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Abstract
Many of the physical phenomena in nature are usually expressed in terms of algebraic, differential or
integral equations.Several nonlinear phenomena playing a very important role in engineering sciences,
physics and computational mathematics are usually modeled by those non-linear partial differential
equations (PDEs). It is usually difficult and problematic to examine and find out nalytical solutions of
initial-boundary value problems consisting of PDEs. In fact, there is no a certain method or technique
working well for all these type equations. For this reason, their approximate solutions are usually
preferred rather than analytical ones of such type equations. Thus, many researchers are concentrated on
approximate methods and techniques to obtain numerical solutions of non-linear PDEs. In the present
article, the numerical simulation of the two-dimensional coupled Burgers equation (2D-cBE) has been
sought by finite difference method based on Crank-Nicolson type approximation. Widely used three test
examples given with appropriate initial and boundary conditions are used for the simulation process.
During the simulation process,the error norms L2, L∞ are calculated if the exact solutions are already
known, otherwise the pointwise values and graphics are provided for comparison. The newly obtained
error norms L2, L∞ by the presented schemes are compared with those of some of the numerical solutions
in the literature. A good consistency and accuracy are observed both by numerical values and visual
illustrations.
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1. Introduction
Most of the natural principles and laws in the real world are modelled by differential equations and only a few

of them could be solved analytically. Thus obtaining numerical solutions for those equations has become more
important. Throughout history of mankind, scientists and engineers have utilized mathematics for describing the
physical characteristics of the universe by searching appropriate modelling methods and techniques. In this context,
it is seen that numerous fundamental phenomena in ecology, physics, finance, data science, mechanical engineering

Received : 10-08-2021, Accepted : 03-03-2022

https://doi.org/10.36753 /msaen.981131


Numerical Simulation of 2D viscous Coupled Burgers 147

etc. could be modelled by means of various differential equations. Thus, finding analytical and numerical solutions
of those differential equations has become a significant part of scientific studies. Becuase of this fact, over the years,
a wide range of efficient and effective methods have been proposed and developed for solving those equations.
Among others, one of those differential equations is the two-dimensional coupled Burgers equation (2D-cBE). There
are many theoretical and numerical studies about the 2D-cBE equation in the literature. Fletcher [1] has presented its
exact solution via applying the two-dimensional Hopf-Cole transform to the 2D coupled Burgers equation. 2D-cBE
has been solved approximately by many researchers using several methods. For instance, Yagmurlu and Gagir [2]
have sought the numerical solution of the two-dimensional coupled Burgers equation by finite difference method
based on Rubin-Graves type linearization. Fletcher [3] has made a study to compare finite difference and finite
element methods. Goyon [4] applied multi level alternating direction implicit methods. Ali et al. [5] have utilized
collation method based on the radial base functions. Jain and Holla [6] have proposed two different schemes based
on the cubic spline basis function. Bahadır [7] has solved the problem by means of fully implicit finite difference
method. Khater et al. [8] have put forward the approximate solution of some Burgers type nonlinear partial
differential equations using Chebyshev spectral collocation method. Mittal and Jiwari [9] have used the differential
quadrature method using the Chebyshev-Gauss-Lobatto nodal points. Liao [10] obtained the numerical solution
of the two-dimensional coupled Burgers equation by solving the two-dimensional linear heat equation obtained
by applying the two-dimensional Hopf-Cole transformation to the two-dimensional coupled Burgers equation
using the fourth-dimensional finite difference method. Zhu et al. [11] applied the discrete Adomian decomposition
method. Srivastava et al. have applied [12] Crank-Nicolson finite difference method, Tamsir and Srivastava
[13] have used semi-implicit finite difference method, Srivastava and Tamsir [14] have utilized Crank-Nicolson
semi-implicit finite difference method, Thakar and Wani [15] have used linear finite difference method, Srivastava
et al. [16] have applied implicit logarithmic finite difference method, Srivastava et al. [17] have used implicit
exponential finite difference method, Srivastava and Singh [18] have used explicit-implicit finite difference method,
Zhang et al. [19] have used full finite difference and non-standard finite difference methods, Mittal and Tripathi
[20] have applied modified bi-cubic B-spline collocation method, Tamsir et al. [21] have used exponential modified
cubic-B-spline differential quadrature method, Zhanlav et al. [22] have applied high order explicit finite difference
method, Chai and Ouyang [34] have used proper stabilized Galerkin methods, and Ngondiep [23] has utilized
three-level explicit time-split MacCormack algorithm. Saqib et al. [24] have dealt with numerical solutions of
2-dimensional time dependent coupled non-linear systems. Wubs and Goede [25], in their article, considered the
fully explicit method resulting from the truncation in the solution process and chosen one of the test examples as
the 2-dimensional coupled Burgers’ equation. Kutluay and Yagmurlu [26] have proposed and succesfully applied
the modified bi-quintic B-spline base functions for the two dimensional unsteady Burgers’ equation using the
Galerkin method. Başhan [27] has solved coupled viscous Burgers’ equations numerically in the presence of very
large Reynolds numbers. Başhan et al. [28] have applied quintic B-spline differential quadrature method to find
the numerical solution of the modified Burgers’ equation. Uçar et al. [29] have aimed to obtain the numerical
approximate solutions of the nonlinear modified Burgers’ equation via the modified cubic B-spline differential
quadrature methods. Karakoç et al. [30] have obtained a numerical solution of the modified Burgers’ equation by
using quartic B-spline subdomain finite element method over which the nonlinear term is locally linearized and
using quartic B-spline differential quadrature method. Başhan. [31] has modified quintic B-spline base function
to use for numerical solution of the Burgers’ equation. Karakoç and Bhowmik [32] have studied solitary-wave
solutions of the nonlinear Benjamin-Bona-Mahony-Burgers equation based on a lumped Galerkin technique using
cubic B-spline finite elements for the spatial approximation. Bhowmik and Karakoç [33] have developed and
analyzed a powerful numerical scheme for the nonlinear GRLW equation by Petrov-Galerkin method in which the
element shape functions are cubic and weight functions are quadratic B-splines.

