect of the load by 

ommiting mass inertia and axial force due to the variable speed. The dynamic response of FG beams 

exposed to a travelling harmonic point load has been given by [50]. [51] has presented a mixed Ritz-

DQ method for the dynamics of FG beams subjected to moving loads. Considering various boundary 

conditions and omitting the mass inertia, some scientists [52–54] have also studied the vibrations of the 

beams exposed to moving loads. Some moving mass studies accounting mass inertia and variable velocity 

are given in [55–58].  The stress distribution in the FGMs have been studied by  [59] using the  FEM.  

Many different modelling studies of the FGMs have been widely presented by [60]. Including the FGMs, 

the advanced applications of materials in space and aviation have been given by [61]. The determination 

of the neutral plane location and  its effects on the vibrations of FG beams have been studied by [62] 

and based on physical neutral surface, [63] has studied the vibration behaviour of FG plates. For the 

vibrations and buckling  of regular Timoshenko beams subjected to an axial load, [64] has proposed a 6 

DOF new finite element with two nodes and  [65] has proposed a 6 DOF beam elemet for FGM 

Timoshenko beams. An orher analytical method for dynamics of FGM beams has been presented by 

[66]. 

In literature, in general, the mass of the foundation and the effect of mass on dynamic behaviour are 

neglected in terms of simplicity. In fact, if neglected, the foundation has a mass that moves with the 

superstructure, which alters the actual natural frequency and actual behaviour, which can cause errors in 

calculating the reliability of critical structures and cause accidents. Due to this fact, the dynamic response 

of structures on a foundation should be analysed considering the mass density of the base. Furthermore, 

the solution and analysis methods presented in the literature for FGM beams exposed to a moving mass 

are generally for simplified cases of convective acceleration, high speed, mass, and variable speed effects 

of the moving load. In this study, implementing the FEM a useful modelling of the interaction between a 
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variable high-speed moving load and a FGM beam supported by a four-parameter viscoelastic base is 

presented. With a new linear model including springs, shear layer, mass and viscous damping, the analysis 

of sub-base parameters on the dynamics of FGM beams due to a moving mass can be examined and 

optimal parameters can be defined for an accurate design. 

2 Finite-element modelling 

Figure 1 shows a four-parameter foundation system supporting an FGM beam under an accelerated mass 

effect. The new linear foundation model consists of the spring and share modules kS, kG, and a mass mf 

and a viscous damping coefficient cf.  For the continuous contact of the moving mass and the beam, the 

symbol xp describes the global location, while xm stands for the location on the beam element s. The 

beam is of a uniform cross-section and the material is distributed in thickness direction in accordance 

with a power law. 

 
Figure 1. Illustration of the FGM beam, moving mass and the four-parameter foundation. 

 

 
Figure 2. The deformed element (s-1) with the axial force Q(t) applied by an accelerating mass on the element s and the 

foundation. 

 

In Figure 2, the two-node finite element and the four-parameter foundation are seen from the element 

contacted by the mass. Here, the finite element is influenced by the Q(t) compressive force resulting 

from the acceleration of the mass. Adhesive bonding of the foundation with the beam is excellent and 

the mass of the foundation is in motion together with the beam and the damping cannot be neglected. 

 

Static bonding force between the FGM beam and base are written as  
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 (1) 

 

In transverse and axial directions, kSz,x and kGz,x are the moduli of the subbase respectively. 

 

Displacements in the beam according to TBT are:  

 
 ( , , ) ( , ),

( , , ) ( , ) ( , ).

  

W x z t w x t

U x z t u x t z x t  (2) 

 

Where ( , )w x t , ( , )u x t ,and ( , )x t  are the transverse and axial displacements, and cross section rotation in 

the plane at h0. The constitutive equations of the strains and stresses are:  

 

,   

( ) ,    ( )

xx xz

xx xx xz xz

u
z

x x x

E z G z

 (3) 

 

Where    is the share factor, G(z) and E(z) are the actual share and elasticity module. To describe the 

actual properties of FGM material two approaches are used in the literature. The exponential law, used in 

fracture studies of FGMs ([67],[59]) is defined as 

 

( ) exp( (1 - 2 / )),  =0.5 log( / )t t bP z P z h P P  (4) 

 

The power-law, having all expected features and given by [61], is reported as 

 

( ) ( ) ( )

1
( ) , 1

2

b t b t
n

t b t

P z P P P V z

z
V z V V

h

 (5) 

 

Where n is the exponent, and it represents the mixture rates.   P(z) means (G; ν; E) a specific material 

property. Pb   and Pt, respectively, are the values of the properties at the bottommost and topmost surfaces.  

