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VERIFICATION OF NONLINEAR FINITE ELEMENT MODELLING OF
I-SHAPLED STEEL BEAMS UNDER COMBINED LOADING

Muharrem AKTAS*

Ozet - Ekonomik zorluklar ve laboratuvar
imkanlarinin ~ kisith  olmasindan  dolayi  gercek
denevler verine sonlu clemanlar yvontemi kullantlarak
bilgisavar programinda savisal denevler vapilabilir.
Bu calismada avim anda zavit eksen altinda egilmeye
ve eksenel basin¢e kuvvetine maruz kalmus I-kesitli
celik Kirislerin sonlu elemanlar vontemi ile hesap
vapan Abaqus 6.3 adh Dbilgisavar programi ile
modellenmesi vapilmistir. Yapilan modelin dogrulugu
ocrcek laboratuvar denev sonuclarivla kivaslanarak
test edilmistir. Bu makalede modelleme basamaklari,
kullanmmlan paket programin  ozellikleri ve sonlu
clemanlar modelinin asamalar ile vapilan kabuller
detavh olarak sunulmustur.

Anahtar Kelimeler — Lineer olmavan davranis, sonlu
elaman yvontemi, 2avif eksen altinda egilme, karsihkh
etkilesim divagrami, plastisite

Abstract — Lxperimental testing is expensive and time
consuniting to pertform large series ot tests. The other
choice Is to use a numerical experimental series with
the help of a computer by using nonlinear finite
element software. Given the reliance of the present
work on this analvtical method, it is important to
clearly state the modeling approached used, software
packages emploved, and any assumptions made
during the construction of the finite element analogs
for the I-shaped cross-sections under investigation. In
addition, verification of the modeling techniques
against full-scale experimental testing can be of great
value. The commercial finite element software
package ABAQUS 6.3 is emploved in this research.
All modeling reported herein considers both nonlinear
gecometric and material influences.

Acy Hords — Nonlinear behavior, finite element
modelling, minor axis bending, interaction diagrams,
plasticity, I-beams.
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. INTRODUCTION

Experimental testing 1s the best way to investigate the
behavior of structures. However, it 1s expensive and time
consuming to perform the large series of tests needed to
imvestigate such desired effect. The other choice 1s to use
a numerical cexperimental scries with the help of a
computer to perform the required parametric studies.
Such numerical experiments rely on accurate computer
models of the structures. The nonlinear finite element
program, ABAQUS, 15 employed n this research. In non
linear finite clement analysis techniques, assumptions
related to thce type ol stress strain curve, boundary
condttions, mitial imperfection etc. may impact on the
quality of the numerical results.

For wverification purpose, expertments done by
Rasmussen and Chick [I0] at 1995 are used. This
cxperimental rescarch program focuses on the study of -
shaped members  possessing  slender cross-sectional
profiles subjected to combincd loading applied m a
proportional tashion. As part of this Australian research.
the extreme case of pure minor axis bending as well as
the cases where the interaction of minor axis bending
with axial loading are considered and thus valuable
cxperimental results are contained in this work:; vis-a-vis
a verification study related to the present research.

Nonlinecar finite clement modeling 1s at the heart of the
rescarch work reported on n the current study. Given the
rchiance of the present work on this analytical method, it
IS important to clearly state the modeling approached
used, software packages cmployed, and any assumptions
made during the construction of the finite element
analogs for the I-shaped cross-sections under
mvestigation.  In addition, verification of the modeling
techniques agamst full-scale experimental testing can be
of great value.

The commercial multipurpose finite element software
package ABAQUS wversion 6.3 i1s employed in this
research. All modeling reported herein considers both
nonlinear geometric and material influences.

f‘-ﬂ

The I-shaped cross-sections considered m the current
rescarch employ shell finite elements positioned along the
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qncdic surfaces on the cross-sectional constituent plate
components. The following sub-sections endeavor to
the above requirements and lead to a clear

crstanding  of  the approach, and subsequent
nons, of the present work.
il NONLINEARITIES IN STRUCTURAL

RESPONSE

ources of nonlinearities

iructural  analysis  there are three
wearities i oanalvsis. The correspending nontinea
arce 1daentiiied oy the terms material, geometric and
ary o conditions. Al modeling  reported  herein

ors both nonhncar  geometric  and  materic]
ICCN.