The present paper is outlined as follows: The first section presented the method based on Crank-Nicolson type
approximation together with finite difference method and used for the numerical solution of two dimensional
coupled Burgers equation. To test the efficiency and effectiveness of the method, the approximate solution of three
model problems has been found out and given in tabular form by computing the nodal values and also the error
norms L2 and L∞ of the model examples of which the analytical solutions are known In addition, a comparison is
made with the error norms of the numerical solutions obtained by several methods available in the literature. In the
end of the article, a brief summary and plans about possible future studies are presented.

2. A concise description of the Method

In the present article, 2D coupled Burgers equation of the following form [13]
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ut + uux + vuy =
1

Re
(uxx + uyy), (x, y) ε Ω, t > 0, (2.1)

vt + u vx + vvy =
1

Re
(vxx + vyy), (x, y) ε Ω, t > 0, (2.2)

with the appropriate initial

u(x, y, 0) = ψ1(x, y); (x, y) ε Ω,

v(x, y, 0) = ψ2(x, y); (x, y) ε Ω,

and the boundary conditions

u(x, y, t) = ξ(x, y, t); (x, y) ε ∂Ω,

v(x, y, t) = ζ(x, y, t); (x, y) ε ∂Ω,

will be considered, where u (x, y, t) and v (x, y, t) are velocity components given over the solution domain of the
problem Ω = {(x, y) : a 6 x 6 b, c 6 y 6 d} together with its boundary ∂Ω. ψ1, ψ2, ξ and ζ are known smooth
functions.Re is the Reynold number and ε = 1

Re . For the large values of the Reynold number, a shock wave having
a cusp results in and numerical stability near this shock wave is nearly always difficult to obtain. This is obvious in
many studies in the literature and also observed in the present study.