Considering foundation and TBT, for the beam element in Fig 2 the strain energy can be written as 

 
2 2 2

11 12 22 33
2 2 2 20

2 ( )1
  

2

l

Sx Gx Sz Sz

B u B u B B w
S dx

k u k u k w k w
 (6) 

 

Where /u u x  , /w w x , / x , and the rigidities B11,B12 ,B22  and B33 are defined as  

 
2

11 12 22 33, , (1, , ) ( ) ,  ( )
A A

B B B z z E z dA B G z dA  (7) 

 

For the beam element itself, the kinetic energy is 
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T I u w I I u dx  (8) 

where 

2
11 12 22( , , ) ( )(1, , )

A

I I I z z z dA  (9) 

For the beam element with the length l, the kinetic energy Tf and the Rayleigh’s energy dissipation 

function R of the foundation are  

 
2 2
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1 1
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l l

f f f
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T m dx R c dx
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where mf and cf are the unit mass and damping of the base and they are assumed to be the same for the 

transverse and axial movements of the beam. While the mass is moving on the deflected beam, the 

kinetic energy Tm of it: 

 
2

21

2
p

m p

x x

w w
T m v v

t x
 (11) 

 
Due to the dead load and the acceleration of the mass on the beam, the contact forces in z and x 

directions are [37]: 

 

 

1. 

2 2 2
2
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Where ( )px t , the mass location, is defined with: 

 

3. 2 2 2
0 0( ) 0.5 ,  d d / d  / d ;

p p
p x x x x
x t x v t at v x t a x t  4. (13) 

 

Due to the acceleration of the mass and consecutively the axial force Q=mpa, the work We done on the 

element is written as 

 
2

0
( )

le w u
W Q t dx

x x
 (14) 

 

In this study the force mpa is symmetrically applied at the neutral axis and the moment of it neglected. In 

heavy vehicle application of moving load [48], for the cases of acceleration and deceleration the moment 

loadings should be included.  

 

Considering the contact forces between the beam and mass and, the potential energy is 

 

( , ) ( ( )) ( , ) ( ( ))cz p cx pV f w x t x x t f u x t x x t  (15) 
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When the potential and kinetic energy and mass interaction forces are used with the Hamilton principle, 

in terms of u, w and ϴ the motion equation of the whole system is derived as follows: 
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and the force boundary conditions 

  

11 12 33 22 12;   ( ) ;   ;    0  .   x x xB u B N B w Q B B u M at x and x L  (17) 

 

where xQ , xM  and xN ,   are force resultants at the beam ends. The boundary conditions are : 

 
( 0,  ) 0 ,  ( ,  ) 0  0  u x t w x t at x and x L  (18) 

 

Where 22p p p pm w m vw m v w m aw  and pm u  are the components of the mass interaction forces.  

The analytical solution of the equation of motion in (16) is quite complex, but the equation can be 

modelled and solved using FE representations of all parts of the equation as indicated in the following 

sections. Firstly, for this purpose, FE shape functions are obtained by using the following static part of 

equation (16) for the FGM beam itself. 
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When the partial differential equation in Eq. (19) is solved the following polynomials for the DOFs are 

obtained. 
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The following derivations of polynomials are introduced into Eq. (19) and the four of the unknowns in 

Eq. (21) are eliminated. The left 6 unknowns are defined using the end conditions of the beam element, 

at x=0, and at x=l. 
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Then, the followings are derived for the inner displacements of the element [64,65] 
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where d is the displacement vector, and u , w ,  (given in Appendix (A.2-A.4)) shape functions for 

the nodal displacements. After the interaction terms of the mass and Eq. (16) are evaluated with the 

interpolation functions of Eq. (22), the following total strain energy of beam and foundation can be 

expressed as 

  

1 2

1 2 1
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where, k is stiffness matrix of the element, which consisting of the axial uuk , coupling uk , bending 

k , shear k  matrices. And 
m i s
k is matrix due to centripetal interaction force due to moving mass, 

and 
1G i s

k  is the geometric stiffness matrix. 1f zk , 2f zk and 1f xk , 2f xk are respectively represents 

the foundation stiffnesses in z and x directions. The derivations of the matrices are  as follows: 
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(24) 

 

The kinetic energies of the FGM beam (8), the foundation (10) and the moving mass (11) can be 

combined as follows: 

1

1

2

1

2

r

i
r

f m ww uu ui s
i

T T

T

d md

d m m m m m m d

 (25) 

 

with fm  is the foundation mass matrix, and m i s
m   is the matrix of the moving mass interaction, while 

m , wwm , uum , um ,are, respectively, mass matrices for displacement DOFs of the FGM beam as 

seen below: 
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Mass interaction matrices,
m i s
k  and 

m i s
m are given in Appendix A.5-A.8 

 

 

When the Rayleigh’s dissipation function in (11) due to viscous damping of the foundation and the 

Coriolis force  2 pm vw  of the interaction in (16) used with the beam shape functions the following 

damping matrices are obtained: 
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The equivalent viscous damping of the beam element of the FGM beam itself can be obtained using the 

proportional damping rule as given below: 

 

0 1
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 (28) 

where b ww uu um m m m m and b uu uk k k k k are the property matrices of the 

beam element, and the terms ζi and ζj represent the damping ratios for the natural frequencies ωi and ωj.  