! Nonlizearite: The stress-strain curve of staci :5
clastic until some significant pwm callsd 9@
o point, Afer the attaimment of the ywiz'd somnt, the

stratn curve becemics nonlinear anc tac sains
¢ partiabiy rrecoverable. In other words when tne

do behavior does ot it the clastic  mode!

&) there  i1s 2 phenomenon  of  material
wartty, Etfects due to the constitutive equations
-stram relations) that are nonlinear, are refarred

crial nonhnearities.

trice! nonlinearity: In clementary structural theor
¢t of deformatons are mglectud when writine the
ons of cguilibrium and motion. In other werds ti
or 1s desertbed with respect to the undetormed

<

(@)

‘uration. Real structures are in equitiarium i their

wed  conficuration,,  not  their  undeformes
uration. as imnhied by clementary structueral theery.
lly when there s large deflection small strain
rcometric norlineartty must be taken into account.
1w the clfects of geonietric nonlinearity makes the
qine kinematic relattonships linear and thus it s
wible to capture phenomena such as bifurcation
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Non Linear Finite Eiement Solutien Algorithm

abjective ot the nonlinear finite element analysis 15 to

¢ the non lincar load-displacement path 1 muit-
donensional conliguration space. In a non linear analysis,
<alving a single system of linear equations directly does
not wive the cquilibrium condition related to pl*vg.wl
svstem response. The loading must be defined as a
fnctien of time and nonlinear response ovtained by
merementing time (in the case of a static anaiysis, t:tme 1s

o dummy varable associated with incremental leading of

the structural system). In ABAQUS this simulation s
cchieved by breaking the total time into a number of time
merements. ABAQUS then calculate the approximate
cquiiihrium  cenfiguration at the end of each time
merement via intermediate iterations carried out within

sources ¢f
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each increment. Several solution algorithms are
and applied to trace the equilibrium path.
method 1s the basic method, and many other a
are developed by modifying this method. However.
Newton’s method fails around the critical points:
meaning it 1s unable to negotiate solution featurcs at the
interface  between stable and unstable equilibrium
conditions. One solution method for tracing the nonhinear
equtlibrium  path that 1s used m ABAQUS i such
instances 1s Riks-Wempner method.

proposed
Newton's
gorithms

The advantage of the Riks-Wempner method 1s 1ts ability
to trace behavior beyond a critical pomt. In other werds,
this techmique permits limit poinis on the ecunibrium
nath to be '1L§D()tldt(,d The Riks-Wenmpner method 1s also
sometimes referred to as the arc-leneth method. In ore-
ienigth methods, the solutien 1s constrained 1o hie either in
a plance normal 1o the tangent of the cquilibrium path at

the beginning of the increment or on @ sphere with radius
ccual 1o the length of t‘xe t ngent. Tis method allows

tracing snan-through as well as snap-back behavior [21,

IL.3 Von Mises Metal Plasticity Model in ABAQUS

A yield eriterien 1s a law which defines the mit of elastic
behavior under any poss:cle combination of stresses at a
noint 1n a given matertal. ABAQUS permits severa:
different type of yield criteria, but the von :\44%@‘ yic!c.
to ac:::“..‘cl\« predict ylelumg i ;;ody Ccnlercd cuoic
crystalline based metals such as steel [1].

When developing the mathematical model ioi a yicld
criterion some assumpticns may be made. First, materic!
may he assumed to be isotrepic. Second. Bauschinger
efiect may be neglected. Third, uniform hydrostatic
tensicn or compression does not have an effect on
yviclding {41, A gcometrical representation of the yield
criterion 1 principal stress space 1s shown in Figure |,
The vieiding only depends on the deviatoric stress vector
OP. The clastic state of stress is defined as being anv

point inside the cylinder, and yielding is delined as any
state of stress that permits tie stress nom! to liec ea the

surface of the cylinder.
- i
) S 3 44 5 )
R B,
ivea Misas . . ,}\ ;
Y Y
o G
Gl .
B /.'f‘r'\ﬁ___ Mises vield
¥ locus

Figare | Yield surface in principal stress space
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11.4 Evolution of Failure Surface - [sotropic
Hardening

Plastic deformations may continue after initial yield is
reached, and this behavior may be accompanied by
changes 1n the yield surface. The relationship for the post
yield behavior of the material 1s known as the tlow rule.
When the material 1s loaded beyond a certain point the
stress state reaches the yield surface making yield
function zero at that point.