The solution domain of the problem in x−direction is divided into Nx equal parts with length hx, and in
y−direction is divided into Ny equal parts with length hy such that xi = a + ihx, i = 0(1)Nx and yi = c + jhy,
j = 0(1)Ny . As a result of these division processes, a rectangular grid is constructed over the solution domain of the
problem by means of grid points (xi, yj). For the time dimension, again a fixed step length ∆t is taken such that
tn = n∆t, n = 0(1)N . Throughout the paper, the numerical computations are going to be carried out at each tn time
step and the results are going to be obtained at the grid points of this rectangular grid. From now on, the numerical
solutions of u (x, y, t) and v (x, y, t) at the grid point (xi, yj , tn) are going to be denoted by uppercase U n

i,j and V n
i,j ,

respectively.
Now, 2D-cBE given as follows

ut + uux + vuy =
1

Re
(uxx + uyy),

vt + uvx + vvy =
1

Re
(vxx + vyy),

is first discretized by explicit finite difference method (EFDM)

Un+1
i,j = Un

i−1,j(b1U
n
i,j + a1) + Un

i,j(1− 4a1)− Un
i+1,j(b1U

n
i,j − a1) + Un

i,j−1(b1V
n
i,j + a1)

− Un
i,j+1(bV n

i,j − a1),

V n+1
i,j = V n

i−1,j(b1U
n
i,j + a1) + V n

i,j(1− 4a1)− V n
i+1,j(b1U

n
i,j − a1) + V n

i,j−1(b1V
n
i,j + a1)

− V n
i,j+1(b1V

n
i,j − a1),

and then by implicit finite difference method (IFDM)

− Un+1
i−1,j(b1U

n
i,j + a1) + Un+1

i,j (1 + 4a1) + Un+1
i+1,j(b1U

n
i,j − a1)− Un+1

i,j−1(b1V
n
i,j + a1)

+ Un+1
i,j+1(b1V

n
i,j − a1) = Un

i,j ,

− V n+1
i−1,j(b1U

n
i,j + a1) + V n+1

i,j (1 + 4a1) + V n+1
i+1,j(b1U

n
i,j − a1)− V n+1

i,j−1(b1V
n
i,j + a1)

+ V n+1
i,j+1(b1V

n
i,j − a1) = V n

i,j ,
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where hx =hy, a1 = εk/h2x =εk/h2y, b1 = k/2hx = k/2hy and ε = 1/Re for i, j = 1(1)M − 1 .When the average of
EFDM and IFDM is taken, the following Crank-Nicolson finite difference schemes are obtained

− Un+1
i−1,j(d1U

n
i,j + c1) + Un+1

i,j (1 + 4c1) + Un+1
i+1,j(d1U

n
i,j − c1)

− Un+1
i,j−1(d1V

n
i,j + c1) + Un+1

i,j+1(d1V
n
i,j − c1)

= Un
i−1,j(d1U

n
i,j + c1) + Un

i,j(1− 4c1)− Un
i+1,j(d1U

n
i,j − c1)

+ Un
i,j−1(d1V

n
i,j + c1)− Un

i,j+1(d1V
n
i,j − c1),

and

− V n+1
i−1,j(d1U

n
i,j + c1) + V n+1

i,j (1 + 4c1) + V n+1
i+1,j(d1U

n
i,j − c1)

− V n+1
i,j−1(d1V

n
i,j + c1) + V n+1

i,j+1(d1V
n
i,j − c1)

= V n
i−1,j(d1U

n
i,j + c1) + V n

i,j(1− 4c1)− V n
i+1,j(d1U

n
i,j − c1)

+ V n
i,j−1(d1V

n
i,j + c1)− V n

i,j+1(d1V
n
i,j − c1),

where hx = hy, c1 = εk/2h2x = εk/2h2y, d1 = k/4hx = k/4hy and ε = 1/Re for i, j = 1(1)M − 1.Using the known
Un and V n values in the finite difference schemes obtained as a result of this approximation, the unknown values
of Un+1 and V n+1 at the desired time t were obtained for all three model examples.

