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ABSTRACT 
 

In this study, three dimensional, unsteady, laminar boundary layer equations of a general model of non-
Newtonian fluids are treated. In this model, the shear stresses are considered to be arbitrary functions of velocity 
gradients. A general boundary value problem modeling the flow over a moving surface with suction or injection 
is considered. Using Similarity Analysis, we showed that equations admit scaling transformation for the 
arbitrary shear stress case. The specific forms of the stress functions where richer scaling symmetries exist are 
derived. We reduce the three-independent-variable partial differential system to two-independent-variable partial 
differential system. Using further translation symmetries of the outcoming equations, the boundary value 
problem is successfully reduced to an ordinary differential system. 
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NON-NEWTONYEN BİR MODEL'İN ÜÇ BOYUTLU SINIR TABAKASI 
DENKLEMLERİNİN BENZERLİK ANALİZİ 

 
 

ÖZET 
 

Bu çalışmada, non-Newtonyen akışkanların üç boyutlu, laminer sınır tabakası denklemleri incelenmiştir. Bu 
modelde, kayma gerilmesi hız gradyanının keyfi bir fonksiyonudur. Sınır değer probleminde hareketli yüzey ile 
beraber emme veya püskürtmeli yüzey üzerindeki akış ele alınmıştır. Benzerlik analizi kullanılarak, keyfi kayma 
gerilmesi durumunda denklemlerin ölçekleme dönüşümünü kabul ettiği gösterilmiştir. Kayma gerilmesinin özel 
formlarında daha zengin bir yapının mevcut olduğu yapılar türetilmiştir. Üç bağımsız kısmı diferansiyel denklem 
sistemi iki bağımsız denklem sistemine indirgenmiştir. Elde edilen denklemler öteleme dönüşümü kullanılarak, 
sınır değer problemi adi diferansiyel denklem formuna başarıyla indirgenmiştir. 
 
Anahtar Kelimeler : Non-Newtonyen akışkanlar, Sınır tabakası  
 

1. INTRODUCTION 
 
We treat the unsteady boundary layer equations of a 
general non-Newtonian fluid model first proposed 
by Hansen and Na (1968). In their model, they take 
the shear stress as an arbitrary function of the 
velocity gradient. The model is a generalization of 
the   visco-inelastic behaviour observed in several 
fluids including Newtonian, Power-Law, 
Williamson, Prandtl, Powel-Eyring, Eyring, Ellis 

and Reiner-Philippoff fluids. Hansen and Na (1968) 
presented a similarity solution for the steady two 
dimensional case using scaling transformation. 
Timol and Kalthia (1986) extended the analysis to 
three dimensions using scaling and spiral group 
transformations. Pakdemirli (1994) retreated the 
analysis of references Hansen and Na, (1968) and 
Timol and Kalthia, (1986) showed that richer 
similarities exits for some specific forms of the 
stress function. Recently, Pakdemirli et al. (1996) 
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used exterior differential forms to determine the 
general symmetries of the two dimensional steady-
state equations of the model. Yürüsoy (1996) and 
Yürüsoy, Pakdemirli, (1996) calculated the 
symmetries of the unsteady two-dimensional 
boundary layer equations by applying Lie Group 
analysis.  
 
In reference (Yürüsoy,  1996), the classical 
boundary layer problem, flow with suction or 
injection and flow over a stretching sheet cases are 
investigated whereas in reference (Yürüsoy and 
Pakdemirli, 1996) the combined effects of moving 
surface and suction or injection are treated. For the 
boundary value problems of reference (Yürüsoy, 
1996), reduction for the partial differential system 
from three independent variables to two independent 
variables is possible whereas further reduction to 
ordinary differential equations is impossible. 
However, in reference (Yürüsoy and Pakdemirli 
1996), it is shown that the three independent 
variable partial differential system corresponding to 
moving surface with suction or injection can be 
reduced to ordinary differential system by 
successive application of Lie Groups In this work, 
we treat the three dimensional unsteady boundary 
layer equations. The boundary value problem is the 
same as in Yürüsoy and Pakdemirli (1996) with a 
generalization to three dimensions. We showed that 
equations admit scaling transformation for the 
arbitrary shear stress case. The specific forms of the 
stress functions where richer scaling symmetries 
exist are derived. By assuming all flow quantities to 
be independent of z coordinate, we reduce the three-
independent-variable partial differential system to 
two-independent-variable partial differential system. 
Using further translation symmetries of the 
outcoming equations, the boundary value problem is 
successfully reduced to an ordinary differential 
system. 
 
 

2. EQUATIONS OF MOTION 
 
The three dimensional incompressible, laminar, 
unsteady, boundary layer equations have the 
following form, 
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where the shear stresses and velocity gradients are 
implicitly related through the arbitrary continuous 
functions F and G. Note that the components of 
velocity gradients which are largest inside the 
boundary layer are taken into consideration. U and 
W denote the x and z components of velocities 
outside the boundary layer. 