 

3 Motion equation of the FGM beam-foundation system 

 

For the multy-Dof damped system in Figure1, the motion equation can be described as: 

 

,Mq Cq Kq F           (29) 

 

In the equation given above, M, C and K are the property matrices and they are obtained from the assembly 

of the property matrices of the elements given in equations (24-28).  When creating matrices, the property 

matrices of all elements except the finite element s are normally created by adding the parameters of the 

foundation. Depending on the movement of the mass of the matrices of the element s where the mass is 

momentarily located are modified by the addition of the matrices of mm , mk and mc resulting from mass 

interaction. For the elements in which the mass is not in contact, the damping matrix C is the sum of the 

fc and bc  matrices. The general external force vector F consists of zero coefficients except the force 

coefficients of the element s. Thus, the force vector is: 

 

 0 ... ... 0
T

m
F f           (30) 
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The coefficients of nodal force vector 
m
f (6x1) of the beam element s are derived using the procedure 

given in Appendix (A.8) 

 

4 Numerical examples and findings  

4.1 Validation 

 

In order to confirm, the fundamental frequencies obtained by applying this method to an FGM beam 

studied in the literature [49,66] are given in Table 1. Where, the fundamental frequency parameter (32) 

of the FGM beam is obtained using TBT (FSDBT2 in [66] for Alumina and Aluminium with the 

following material properties: 

 

Alumina (%99.5) : υ= 0.23; ρ = 3800 kg/m3; E= 380 GPa 

Aluminium    : υ =0.23; ρ = 2700 kg/m3; E =70 GPa 

 

The undamped free vibration solution of Eq. (29) results: 

  
2( ) 0,
n
wK M q           (31) 

 

Without the effect of the foundation, where kS=kG=mf=cf=0, the frequencies of the FGM beam itself are 

determined using the non-trivial solution, where, 2

n
wK M =0. Considering the effective material 

properties of the FGM beam, the frequency parameter λ1 of the first mode is defined by using  

 

/2

/22

1 1 /2
2

/2

( )

( )

h

h

h

h

z dz
w L

h E z dz

          (32) 

 

In Table 1, the results of the presented method and the one in Ref.[49] are quite close to each other and the 

harmony between them is satisfactory. 

 
                   Table 1 

                    The first frequency parameter (λ1) for the FGM beam with Al -Al2O3 

n  λ1 
 

Refs. L/h=10 L/h=30 L/h=100 

0  From [49]  2.7970 2.8430 2.8480  
From [66]  2.8026 2.8438 2.8486 

 Present  2.8027 2.8458 2.8488 

0.3 From [49]  2.6950 2.7370 2.7420 

 From [66]  2.6992 2.7368 2.7412  
Present  2.6953 2.7361 2.7421 

 

Table 3 shows the comparison of this study and others [50,51]41,42] for a FGM beam of 99.9% pure 

alumina and stainless steel (SUS 304) and its characteristics given in Table 2 for comparison with the 

moving loads studies in literature. The results of [50] and this study are in very good agreement .  
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                                              Table 2  

                                               Constituents of the FGM 

Properties Unit SUS304 
Al2O3, 

%99.9 

υ - 0.3177 0.3 

ρ kg/m3 8166 3960 

E GPa 210 390 

 

 Table 3 

The maximum mid-span responses to a load moving at constant velocities, for FGM beam with     

kS=kG=mf=cf=0. 
Source SUS304 

(132 

m/s) 

n=0.2 

(222 

m/s) 

n=0.5 

(198 

m/s) 

n=1 

(179 

m/s) 

n=2 

(164 

m/s) 

n=5 

(164 

m/s) 

Al2O3 

(252m/s) 

[50] 1.7324 1.0344 1.1444 1.2503 1.3376 - 0.9328 

[51] 1.7301 1.0333 1.1429 1.2486 1.3359 - 0.9317 

Present 1.7316 1.0336 1.1435 1.2690 1.3365 1.6314 0.9326 

 

 

In order to prove the precision of the new formulation with the effect of the foundation, the results of 

this study were compared with the results in the literature. The fundamental frequencies given in Table 

4 are compared with the reported ones in [35], based on Euler-Bernoulli's theorem for a beam on a 

foundation model with kS and kG  and without the effects of damping and mass density, where the 

foundation parameters are defined in terms of the dimensionless parameters given in equation (34). 

 
4 2

1/22

1 2 12
  , , /S G

k L k L
K K L A EI

EI EI
          (34) 

 

            Table 4. The Fundamental frequency parameter λ of the beam for different foundations. 