3. Numerical Examples and Results

In this section, the numerical solution of 2D coupled Burgers equation given by the equations (2.1)-(2.2), for
three examples with appropriate initial and boundary conditions using the finite difference method based on
Crank-Nicolson type approximation has been obtained. For all computations, the MATLAB software is used. In
order to show the accuracy of the obtained numerical solutions, the following error norms L2 and L∞ are calculated

To show how good the numerical results obtained by the present method, the error norms L2 and L∞ given as

L2 =

√√√√Nx−1∑
i=1

Ny−1∑
j=1

|Uij − (uexact)ij |2,

and

L∞ = max
i,j
|Ui,j − (uexact)i,j | ,

where unij are exact solutions and U n
ij are numerical solutions at the nodal points (xi, yj , tn) [35].The proposed

numerical scheme is applied to the test problems and the computed approximate results for different values of the
time step size k and partition number N at some values of T on the solution domains are displayed in tables.

Example I: Firstly, finite difference method has been applied to 2D-cBE having the following exact solution over
the region Ω = [0, 1]× [0, 1] [7]

u(x, y, t) =
3

4
− 1

4 [1 + exp((−4x+ 4y − t) Re /32]
, (3.1)

v(x, y, t) =
3

4
+

1

4 [1 + exp((−4x+ 4y − t) Re /32]
. (3.2)

Since the Example I has an exact solution, its initial and boundary conditions required for the application of the
method are obtained from the analytical solution. Table (1) shows the numerical solutions of Example I for u for
hx = hy = 0.05, Re = 10, ∆t = 10−4 at t = 0.01 and 1.0. One can see from this table that both the numerical and
analytical solutions at selected points at given times are very close to each other. Besides, it is obvious that the
computed error norms L2 and L∞ are small enough. In a similar way, Table (2) gives the numerical solutions of
Example I for v for hx = hy = 0.05, Re = 10, ∆t = 10−4 at t = 0.01 and 1.0. One can observe that the numerical
results are very close to their exact counterparts and computed error norms are small enough. It is also observed
that the numerical solutions found out by the presented scheme are getting closer and closer to analytical values as
the mesh sizes are refined.Tables (3-4) present nodal values and the error norms L2 and L∞ of u and v but now for
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Table 1. Some nodal values u of Example 1 with the error norms L2 and L∞ for hx = hy = 0.05, Re= 10, ∆t = 10−4

at t = 0.01 and 1.0.
(x, y) t = 0.01 t = 1.0

Approx. Exact Approx. Exact
(0.1, 0.1) 0.624805 0.624805 0.605626 0.605626
(0.5, 0.1) 0.594202 0.594202 0.576840 0.576840
(0.9, 0.1) 0.567082 0.567082 0.553017 0.553017
(0.3, 0.3) 0.624805 0.624805 0.605627 0.605626
(0.7, 0.3) 0.594202 0.594202 0.576840 0.576840
(0.1, 0.5) 0.655431 0.655431 0.636685 0.636685
(0.5, 0.5) 0.624805 0.624805 0.605628 0.605626
(0.9, 0.5) 0.594202 0.594202 0.576840 0.576840
(0.3, 0.7) 0.655431 0.655431 0.636687 0.636685
(0.7, 0.7) 0.624805 0.624805 0.605629 0.605626
(0.1, 0.9) 0.682611 0.682611 0.666353 0.666353
(0.5, 0.9) 0.655431 0.655431 0.636687 0.636685
(0.9, 0.9) 0.624805 0.624805 0.605627 0.605626

L2 8.649162× 10−8 2.409775× 10−6

L∞ 6.878261× 10−8 2.872069× 10−6

Table 2. Some nodal values v of Example 1 with the error norms L2 and L∞ for hx = hy = 0.05, Re= 10, ∆t = 10−4

