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ABSTRACT 
 
The paper focuses on modern analytical techniques for construction of utility functions over prizes, where the 
preferences of the decision maker are strictly increasing. If chosen and applied properly these methods facilitate the 
analysis and guarantee precise description of the decision makers’ preferences. The paper discusses modern analytical 
techniques, such as a modified arctg(.) form of the utility function, which contains prior information for the most typical 
risk attitude over lotteries, whose prizes can be both profits and losses. Also discussed is a power approximation of the 
utility.   
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SÜREKLİ ARTAN BİR FAYDA FONKSİYONUNUN MODELLENMESİ 
 

ÖZET 
 

Bu çalışma karar oluşturucuların özellikleri kuvvetli bir şekilde artarken ödüller için kurulmuş fayda fonksiyonunun 
inşası için modern analitik teknikler üzerine odaklanmaktadır. Eğer bu metotlar seçilir ve uygun bir şekilde uygulanırsa 
analizi kolaylaştırırlar ve karar oluşturucularının özelliklerini tam anlamıyla garanti ederler. Bu çalışma ödülü hem kar 
hem zarar olabilen piyangolar üzerine en tipik risk davranışı için ön bilgi içeren fayda fonksiyonunun bir modifiye 
edilmiş arctg(.)  biçimi gibi modern analitik teknikleri tartışmaktadır. Ayrıca fayda yaklaşımı da tartışılmaktadır. 
 
Anahtar Kelimeler: Fayda fonksiyonu, piyangolar, analitik yaklaşım, risk davranışı 
 
1. INTRODUCTION 
 
The systematic approach to analyze subjective or 
frequency information, namely the decision theory (DT), 
is one of the most frequently used quantitative analysis 
techniques under risk. It provides methods for making a 
rational choice when dealing with multiple possible 
alternatives. Its purpose is to find sufficient balance 
between the beliefs of the certain individual or entity 
making the decision (hence called decision maker), his 
attitude towards risk, the consequences of his possible 
actions and their utility. 
 
The basis of DT is the utility theory [1,2]. Utility theory 
techniques are developed in the context of choices 
between lotteries. A lottery is a set of excluding prizes 
and the probability to win each one of them. The set of 
lotteries L and the set of prizes X can be either discrete, or 
continuous. If only discrete sets are present, the so-called 
ordinary lotteries are defined. Generalized lotteries (of I, 

II or III type) are defined in cases where a continuous set 
of prizes and/or lotteries is present. The ways to analyze 
lotteries are set in axioms of rational choice [3,4,5]. The 
utility function u(.) is used to measure preferences over 
prizes. Lotteries are ranked in descending order of their 
expected utility, i.e. the utilities of prizes weighted by 
their probabilities.  
 
The utility function can either be constructed via linear 
interpolation or via analytical approximation on the basis 
of a set of subjective estimates. The paper focuses on the 
second approach and discusses modern techniques for 
analytical construction of utilities in the case where the 
preferences of the decision maker (DM) are strictly 
increasing, i.e. the higher the prize the more preferred it 
is. It is emphasized that most of the classical forms only 
apply to a specific prize interval or to a specific risk 
attitude. Initial survey on that topic was presented in [6]. 
However, recent publications have proposed methods, 
which are much more adequate in approximating the 
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preferences of the DM over arbitrary prize sets. These 
shall be stressed as well. In what follows, section, the 
basis of utility theory and the interpretation of risk 
attitude is presented in section 2. Section 3 discusses 
classical and modern analytical forms of the utility 
function and discusses their characteristics and 
application areas.  

 
2. PREFERENCES AND RISK ATTITUDE 
    IN THE UTILITY FUNCTION 
 
The value system and believes of a decision maker is 
defined by his preferences over a set of consequences (or 
prizes) X. Quantitative measurement of these preferences 
is the utility function u(.). The values of u(x) in case of 
strictly increasing values of x X, increases with the 
value of x, if xi>xj, u(xi)>u(xj), for all xi∈X, xj

∈
∈X. 

Building a one-dimensional utility function u(.) is 
necessary with both one-dimensional and multi-
dimensional sets of prizes. In the latter case utility 
functions are built for each attribute under specific 
conditions of preferential independency. 
 
The elicitation of utilities of discrete and continuous 
prizes follows a similar procedure. It solves a preferential 
equation over lotteries using the bisection method [7] or 
its modifications (i.e. the triple bisection method) [8]. The 
DM solves the preferential equation by changing a given 
parameter in one of the lotteries until he is indifferent 
between those. Methods such as the probability 
equivalent or lottery equivalent change the probability in 
one of the lotteries [9]. Other methods, such as the 
certainty equivalent or the uncertain equivalent methods 
change the value of a prize [10,11]. The resulting 
estimates are then used to build the utility function u(.).   
 