 
 

3. SCALING SYMMETRIES 
 
In this section, we apply scaling transformation to 
equations (1)-(5). Two cases are of practical 
importance: 1) Arbitrary shear stress, 2) Specific 
forms of stresses where richer symmetries exits. 
We scale all the independent and dependent 
variables as follows, 
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Substituting the new variables defined in (6) into  
(1)-(5), requiring that the new system of equations 
have equivalent form with the old system results in 
the invariance conditions 
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b + e - a - f  =  0,  c + e - a - g  = 0,  a-e-d = 0,  b-d-f = 0  
c-d-g = 0,  b + e-d-h = 0, e-i = 0 a + e-d-2i = 0 
c + e - d - i - j = 0,  b + g - d - k = 0,  g - j = 0, 
a + g - d - i - j = 0   c+g-d-2j = 0  
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3. 1.  Arbitrary Shear Stress 
 
Requiring F and G to remain arbitrary under the 
transformation yields 
 
b-e = 0,  b-g =  0, h = 0, k = 0              (10) 
 
Solving (10) and (7) together, we represent all 
parameters in terms of one parameter 
 
                                                                             (11) 

 
 

Before defining similarity variables and functions, to 
avoid three successive reductions, we assume all 
flow quantities to be independent of z coordinate. 
The equations determining the similarity variables 
and functions can now be written as 
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The corresponding similarity variables and functions 
are  
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τxy and τyz are invariants by themselves. 
 
We now impose the boundary conditions for the 
equations of motion 
 
 
                                                                   (14) 
 
 
The boundary conditions imply that the surface is 
moving and there is suction or injection through the 
surface. Requiring that the functions A(x,t), V(x,t) 
and B(x,t) possess scaling properties yield. 
 
 
A (x,t) = t1/2 A (ξ),  V (x,t) = t-1/2  V (ξ), 
B (x,t) = t1/2 B (ξ)              (15) 

 

Substituting the new variables (13) and (15) into   
(1)-(5) and (14) and remembering that all flow 
quantities are independent of z coordinate, we 
finally obtain a partial differential system with two 
independent variables 
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3. 2. Specific Forms of  Stresses 

 
If we require that F and G functions in (8) and (9) 
possess scaling properties, then we obtain some 
special forms of the functions. For those special 
forms, obviously the scaling symmetries would be 
enriched. To manage this, we differentiate (8) and 
(9) with respect to λ, return to original variables, 
solve the outcoming first order partial differential 
system, solve (7) and finally obtain 
 
 
                          (22) 

 
 
F = F (α1,α2),  G = G (α3,α4)                      (23) 
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Note that for the specific forms of F and G defined 
in (23) and (24) we have four parameter Lie Group 
scaling transformations as seen in (22) whereas for 
arbitrary F and G, we only have one parameter Lie 

a = d + e,  b = d + f,  c = d + g,  h = f+e,  i = 
e,     j = g ,  k = f + g  

 a = 3b,  c = 3b,  d = 2b,  e = b,  f = -b,  g = b,  
h = 0    i = b,  j = b,  k = 0    

u (x,0,t) = A(x,t), v (x,0,t) = ± V (x,t)  w 
(x,0,t) = B (x,t), u (x,∞,t ) = U (x,t)   w (x,∞,t) 
= W(x,t)

P (ξ,0) = A (ξ),  Q (ξ,0) = ± V (ξ), R (ξ,0) = B 
(ξ),  P (ξ,∞) = U (ξ), R (ξ,∞) = W (ξ) 



Similarity Analysis of Unsteady Three Dimensional Boundary Layers of a Non-Newtonian Model, M. Yürüsoy, M. Yılmaz, M. Pakdemirli 

 

Mühendislik Bilimleri Dergisi  1997  3 (3) 396  Journal of Engineering Sciences 1997 3 (3) 
 

 

Group scaling transformation (see eq. (11)). 
Therefore  symmetries are richer in this case 
compared to the arbitrary shear stress case. Note that 
Newtonian and Power-Law fluids obey the general 
form given in (23) and (24). Applications of 
Newtonian and Power-Law fluids for the 
symmetries given in (22)-(24) would be similar to 
those given in reference (Pakdemirli, 1994) with the 
exception that shear stresses are explicit functions of 
velocity gradients in Pakdemirli (1994) whereas in 
our case, they are implicit functions. 

 
 

4. TRANSLATION SYMMETRIES OF 
REDUCED SYSTEM 

 
In this section, we treat equations (16)-(21) obtained 
for the arbitrary shear stress case. From the results 
given in reference (Yürüsoy and Pakdemirli 1996), 
we expect the reduced system (16)-(21) to possess 
translation   symmetries   only.   We  therefore  write 
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Substituting (25) into (16)-(21) and remembering 
that F and G are arbitrary, we obtain the following 
invariance conditions 
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The above equations can be represented in terms of 
two arbitrary parameters m and p as follows  
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Choosing m = 1 and p = 3, we write the differential 
system for the similarity variables and functions 
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Solving (28), we find  
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where τxy and τyz are absolute invariants again. 
Substituting  (29) into (16)-(21), we have  
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F L Nxy( , , )τ ′ ′ = 0                         (33) 

 
G L Nyz( , , )τ ′ ′ = 0                         (34) 
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We therefore succesfully reduced the partial 
differential system of three independent variables to 
an ordinary differential system by applying first 
scaling and then translation symmetries. A closed 
form solution of ordinary differential system (30)-
(35) cannot be achieved unless we specify F and G. 
Even for specific F and G, however, a numerical 
treatment of equations might be inevitable. 
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