  K1 

 K2 0 10 102 103 104 105 

Present study 1 13.9577 14.3115 17.1703 34.5661 100.9694 316.5356 

[35]  1 13.9577 14.3115 17.1703 34.5661 100.9694 316.5356 

 

4.2 Case study 

To examine the effect of the parameters of the base, a new FGM beam consisting of aluminium and 

zirconium oxide was studied. Where L = 24 m, h = 0.8 m, b = 0.5 m. Table 5 shows the material properties 

of the constituents that are Aluminium (Al) at -h/2 and full Zirconia (ZnO2) at h/2. A 100 kN moving load, 

which corresponds to 1019.7 kg of moving mass, was moved over the FGM beam supported by four-

parameter bases, with the increments of 1 m / s between 0-250 m / s. The step number in the Newmark 

integration was set to 250 and the FGM beam was divided into 12 finite elements. The analyses were 

carried out separately by taking into consideration the moving mass and moving load cases and the results 

were presented in Figs 3-8 for power law index n of the FGM beam and different mass, damping and 

stiffness modules of the foundations. In all the results given in all the Figs, the normalization of the 

displacements was made according to the static collapse of the midpoint w0 of the beam consisting of full 

aluminium for n = infinite. Here w0 = mgL 3 / 48EI.  In the case where the parameters of the foundation are 

equal to zero, the dynamic amplification factors (DAFs =wmax (L / 2, t) / w0) of different mixtures of the 

FGM beam are given in Figure 3 according to the mass velocity and index n.  the graphs on the left and 

right show the results of the moving load and mass cases respectively. Also, for the different foundation 

parameters, the maximum values of the DAFs and mass speeds are given in Table 6. In the cases of zero 

damping cf = 0, and without accounting of the mass effect mf = 0, Figure 4 depicts the effects of the 

parameters of the bases on the response. Here, the shear foundation parameter K2 is fixed to 1, and the 

non-dimensionless parameters of the spring foundations are accepted at four different values, K1 = 

10,102,103,104. Graphs show a significant decrease in displacements due to the increase in stiffness of the 
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spring foundation. Additionally, it can be directly realised that the stiffnesses of the base also accordingly 

changes the vibration form of the FGM beam. This is already an expected situation, in which the size of 

the additional foundation stiffnesses alters the vibration characteristic of the whole system. Here, for FGM 

beams the term D22 given in Eq. (7) is used instead of EI of the homogeneous materials. Table 7 shows the 

calculated geometric and material properties of the considered FGM beam where, the effective bending 

stiffness in the first column, the second moment of inertia of the cross section in the second one, and the 

effective elasticity modulus in third one, and the rest of the columns are for the beam mass, the mass of 

the load and the mass ratio ε (moving mass / beam mass), respectively. Figure 5 depicts the effect of the 

foundation mass at different ratios by taking K1 = 10, K2 = 1 and damping cf = 0. The unit length mass of 

the full Aluminium beam with the chosen dimensions is 2280 kg. In the analyses the masses of the 

foundation are 1140, 2280 and 4560 kg/m when the mass ratios, that is the unit mass of the foundation / 

unit mass of the beam mf / mb, are 0.5, 1 and 2.    It should be known that the foundation mass may vary 

according to type of the application. For example, in applications such as soil, ballast, it is more accurate 

to accept the mass of the foundation portion that is thought to move with the FGM beam. Otherwise, for a 

specially designed suspension system the mass mf is obtained from the design dimensions.   Fig 6 shows 

the effect of the foundation damping on the dynamics of the FG beam for K1 = 10, K2 = 1, mf / mb=0.5 and 

different viscous damping coefficients of cf=103, 5.103 and 10.103 Ns/m. In addition, the effects of the 

viscous damping and mass are summarized in Tables 8 and 9, respectively. The tables give valuable 

information about the dynamic response of the beam supported by different foundations. In the tables, 

vibration DAFs and their corresponding mass velocities are given for the moving mass and moving load 

cases. Generally, in the moving load case, the increase in the foundation mass and damping do not affect 

the amplitudes of the DAFs too much, but they affect greatly the corresponding velocities of the DAFs. 

Whereas in the moving mass cases, both the DAFs and the respective travel velocities vary greatly 

depending on mass and damping.  The main reason of these behaviours is that the actual frequency of the 

whole system is varying depending of the mass involvement and the foundation parameters. The well-

known velocity parameter, the exciting frequency of the load / frequency of the beam, also changes 

depending on the frequency variation of the system. The exciting frequency of the mass is ω=πv/L as 

reported by [68] and the velocity parameter is defined by ω/ω1 for the fundamental frequency ω1. When 

the speed parameter is 1, the maximum displacement happens. In the case of relatively small damping 

coefficients, in Table 9, the effect of the damping is very little when compared to the other parameters, 

K1, K2 and mf / mb. The effects of the low damping coefficients are less than 1/10000 for DAFs.  