at t = 0.01 and 1.0.
(x, y) t = 0.01 t = 1.0

Approx. Exact Approx. Exact
(0.1, 0.1) 0.875195 0.875195 0.894374 0.894374
(0.5, 0.1) 0.905798 0.905798 0.923160 0.923160
(0.9, 0.1) 0.932918 0.932918 0.946983 0.946983
(0.3, 0.3) 0.875195 0.875195 0.894373 0.894374
(0.7, 0.3) 0.905798 0.905798 0.923160 0.923160
(0.1, 0.5) 0.844569 0.844569 0.863315 0.863315
(0.5, 0.5) 0.875195 0.875195 0.894372 0.894374
(0.9, 0.5) 0.905798 0.905798 0.923160 0.923160
(0.3, 0.7) 0.844569 0.844569 0.863313 0.863315
(0.7, 0.7) 0.875195 0.875195 0.894371 0.894374
(0.1, 0.9) 0.817389 0.817389 0.833647 0.833647
(0.5, 0.9) 0.844569 0.844569 0.863313 0.863315
(0.9, 0.9) 0.875195 0.875195 0.894373 0.894374

L2 6.178088× 10−8 1.637351× 10−6

L∞ 6.878261× 10−8 2.872070× 10−6

Table 3. Comparison of the approximate and exact solutions u of Example 1 for hx = hy = 0.05, Re= 100,
∆t = 10−4 at t = 0.01 and 1.0.

(x, y) t = 0.01 t = 1.0

Approx. Exact Approx. Exact
(0.1, 0.1) 0.623106 0.623047 0.510307 0.510522
(0.5, 0.1) 0.501617 0.501622 0.500072 0.500074
(0.9, 0.1) 0.500011 0.500011 0.500000 0.500000
(0.3, 0.3) 0.623106 0.623047 0.509823 0.510522
(0.7, 0.3) 0.501617 0.501622 0.500067 0.500074
(0.1, 0.5) 0.748272 0.748274 0.716948 0.716759
(0.5, 0.5) 0.623106 0.623047 0.509497 0.510522
(0.9, 0.5) 0.501617 0.501622 0.500063 0.500074
(0.3, 0.7) 0.748272 0.748274 0.717267 0.716759
(0.7, 0.7) 0.623106 0.623047 0.509311 0.510522
(0.1, 0.9) 0.749988 0.749988 0.749738 0.749742
(0.5, 0.9) 0.748272 0.748274 0.717532 0.716759
(0.9, 0.9) 0.623106 0.623047 0.509170 0.510522

L2 3.822706× 10−5 1.341393× 10−3

L∞ 6.086191× 10−5 2.903955× 10−3
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Table 4. Comparison of the approximate and exact solutions v of Example 1 for hx = hy = 0.05, Re= 100,
∆t = 10−4 at t = 0.01 and 1.0.

(x, y) t = 0.01 t = 1.0

Approx. Exact Approx. Exact
(0.1, 0.1) 0.876894 0.876953 0.989693 0.989478
(0.5, 0.1) 0.998383 0.998378 0.999928 0.999926
(0.9, 0.1) 0.999989 0.999989 1.000000 1.000000
(0.3, 0.3) 0.876894 0.876953 0.990177 0.989478
(0.7, 0.3) 0.998383 0.998378 0.999933 0.999926
(0.1, 0.5) 0.751728 0.751726 0.783052 0.783241
(0.5, 0.5) 0.876894 0.876953 0.990503 0.989478
(0.9, 0.5) 0.998383 0.998378 0.999937 0.999926
(0.3, 0.7) 0.751728 0.751726 0.782733 0.783241
(0.7, 0.7) 0.876894 0.876953 0.990689 0.989478
(0.1, 0.9) 0.750012 0.750012 0.750262 0.750258
(0.5, 0.9) 0.751728 0.751726 0.782468 0.783241
(0.9, 0.9) 0.876894 0.876953 0.990830 0.989478

L2 2.744679× 10−5 8.302825× 10−4

L∞ 6.086191× 10−5 2.903955× 10−3

a larger value of Reynold number Re = 100, respectively. From those tables one can see that both of the error norms
increase as the Reynold number increases. In the Figures (1-2), one can see first exact and then numerical solutions
for u and v of Example 1 for values of hx = hy = 0.05, Re = 100, ∆t = 10−4 at t = 0.5,respectively.
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Figure 1. The profiles of Example 1 of (a) exact and (b) numerical solutions for u for hx = hy = 0.05, Re= 100,
∆t = 10−4 at t = 0.5.
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Table 5. A comparison of numerical solutions for u of Example 2 with those given in [6, 7, 13] for hx = hy = 0.025,
Re= 500, ∆t = 10−4 at t = 0.625.