The form of the utility function describes not only 
preferences, but also risk attitude [12,13,14]. When 
analyzing risk attitude, the set X usually contains only 
monetary prizes.  
 
Choosing an alternative, in terms of the utility theory, 
boils down to calculating the expected utility of each 
ordinary or generalized lottery, and picking the one with 
the highest result. The formula for expected utility is as 
follows:  

 

E(u | p)=  (1)
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E(x | p)=  (2)

      

), for discrete prizes

) , for continuous prizes

i ix

x dx

The expected value of prizes E(x | p) can be used to rank 
lotteries, but that suggests the DM is risk neutral, which 
is rarely the case. Utility theory is based on rationality 
axioms, which suggest that E(u | p) is to be used for 
rational choice between lotteries, because it takes into 
account the true risk attitude of the DM.  
 
Let xc be the sum of money whose utility equals the 
expected utility of a lottery: 
 
u(xc)=E(u | p).     (3) 

 
The sum xc is the price of the lottery according to the DM 
and is called certainty equivalent (CE). It is an alternative 
way to rank lotteries in descending order of xc. The CE 
may be elicited subjectively using the bisectional 
algorithms or one of its modifications.  
 
The difference between the expected value and the CE, 
called risk premium, can best describe the risk attitude. In 
[14] it is denoted as RP: 
 
RP =E(x | p) – xc.     (4) 

 
In [3,14] the close relation of risk attitude and the sign of 
the risk premium is proven in theorems. An individual is 
risk prone if RP<0, risk neutral if RP=0, and risk averse if 
RP>0. 
 
Probably the most appropriate measure of DM’s risk 
attitude is the local risk aversion r(x) proposed in [12]. It 
uses only the utility function (often the only source of 
information). It is defined as 

 
r(x)= –u''(x)/ u'(x).    (5) 

 
It has been proven that if the utility function is 
transformed into its strategic equivalent 
w(x)=α u(x)+β , the local risk aversion would not 
change. The first derivative of w(x) is w'(x)=α u'(x), 
while the second derivative is w''(x)=α u''(x), so r(x) 
remains the same. The reverse statement also holds and is 
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proven in a theorem in [14]. The practical importance of 
the local risk aversion is proven in a theorem in [12, 14]. 
Let u1(.) and u2(.) be two utility functions of two DMs 
over the continuous set of prizes X, while r1(x) and r2(x) 
are represent their local risk aversions. The risk premium 
of the first DM (RP)1 will be higher than the one of the 
second DM (RP)2, if r1(x)> r2(x).  
 
The risk attitude of a single DM over different sets of 
prizes can also be analyzed through the local risk 
aversion. Most people are risk prone over large losses and 
small profits, and that proneness decreases with the 
increase of the losses. In the same time, people are risk 
averse over large profits and small losses, and their 
aversion decreases with the increase of the profits. Those 
are rather descriptive statements, but all possible 
deviations are caused only by incorrect utility elicitation 
process [3]. 
 
Figure 1 presents the typical utility function [15] and its 
local risk aversion. The S-shape function clearly 
demonstrates why it is important to describe all possible 
consequences referring to a zero point relevant to the 
actual state of the world at the decision moment.  
 
3. APPROXIMATED UTILITY   FUNCTIONS 
 
The utility function can either be constructed via linear 
interpolation or via analytical approximation on the basis 
of a set of subjective estimates. The second approach 
gives better results especially when a multi-dimension 
utility function is present and there is a small amount of 
subjectively elicited utility points.  
 
In [13] the exponential utility function u(x)=1–e-x/R is 
proposed and analyzed. That is a concave function and 
may represent risk averseness. The parameter R is called 
risk tolerance and determines how risk averse the utility 
function is. Large values of R make the exponential 
utility function flatter, while smaller values make it more 
concave or more risk-averse. That is why if an individual 
can tolerate more risk, he would assess larger R and vise 
versa.  
 
R may be subjectively elicited. A bet is proposed, giving 
the chance to win Y with probability 0.5, and to lose Y/2 
with probability 0.5. The largest value of Y for which an 
individual would prefer to take the gamble rather than not 
take it is approximately equal to his risk tolerance R. 
Once R is assessed, it is easy to determine the CE of a 

lottery. The formula  
20.5σμ≈ −cx

R
 is proposed in 

[12,16] in order to calculate CE for the case of many 
outcomes. The parameters μ  and σ  are respectively the 
expected value and variance,.  
 

It is important to notice that the function u(x)=1 – e-x/R is 
appropriate for the case of constant risk aversion, where 
the risk premium of a gamble does not depend on the 
initial wealth and is a positive constant. A decreasing risk 
aversion situation is also possible, when the risk premium 
of a gamble decreases with the increase in the initial 
wealth. The utility function for such cases can be 
assessed as u(x) = ln(x) [Keeney, Raiffa, 1993]. 
 