 
                                      Table 5 

                                       Properties of ingredients of the FGM  

Properties 
Aluminium 

(Al)  

Zirconia 

(ZnO2) 
Unit 

E 70 200 GPa 

ρ 2702 5700 kg/m3 

υ 0.23 0.3 - 

  

 

 
Figure3. Maximum response of the FG beam versus load velocity for different material 

components, considering the moving mass and load cases. 
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Figure 4 The effect of the spring foundation for different K1=101, 102, 103, 104 , and constant K2 

=1,and mf=cf=0, left moving load, right moving mass. 
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Figure 5. The effect of mass ratio of the foundation for K1=10, K2=1and cf=0. ML: Moving Load, 

MM: Moving Mass 

 

               Table 6 

               Velocity dependent DAFs of FGM beams of different n  

 K1=0, K2=0, mf=0, cf=0 K1=10 K2=1, mf=0, cf=0 

 ML (Moving load) MM (Moving mass) ML MM 

Power-law 

exponent n 
wmax/w0 v (m/s) wmax/w0 v (m/s) wmax/w0 v (m/s) wmax/w0 v (m/s) 

0.1 0.660 107 0.878 174 0.295 146 0.519 225 

0.5 0.834 103 1.174 167 0.323 152 0.653 228 

3 1.166 101 1.885 167 0.366 176 1.015 250 

Full ZnO2 0.609 109 0.795 177 0.284 148 0.481 226 

Full Al 1.729 94 3.171 155 0.408 173 1.719 250 
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Table 7 

Calculated material and geometric properties of the studied FG beam depending on n index. 
Power-

Law 

index, n 

D22   (Nm2) I (m4) E (Pa) 
mb 

(kg) 

mp 

(kg) 
ε=mp/mb 

0.1 3.93E+09 0.0209057 1.88E+11 52104 10194 0.195641 

0.5 3.11E+09 0.0198756 1.57E+11 45126 10194 0.225894 

3 2.23E+09 0.0217227 1.03E+11 33134 10194 0.307651 

Full ZnO2 4.27E+09 0.0213333 2.00E+11 54720 10194 0.186288 

Full Al 1.50E+09 0.0214117 7.01E+10 25968 10194 0.392549 

 

 

 
 

  

 

 

 
 

Figure  6. The damping effect of the foundation for different damping parameters cf= 1.103, 5.103 

and 10.103 Nsm-1, for constant K1=10, K2=1, mf/mb=0.5. ML: Moving Load, MM: Moving Mass 
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Table 8 

DAFs of the mid-span of the FG beams depending on the n and different foundation parameters. 

 K1=10, K2=1, mf/mb=0.5, cf=0 K1=10, K2=1, mf/mb=1, cf=0 K1=10, K2=1, mf/mb=2, cf=0 

 ML MM ML MM ML MM 

Power-law 
exponent n 

wmax/w0 
v 

(m/s) 
wmax/w0 

v 

(m/s) 
wmax/w0 

v 

(m/s) 
wmax/w0 

v 

(m/s) 
wmax/w0 

v 

(m
/s) 

wmax/w0 
v 

(m/s) 

0.1 0.29427 119 0.42471 184 0.29428 103 0.38288 159 0.29431 83 0.34412 126 

0.5 0.32281 125 0.50179 180 0.32280 106 0.44204 154 0.32282 82 0.38996 125 

3 0.36547 130 0.65547 231 0.36547 108 0.54031 150 0.36546 85 0.45717 118 

Full ZnO2 0.28391 120 0.40032 185 0.28394 104 0.36325 162 0.28396 85 0.32835 129 

Full Al 0.40766 121 0.95240 221 0.40770 98 0.70081 177 0.40780 76 0.54136 136 

 
 

Table 9 

DAFs of the mid-span of the FG beams for n and different foundation parameters. 

 K1=10, K2=1, mf/mb=0.5, cf=103 K1=10, K2=1, mf/mb=0.5, cf=5.103 K1=10, K2=1, mf/mb=0.5, cf=10.103 

 ML MM ML MM ML MM 

Power-

law 

exponent 

n 

wmax/w0 
v 

(m/s) 
wmax/w0 

v 

(m/s) 
wmax/w0 

v 

(m/s) 
wmax/w0 

v 

(m/s) 
wmax/w0 

v 

(m/s) 
wmax/w0 

v 

(m/s) 

0.1 0.24692 112 0.25835 138 0.24680 112 0.25820 138 0.24666 112 0.25802 138 

0.5 0.27395 112 0.28744 147 0.27381 112 0.28726 147 0.27364 112 0.28703 147 

3 0.31372 112 0.33046 151 0.31352 112 0.33014 151 0.31328 112 0.32976 151 

Full ZnO2 0.23729 112 0.24810 138 0.23718 112 0.24797 138 0.23705 112 0.24780 138 