(x, y) u

Present [6] [6] N=40 [7] [13]
(0.15, 0.1) 0.96870 0.95691 0.96066 0.96650 0.96870
(0.3, 0.1) 1.03202 0.95616 0.96852 1.02970 1.03200
(0.1, 0.2) 0.84619 0.84257 0.84104 0.84449 0.86178
(0.2, 0.2) 0.87814 0.86399 0.86866 0.87631 0.87813
(0.1, 0.3) 0.67920 0.67667 0.67792 0.67809 0.67920
(0.3, 0.3) 0.79947 0.76876 0.77254 0.79792 0.79945
(0.15, 0.4) 0.54674 0.54408 0.54543 0.54601 0.66039
(0.2, 0.4) 0.58959 0.58778 0.58564 0.58874 0.58958
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Figure 2. The profiles of Example 1 of (a) exact and (b) numerical solutions for v for values of hx = hy = 0.05,
Re= 100, ∆t = 10−4 at t = 0.5.

Example II: Secondly, Crank-Nicolson finite difference method has been applied to 2D-cBE on the solution
domain Ω = [0, 0.5]× [0, 0.5] with the following initial

u (x, y, 0) = sinπx+ cosπy, v (x, y, 0) = x+ y (3.3)

and boundary conditions

u(0, y, t) = cos(πy), u(0.5, y, t) = 1 + cos(πy)
v(0, y, t) = y, v(0.5, y, t) = 0.5 + y

}
0 ≤ y ≤ 0.5, t ≥ 0, (3.4)

u(x, 0, t) = 1 + sin(πx) u(x, 0.5, t) = sin(πx)
v(x, 0, t) = x v(x, 0.5, t) = x+ 0.5

}
0 ≤ x ≤ 0.5, t ≥ 0. (3.5)

[13]. Unlike the Example I, Example II has no analytical solution. Due to this fact, Table (5) only gives a comparison
of numerical solutions for u of Example II for hx = hy = 0.025, Re= 500, ∆t = 10−4 at t = 0.625 with those in Refs.
[6, 7, 13]. Again, due to the same reason, Table (6) presents a comparison of numerical solutions for v of Example II
for values of hx = hy = 0.025, Re = 500, ∆t = 10−4 at time t = 0.625 with those in Refs. [6, 7, 13]. Tables (7-8) show
also pointwise values of u and v but now for a smaller value of Re = 50, respectively. Figures (3) shows numerical
solutions of u and v of Example II for hx = hy = 0.025, Re= 50, ∆t = 10−4 at t = 0.625, respectively.
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Table 6. A comparison of numerical solutions for v of Example 2 with those given in [6, 7, 13] for hx = hy = 0.025,
Re= 500, ∆t = 10−4 at t = 0.625.

(x, y) v

Present [6] [6] N=40 [7] [13]
(0.15, 0.1) 0.09043 0.10177 0.08612 0.09020 0.09043
(0.3, 0.1) 0.10728 0.13287 0.07712 0.10690 0.10728
(0.1, 0.2) 0.18010 0.18503 0.17828 0.17972 0.17295
(0.2, 0.2) 0.16816 0.18169 0.16202 0.16777 0.16816
(0.1, 0.3) 0.26268 0.26560 0.26094 0.26222 0.26268
(0.3, 0.3) 0.23550 0.25142 0.21542 0.23497 0.23550
(0.15, 0.4) 0.31799 0.32084 0.31360 0.31753 0.29022
(0.2, 0.4) 0.30419 0.30927 0.29776 0.30371 0.30418

Table 7. A comparison of numerical solutions for u of Example 2 with those given in [6, 7, 13] for hx = hy = 0.025,
Re= 50, ∆t = 10−4 at t = 0.625.