The graphics of u(x)=1 – e-x/R and u(x)=ln(x) are 
presented in [13] and show no significant difference. 
Still, decreasing risk aversion appears to provide a more 
appropriate model of preferences that does constant risk 
aversion.  
 
Other analytical forms under different risk attitudes are 
also discussed in [14]. Constant risk aversion is described 
with the exponential function u(x) ~ –e–cx, for c>0, risk 
neutrality - with the linear function u(x)=х, while 
decreasing risk proneness is described with the 
exponential function u(x)~e–cx, for c<0. Other exponential 
and logarithmic expressions to reflect decreasing risk 
aversion are also defined, under certain parameter values. 
For the case of decreasing risk proneness the expression 
u(x)=х2 is proposed (decreasing risk proneness occurs 
when the risk premium for a gamble increases with the 
increase in the initial wealth).  
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Fig. 1. Typical utility function u(x) over profits in the 
interval from –$5000 to $10 000 (up) and local risk 
aversion r(x) of the typical utility function (down) 

 
Let X be a one-dimensional continuous set of prizes in a 
certain interval, where xi xj  xi>xj, for xi, xjf ⇔ ∈X [17]. 
The most desirable price is defined as xbest =sup(X), while 
the least desirable one is xworst =inf(X). They are 
appointed utilities as follows: u(xbest)=1 and u(xworst)=0. In 
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order to build u(x) for an individual DM over X, it is 
necessary to elicit several appropriate inner nodes 
between (xworst; xbest) in dialog with the DM. Ideally the 
nodes represent a single value. The real DM is usually 
inconsistent with the axioms of rationality, and his 
subjective estimates are in an interval form, which in turn 
leads to partially transitive preferences. DMs with such 
preferences are called fuzzy rational DMs [4].  
 
Some methods generate uncertainty intervals of the utility 
[ ; ] (where  and  are respectively the lower 
and upper bounds of the uncertainty interval). Other 
methods generate uncertainty intervals of the prize [

d
lû u

lû d
lû u

lû

l
d
ux̂ ; 

l
u
ux̂ ] (where 

l
d
ux̂  and 

l
u
ux̂  are respectively the lower and 

upper bounds of the uncertainty interval). As a result, the 
available information can be either one of the following: 
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The use of an analytical approximated utility function is 
appropriate in cases of low number of subjectively 
elicited nodes or the presence of large uncertainty 
intervals. Let the analytical dependency approximating 
the utility function of a fuzzy rational (or real) DM has 
the following form: 

 
u=u(x, )                                                         (8) pr

 
The parameter  = (p1, p2, p3,…, pn) is an n-dimensional 
vector of unknown parameters belonging to the n-
dimensional set and defining the form of the utility 
function. 

pr

Π

 
From xif xj ⇔  xi>xj , for xi∈X, xj∈X follows that: 
 
u(xi , p ) > u(xj , )  xi>xj ,  

r pr ⇔
for xi∈[xworst; xbest], xj∈ [xworst; xbest]  
and .                                          (9) pr ∈Π

The approximation nodes u(xbest , p ) and u(xworst ,
r pr ) are 

error-free, so: 
    

u(xworst,p
r

)=0, u(xbest, p
r

)=1, for         (10) pr ∈Π
If the elicited nodes are consistent with (6), the unknown 
parameters can be calculated through the weigthed least 
square method [Press, et al., 1992], where the deviation 
of the model from the best subjective estimate of a node 
is weighted by the width of the uncertainty interval of the 
utility quantile index . In [18] the following form is 
proposed: 
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The optimal parameters optpr  can be calculated using n-

dimensional minimization of 2χu   
on pr : 
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r
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From (9) it follows that an inverse function of (8) exists 
for whi h: c
x=x(u, pr )= u-1(x,pr ),                              (13) 
 
x(ui , p

r
) > x(uj , p

r
) ⇔  ui>uj , for ui∈ [0; 1], 

uj∈[0; 1] and pr ∈Π                         (14) 
 
x(0, pr )=xworst , x(1,pr )= xbest , for       (15) pr ∈Π
In cases where the elicited nodes are consistent with (7) a 
similar approach exists: 
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optpr = { }{ }2 ( )
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The calculation of optimal parameters will be facilitated 
if the inverse function is also analytical.  
 