Full Al 0.35820 112 0.36984 112 0.35790 112 0.36957 112 0.35752 112 0.36922 112 

 

 

Considering various foundation parameters and mass ratios ε, Figure 7 depicts the frequency variation 

of the studied beam with the material properties of n = 0.5. The calculated total beam mass is 45126.0 

kg, and for the mass ratios of ε=0.1,0.5 and 1 the masses of the moving loads in the analyses are 4512.6, 

22563 and 45126 kg respectively.  In the analyses, the spring foundation parameters K1 = 0,10,100,1000 

and 10000 were changed, keeping the foundation mass and damping at zero, and keeping the shear 

foundation parameter constant at K2 = 1. Since the load mass is not accounted in the moving load case, 

the moving mass case is used only in the calculation of the frequency change.  As shown in Figure 7, 

the large mass ratio causes large change in the frequency, and this change also varies with the mass 

position on the span. The fundamental frequency of the system is increases when the foundation spring 

stiffness is increased, and the change in relation to the mass location almost preserves the characteristic 

at low foundation spring stiffnesses. But, in very high foundation spring stiffness parameters, for 

example, at K1 = 103 and 104, the bases of the change graphs are flattened. The reason is that in the case 

of very high foundation spring coefficients, the FGM beam- foundation and mass interaction system is 

approaching the quasi static loading situation, which is already understandable from the frequency 

increments of the system. 

 

Esen et al.

Dynamic behaviour of functionally graded Timoshenko beams on a four parameter linear elastic foundati...

Journal of Smart Systems Research  2(1), 48-75, 2021 63



 

 

 
 

Figure 7. Change of the first natural frequency ω1 of the FGM beam of n=0.5 and resting on with 

various foundation stiffness parameters K1=0, 10 102 103 104 and constant K2=1 and mf=cf=0, 

depending on the mass ratios of ε=0.1, 0.5 and 1, and the dimensionless mass position xp(t)/L. 

 

 

 

 
Figure 8. The fundamental frequency variation of the FGM beam of n=0.5 supported by a base with 

constant dimensionless parameters of K1=10, K2=1 and cf=0, and various mf/mb=0.5, 1, 2, depending on 

the mass ratios of ε=0.1, 0.5 and 1, and the dimensionless mass position xp(t)/L. 

 

Figure 8 shows the alteration of ω1 of the beam of n=0.5 and on the foundation with the parameters of 

K1=10, K2=1 and cf=0, and for various mf/mb=0.5, 1, 2, depending on the mass ratios of ε=0.1, 0.5 and 

1, and the dimensionless position of the mass xp(t)/L.  The effect of the mass of the foundation is also 

considerable and as expected it degreases the fundamental frequency as shown in Figure  (8). And the 

contribution of the mass of the moving load is more effective in relation with the position and ratio ε of 

the load.  

The effect of different mass velocities (v = 20, 40, 60 m / s) on the vibrations of the FGM beam is given 

in Figure 9 and 10. In the results of Figure 9 all parameters of the foundation are taken as zero, but in 

the results of Figure 10 the parameters of the foundation are K2 = 1 constant and K1=10, 102, 103, 104, 

and cf= mf/mb=0. For the cases of moving load (ML) and moving mass (MM), the DAF results of 

different foundation parameters and the mass locations are summarized in Tables 10 and 11 
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Considering the cases of the ML (left) and MM (right), the results are given in different graphs. In the 

results, the maximum responses and matching mass locations are dissimilar, and the responses are 

greater by 125% in the case of the MM. As given in Figure 10, the small foundation stiffnesses have 

reduced the maximum DAFs have not significantly affected the vibration shape.  However, as shown in 

the figures below, the DAFs have been reduced in the larger stiffnesses of the foundation and the 

vibration shape have been altered. When the figures in Fig 10 for K1=103 and 104 are examined closely, 

the DAFs are considerably small, and the maximums are occurred when the mass is nearly at the middle 

of the beam, as if the loading of the system is approaching to the quasi static loading case.  From the 

last figure where K1=104, the inverse effect of the travelling velocity is nearly eliminated since the 

responses of different small and high velocities are converged and are very close to each other with a 

small fluctuation. From this result it is understood that the response of any critical beam-foundation 

system can be adjusted to satisfy the prescribed design specifications by designing a proper foundation.  

   

 
 

Figure 9.  The time histories of midpoint responses for n=0.5, K1=K2=mf=cf=0 and v=20, 40, 60 m/s,  
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Figure 10.  The histories of the midpoint responses of the FGM beam for n=0.5, K1 =0,10,102 103 104 

and constant K2=1, and mf=cf=0, and v=20, 40, 60 m/s. 