(x, y) u
Present [6] [7] [13]

(0.1, 0.1) 0.97146 0.97258 0.96688 0.97146
(0.3, 0.1) 1.15282 1.16214 1.14827 1.15280
(0.2, 0.2) 0.86307 0.86281 0.85911 0.86308
(0.4, 0.2) 0.97981 0.96483 0.97637 0.97984
(0.1, 0.3) 0.66316 0.66318 0.66019 0.66316
(0.3, 0.3) 0.77230 0.77030 0.76932 0.77232
(0.2, 0.4) 0.58180 0.58070 0.57966 0.58181
(0.4, 0.4) 0.75855 0.74435 0.75678 0.75860

Table 8. A comparison of numerical solutions for v of Example 2 with those given in [6, 7, 13] for hx = hy = 0.025,
Re= 50, ∆t = 10−4 at t = 0.625.

(x, y) v
Present [6] [7] [13]

(0.1, 0.1) 0.09869 0.09773 0.09824 0.09869
(0.3, 0.1) 0.14158 0.14039 0.14112 0.14158
(0.2, 0.2) 0.16754 0.16660 0.16681 0.16754
(0.4, 0.2) 0.17109 0.17397 0.17065 0.17110
(0.1, 0.3) 0.26378 0.26294 0.26261 0.26378
(0.3, 0.3) 0.22654 0.22463 0.22576 0.22655
(0.2, 0.4) 0.32851 0.32402 0.32745 0.32851
(0.4, 0.4) 0.32499 0.31822 0.32441 0.32501
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Table 9. Some nodal values u of Example 3 with the error norms L2 and L∞ for hx = hy = 0.05, Re= 1000,
∆t = 10−3 at t = 0.01, 0.5 and 1.0.

(x, y) t = 0.01 t = 0.5 t = 1.0

Approx. Exact Approx. Exact Approx. Exact
(0.1, 0.1) −0.001439 −0.001439 −0.001408 −0.001408 −0.001376 −0.001376
(0.5, 0.1) 0.001941 0.001941 0.001895 0.001894 0.001849 0.001848
(0.9, 0.1) −0.001727 −0.001727 −0.001682 −0.001682 −0.001638 −0.001637
(0.3, 0.3) 0.001134 0.001134 0.001114 0.001114 0.001094 0.001094
(0.7, 0.3) 0.002551 0.002551 0.002458 0.002453 0.002368 0.002359
(0.1, 0.5) −0.003927 −0.003927 −0.003854 −0.003854 −0.003780 −0.003781
(0.5, 0.5) 0.006280 0.006280 0.006130 0.006130 0.005981 0.005981
(0.9, 0.5) −0.007194 −0.007194 −0.006960 −0.006953 −0.006731 −0.006718
(0.3, 0.7) 0.001134 0.001134 0.001114 0.001114 0.001094 0.001094
(0.7, 0.7) 0.002551 0.002551 0.002458 0.002453 0.002368 0.002359
(0.1, 0.9) −0.001439 −0.001439 −0.001408 −0.001408 −0.001376 −0.001376
(0.5, 0.9) 0.001941 0.001941 0.001895 0.001894 0.001849 0.001848
(0.9, 0.9) −0.001727 −0.001727 −0.001682 −0.001682 −0.001638 −0.001637

L2 2.2082× 10−5 1.0301× 10−3 1.9265× 10−3

L∞ 2.8221× 10−7 1.2650× 10−5 2.2915× 10−5
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Figure 3. The numerical profiles of (a) u and (b) v of Example 2 for hx = hy = 0.025, Re= 50, ∆t = 10−4 at t = 0.625.