In [18] the following analytical dependency is proposed: 

 
0 1

0 1

arctg[ ( )] arctg[ ( )]( )
arctg[ ( )] arctg[ ( )]

0

0

− − −
=

− − −z

a x x a x xu x
a x x a x x

    (18) 

 25



SAÜ. Fen Bilimleri Dergisi, 12. Cilt, 1. Sayı,                                   Building An Increasing Continuous Utility Function 
s. 22-27, 2008                                                                                     D. Y. Dimitrakiev 

The parameters a and x0 allow the form of u(.) to be 
adapted to different DM. Risk sensitivity is defined by 
the parameter a, while x0 defines the inflex point of u(.), 
which divides the prizes of the risk averse part (above x0) 
and those of the risk prone part (under x0). This form is 
referred to in the same source as arctg-approximated 
utility function. The following dependencies hold for the 
form (24): 

 
Π ={ (a, x0) | a ∈(0, )  x0 ∈( ) },(19) ∞ ∧ −∞ ∞,

 
where is the two-dimensional set of uncertain 
parameters a and  x0. 

Π
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u'' x a x xr x
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Of importance in this approach is the analytically inverse 
function of (18): 

 
1 0

0
tg{ arctg[ ( )]+(1 )arctg[ ( )]}( )= × − − −

+z ou a x x u a x xx u
a

x  (21) 

 
whose existence significantly facilitates the calculation of 
the optimal parameters. 
 
The arctg-approximation can be applied over a set of 
prizes X, consisting of both profits and losses, and its 
corresponding local risk aversion r(.) represents the most 
common risk attitudes. The existence of an analytically 
inverse function of (21) allows for fast calculation of 
optimal parameters for the utility function. The analytical 
construction of the utility function allows for error 
filtering of the subjective measurement of utility, given 
that the chosen mathematical form is capable of correctly 
describing the attitude towards risk of the decision maker 
in question. If the optimal approximated curve passes 
through the intervals of uncertainty of the evaluated 
nodes of the utility function, there exists a possibility that 
the arctg-approximation will decrease the errors, because 
it uses correct prior information for the risk attitude. In 
case of great deviations of the optimal approximation 
curve from the intervals of uncertainty, the arctg-
approximation should be replaced by another, because the 
attitude towards risk of the given DM is not typical.  
 
In [14] the power approximation is proposed to build an 
utility function over a set of prizes consisting of both 
profits and losses. The power-approximated utility 
function has the following form: 
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( + )
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− −

a a
d 0
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u d

x x x xu x
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           (22) 

 
where is defined as Π

 
Π ={ (a, x0) | a ∈ (0, ∞ ) ∩  x0 ( ) }   (23) ∈ 0 ∞,
 
The parameter x0 defines the deviation of the beginning 
of the coordinate system left of dx . The parameter a, 
which represents the risk sensitivity, affects the sign of 
local risk aversion function: 

 

0

( ) 1( )
( )

−
= − =

− +d

u'' x ar x
u' x x x x

                        (24) 

 
The power-approximated utility function also has an 
analytical inverse function: 

 

0 0( ) ( + ) +(1 ) 0= − − +a aa
u d d −x u u x x x u x x x   (25) 

 
In [17] arctg-approximation and power approximation are 
compared on the basis of an empirical study, in which 
participants constructed their utility function in the 
interval of monetary prizes using different elicitation 
techniques. It proved that arctg-approximation better 
describes the data than power approximation since it 
flexibly accounts for the risk attitude of the decision 
maker according to the prizes. 
 
In [18] an empirical experiment has been conducted, in 
which 104 decision makers have elicited 9 inner nodes 
from a one-dimensional utility function over monetary 
prizes using three elicitation methods. Due to the fuzzy 
rationality of real DMs, the resulting estimates are in the 
form of uncertainty intervals. Those are used in a 
weighted least square method to find the parameters and 
to build a utility function of the form (18) or (21) for each 
elicitation method and for each DM. The resulting 312 
utility functions are constructed another three times, using 
respectively 3, 4 and 5 inner elicited nodes. The analysis 
empirically proves that 5 inner nodes are sufficient to 
provide satisfactory approximation of the utility function 
that reflects typical risk attitude of the DM. 
 
4. CONCLUSIONS 
 
This paper discussed the modern analytical 
approximation functions and their appropriate use. It 
presented the arctg-approximated utility function and its 
advantages over previously proposed approximated 
functions. This approximation requires few parameters, 
as well as a low number of subjectively elicited points of 
the utility function’s graphic, simplifying and facilitating 
the process of utility function building.  
 
Al comments presented here hold for the case of 
monotonic utility functions over monetary prizes. The 
analysis follows the same path in the case of non-
monetary prizes. It must also be pointed out that most 
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utility functions are not monotonic, since each real-life 
parameter has an optimum value, which is most 
preferred, while deviating from it leads to decrease in 
preferences. Yet, each decision is analyzed within a 
certain context (the part of the world, over which the 
influence of the decision is investigated). This shortens 
the parameter intervals and makes the utility function 
monotonic.  
 
It is also important to point out at existing computer 
programs to assess utility functions of different forms that 
are consistent with various input data specifying both 
qualitative and quantitative characteristics of the utility 
function (see [14,19]).  
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