 
Table 10 

Maximum normalized responses of the mid-span of the FGM beam and the relative place of the mass depending 

on different foundation parameters and constant n =0.5  

 n=0.5, K1=0, K2=0, mf=0, cf=0 n=0.5, K1=10, K2=1, mf=0, cf=0 n=0.5, K1=100, K2=1, mf=0, cf=0 

 ML MM ML MM ML MM 

v 

(m/s) 
w/w0 xp(t)/L  w/w0 xp(t)/L  w/w0 xp(t)/L  w/w0 xp(t)/L  w/w0 xp(t)/L  w/w0 xp(t)/L  

20 0.532 0.44 0.557 0.48 0.201 0.58 0.208 0.48 0.136 0.48 0.139 0.53 

40 0.590 0.4 0.659 0.44 0.225 0.53 0.225 0.58 0.143 0.46 0.151 0.50 

60 0.747 0.54 0.871 0.60 0.221 0.38 0.253 0.42 0.141 0.63 0.139 0.37 

 
Table 11 

Maximum displacements of the mid-span of the FGM beam and the relative place of the mass depending on 

different foundation parameters and constant n =0.5  

 n=0.5, K1=103, K2=1, mf=0, cf=0 

n=0.5, K1=104, K2=1, mf=0, 

cf=0 

 Moving load Moving mass Moving load Moving mass 

v (m/s) w/w0 xp(t)/L  w/w0 xp(t)/L  w/w0 xp(t)/L  w/w0 xp(t)/L  

20 0.034 0.50 0.034 0.49 0.006 0.50 0.006 0.51 

40 0.034 0.46 0.036 0.52 0.006 0.50 0.006 0.49 

60 0.036 0.49 0.036 0.53 0.006 0.51 0.007 0.53 

 

 

The effects of the foundation mass are plotted in Figure  11 for v = 20, 40 and 60 m/s, and constant 

stiffness parameter K1=10, and shear foundation parameter K2=1. As can be seen from the figures, the 

mass velocity increase rises the responses. In addition, for the same velocities higher mass of the 

foundation increases the response of the beam. This is because the additional base mass decreases the 

frequency ω1 of the whole system and thus increases the speed parameter. The effect of the mass of the 
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foundation is more effective at higher speeds (v = 60 m / s), as shown in the figure below. From the 

above results, it is understood that in high speed applications it is necessary to consider the mass of the 

foundation. Figure  12. Shows the midpoint response of the FGM beam for constant K1=10, K2=1, mf=0, 

and various travelling velocities of the mass with v=20, 40 and 60 m/s, and various foundation damping 

coefficients of cf =5.103 and 2.105 Nsm-1, and n=0.5.  The effect of the viscous damping on the response 

of beam and foundation system is little when compared to the other parameters of the foundations. 

Although, the damping coefficient cf is considerably grate, its effect is remained small in the dynamic 

interaction when the stiffness parameters of the foundations are high such as K1=10 and K2=1. In such 

systems damping can be thought for reducing the dynamic amplitudes of the responses when the speed 

parameter approaches to unity. But it is itself not a significant design parameter when compared the 

other stiffness parameters of the foundations. As can be seen from Fig 13 the damping is not important 

in the velocity behaviour of the dynamic response of the whole system. The responses of different 

velocities are close each other in little and greater damping coefficients of the foundation because it 

slightly affects the frequency of the entire system. 

When an acceleration of the mass is considered for example for a sudden acceleration of the mass from 

zero to a relatively grater velocity along the span of the beam, Figure 14. depicts the responses of such 

an acceleration of the mass at a rate of 200 m/s2, where at the end of the span the velocity reaches to 

nearly 97 m/s, while Fig 15 depicts the responses for a deceleration of -200 m/s2 .  When Figs.14 and 15 

shows that the interactions of the mass and the beam-foundation system are very dissimilar in 

acceleration and deceleration cases. The responses are considerably greater in deceleration case because 

of the higher velocities of the mass in the interaction is valid in deceleration case.  Further, the positions 

of the mass on the beam when the maximum responses occur are different, for example the relative 

position of the mass at the deceleration is about 0.4 of the span-length, but at the acceleration it is about 

0.7-0.8. In the cases of acceleration / deceleration movements, the results of moving mass and load case 

are quite different. In the case of acceleration / deceleration movements, the results of moving load and 

mass assumptions are quite different. In the moving mass case at acceleration the response are 2.5 times 

higher than the assumption of moving load; and at deceleration, the responses are 5 times higher. The 

reason for this is that the effects of mass inertia due to high mass velocity and acceleration are high 

enough to significantly affect the beam dynamics. From this it can be understood that in cases of high-

variable-velocity movement of the loads, in the response calculation of the systems the mass inertia 

should be accounted.  