Example III: Thirdly, the solution domain is taken as Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and its exact solution
is [13]

u(x, y, t) = − 4πe−
5π2t

Re cos(2πx) sin(πy)

Re(2 + e−
5π2t

Re sin(2πx) sin(πy)
,

v(x, y, t) = − 2πe−
5π2t

Re sin(2πx) cos(πy)

Re(2 + e−
5π2t

Re sin(2πx) sin(πy)
,

Table (9) gives approximate solutions of u of Example III for hx = hy = 0.05, Re = 1000, ∆t = 10−3 at t = 0.01, 0.5
ve 1.0. From the table one can easily see that the approximate and exact solutions are very close to each other and
calculated error norms L2 and L∞ are small enough. In a similar manner, Table (10) presents numerical solutions of
v of Example 3 for values of hx = hy = 0.05, Re = 1000, ∆t = 10−3 at times t = 0.01, 0.5 ve 1.0. Again, one can see
from this table that both of the approximate and exact pointwise values are in good agreement. Th error norms L2

and L∞ show the general consistency between the approximate and exact solutions throughout the solution domain.
Figures (4-5) show (a) exact and (b) approximate solutions for u and v of Example 3 for values of hx = hy = 0.05,
Re = 1000, ∆t = 10−3 at t = 0.01,respectively.
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Table 10. Some nodal values v of Example 3 with the error norms L2 and L∞ for hx = hy = 0.05, Re= 1000,
∆t = 10−3 at t = 0.01, 0.5 and 1.0.

(x, y) t = 0.01 t = 0.5 t = 1.0

Approx. Exact Approx. Exact Approx. Ecaxt
(0.1, 0.1) −0.001609 −0.001609 −0.001574 −0.001574 −0.001539 −0.001539
(0.5, 0.1) −0.000000 −0.000000 −0.000000 −0.000000 −0.000001 −0.000000
(0.9, 0.1) 0.001931 0.001931 0.001880 0.001880 0.001830 0.001830
(0.3, 0.3) −0.001268 −0.001268 −0.001246 −0.001246 −0.001223 −0.001224
(0.7, 0.3) 0.002852 0.002852 0.002743 0.002743 0.002643 0.002637
(0.1, 0.5) −0.000000 −0.000000 −0.000000 −0.000000 0.000000 −0.000000
(0.5, 0.5) −0.000000 −0.000000 0.000000 −0.000000 −0.000000 −0.000000
(0.9, 0.5) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
(0.3, 0.7) 0.001268 0.001268 0.001246 0.001246 0.001223 0.001224
(0.7, 0.7) −0.002852 −0.002852 −0.002746 −0.002743 −0.002643 −0.002637
(0.1, 0.9) 0.001609 0.001609 0.001574 0.001574 0.001539 0.001539
(0.5, 0.9) 0.000000 0.000000 0.000000 0.000000 0.000001 0.000000
(0.9, 0.9) −0.001931 −0.001931 −0.001880 −0.001880 −0.001830 −0.001830

L2 1.2840× 10−5 6.0180× 10−4 1.1312× 10−3

L∞ 9.3384× 10−8 4.1425× 10−6 7.3706× 10−6
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Figure 4. The profiles of Example 3 of (a) exact and (b) numerical solutions of u for hx = hy = 0.05, Re= 1000,
∆t = 10−3 at t = 0.01.
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Figure 5. The profiles of Example 3 of (a) exact and (b) numerical solutions of v for hx = hy = 0.05, Re= 1000,
∆t = 10−3 at t = 0.01.
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4. Conclusion
In this study, the proposed scheme resulting an implicit linear algebraic system has been successfully applied

to obtain the approximate solutions of two dimensional Burgers equation. The error norms L2 and L∞ of the
presented scheme are calculated. The three numerical experiments showed that the approximate solutions are in
very good agreement with the analytical ones, and also the error norms are adequately small. The obtained results
support that the numerical accuracy of the scheme is in consistency with its theoretical value and that the scheme
is also unconditionally stable. In conclusion, the present numerical scheme, which can be easily implemented,
produces accurate and reliable results. As a future work, the method can be successfully used to find approximate
solutions of such combined partial differential equations that play an important role in describing nonlinear wave
propagation encountered in physics and applied mathematics.
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[28] Başhan, A., Karakoç, S. B. G., Geyikli, T.: B-spline Differential Quadrature Method for the Modified Burgers’ Equation.
Çankaya University Journal of Science and Engineering. 12 (1), 001–013 (2015) .
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