As in other cases, the greater foundation parameters are very effective on the reduction of the magnitude 

of the responses in the acceleration / deceleration situations. The effects of this acceleration or 

deceleration and their consideration in engineering calculations will be even more important in today's 

and future civil engineering applications, as the speed of transport systems is increasing. Also, in civil 

engineering applications of the moving loads the travelling velocities are examined in terms of the 

separation phenomena of the beam and mass system. This separation can occur when the sing of the 

interaction force in Eq. (13) changes, but in this study no separation is allowed, and the continuous 

contact is maintained in the motion of the load. Due to the nature of application in precision 

metalworking and rocket launch systems, separation is not created, but separation should be accounted, 

especially in VBI applications. 

In the presence of acceleration and Q (t), axial vibration of the beam is excited, and in such a case, one can 

analyse the axial vibration with the methods and formulations given in this study using axial force and 

axial stiffness matrices given in Eqs.13, 16 and 25.  To highlight the transverse effect of the moving mass 

on the FGM beam-foundation system,  no result of the axial interaction is given in the analysis results.   
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Figure 11.  The midpoint response of the FGM beam for constant K1=10, K2=1, and various travelling 

velocities of the mass with v=20, 40 and 60 m/s, and various foundation mass ratios of mf/mb=0.5, 1 

and 2, and n=0.5. where ML is moving load and MM is moving mass cases. 

 

 

Esen et al.

Dynamic behaviour of functionally graded Timoshenko beams on a four parameter linear elastic foundati...

Journal of Smart Systems Research  2(1), 48-75, 2021 68



 

 

 
Figure 12.  The midpoint response of the FGM beam for constant K1=10, K2=1, mf=0, and various 

travelling velocities of the mass with v=20, 40 and 60 m/s, and various damping coefficients of cf 

=5.103 and 2.105 Nsm-1, and n=0.5. where ML is moving load and MM is moving mass cases. 

 

 
 

 
Figure  13.  The midpoint response of the FGM beam for constant K1=10, K2=1, mf=0, and various 

travelling velocities of the mass with v=20 and 60 m/s, and various foundation damping coefficients of 

cf =5.103 and 2.105 Nsm-1, and n=0.5 
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Figure 14. The midpoint responses in case of a sudden constant acceleration from 0 to 96.99 m/s with 

a acceleration of 200 m/s2, n=0.5 

 

 

  
Figure 15. The midpoint responses in case of a sudden deceleration from 96.99 m/s to 0, with a 

constant deceleration of -200m/s2, n=0.5. 
 

 

5 Conclusions 

In this article, under the excitation of an accelerating load the dynamics of a functionally graded  

Timoshenko beam supported by a four-parameter linear foundation is modelled using a modified FEM. 

From the results it can be stated that, in general, the maximum vibration amplitude of the whole system 

is governed by the actual natural frequencies and the excitation frequencies of the moving load. The 

excitation frequency of the moving load ω=πv/L is dependent to velocity and length L, but the natural 

frequencies of the beam-foundation system are dependent to many parameters of the system such as 

material, dimensions and boundary conditions, and parameters of the base including mass and viscous 

damping. In numerical results, every parameter that is effective on the frequency variation is investigated 

and discussed widely.  In fact, the dynamic response depends on the variation of natural frequencies, so 

it is easy to predict the response when the actual natural frequency of the system and the excitation 

frequency of the mass are correctly defined or estimated.  

In order to broaden the subject and provide a comprehensive perspective, the subject was discussed in 

detail by taking into account the moving mass and load and cases. And on the response of FGM 
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Timoshenko beam the effects of foundation parameters, material composition, mass velocity and mass 

inertia were presented. 

 In terms of computational simplicity, it is a common practice to ignore the effects of mass inertia in the 

literature for low-speed applications of the travelling loads. However, in this study, considering the 

higher speeds of the mass, the mass inertia is accounted in the modelling and analysis and the effects of 

it on the response of beam-base system extensively studied.  Because the vibrations of the system under 

the effect of an accelerating mass can be analysed and computed considering the effect of each parameter 

of the foundation separately, using the method in this study, one can design a proper foundation system 

to satisfy the specified response limits for a special application of moving load.   In the results of analysis, 

it is seen that the vibration frequency of the beam is quite variable depending of the location of the mass 

on the beam span for higher mass ratios if the parameters of the base are zero. However, it is also 

observed that level of the variation can be limited by inclusion of an appropriate base. When very large 

stiff foundation parameters are chosen the response approaches to the response of the static loading case 

due to increase in the natural frequencies at stiff foundations parameters. In high speed moving mass 

applications, the effect of the mass of the foundation appears to be obvious in the dynamic behaviour of 

the entire system. For this reason, it will be important for the accuracy of the calculations to consider 

the mass of the foundation in engineering calculations of current and future applications where vehicle 

speeds are gradually increasing. 
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