[f the material 1s non hardening (i.e. perfectly plastic
material) the yield surface does not change thus the stress
point always lies on a surtace formed by the locus of
points corresponding to a constant yield stress. In other
words mcremental loading will either tend to reduce the
value of the yreld function below zero, which i1s also
known as unloading, or incremental loading will tend to
increase the value of yielding function above zero, which

1s not physically possible. In this case the stress point

moves on the yield surfacc as the structure deforms
plastically. If the material is strain hardening, yield
surface evolves as the plastic deformation develops. In
this case the yield su face expands or moves with the
stress point still on the yicld surtace. To account for such
changes the yield function must be generalized to define
the subsequent yield surtace configurations beyond the
mitial one. However, what will be the direction of the
plastic flow must be answered.

[n order to catch the real behavior of the matenal through
analytical means. an appropriate plastic potential function
should be picked. A plastic potential function can be

chosen as the direction to cause maximum dissipation of
plastic work.

The direction of plastic strain vector must be located
perpendicular to the incremental stress vector. Having
known that the stress state 1s on the yield surface the
incremental stress vector must be tangent to the yield
surface which makes plastic flow vector normal to the
yield surtace (Figurc 2). Also the new plastic potential
surface 1s now the yield surface. This choice of the flow
rule, where the plastic straimning is perpendicular to the
yield surface 1s called associative flow rule.

Fieare 2 Noraahty of plastic strain and description of isotropic

hardenimg.
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directions as plastic straining occurs, then the response 1s

\
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Getting the maximum dissipation of plastic work by the
associative flow rule 1s only valid for elastic-perfectly
plastic materials. This tlow rule may not give maximum
plastic dissipation for many types of hardening matenial.
However, 1t 1s very popular and widely used m the
literature for its capability of capturing true behavior for a
large variety of materials. Associated flow models give
good results with the materials whose plastic flow is
formed by dislocation motion when there are no sudden
changes in the direction of the plastic strain rate at a point

[1].

After rcaching the yield point, many materials show an
increase 1n stress with the increase n strain. Also after
unloading and reloading the same material ts seen to have
increased 1ts yicld point. This response of the material 1s
called the hardening response. Increase in the yield point
also means increase in the yicld surface. If the yield
surface changes its size uniformly n all directions, such
that the yicld stress increases (or decreases) in all stress

called 1sotropic hardening [1] (Figure 2).

Meaning that in the case of the von Mises yield surface,
1sotropic hardening is manifcsted through an evolution of
the cyhindrical yield surface m the three dimensional
principal stress space such that on planes oriented
orthogonally with the hydrostatic stress generator of the
surface. The circular outline of the von Mises surface
appears as a cylinder whose circumference increases, as
the stress point continues to impinge on the yield surface
during plastic flow, while the location of the center of the
circlc remains unchanged. In this research, i1sotropic
hardening and the associated flow rule are adopted and
used 1 conjunction with the ABAQUS software system.

1.5 S4R Shell Element

The ABAQUS shell clement library includes general
purpose shell elements and specially formulated shell
clements for thick and thin shell problems. In this study
the S4R general purposec shell element is used to model
the actual three dimensional geometry of the beam. This
element is selected for use in the parametric study based
on 1ts satisfactory performance in the verification work

described in the papers by Thomas and Earls and Greco
and Earls[11,8].

In the S4R there are four nodes possessing 6 degrees of
freedom per node. The general purpose shell elements
give accurate solutions to most applications. S4R allows
transverse shear deformation to be considered Iin a
fashion that i1s consistent with Mindlin-Reissner theory.
Also, 1t employs the discrete Kirchhoff techniques to
provide satisfactory results as the shell thickness
decreases [1].

Finite membrane strains are taken into account in the S4R
formulation and thus the element admits changes In
thickness as a function of membrane strain. Poisson’s
ratio of the section defines whether the shell thickness
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nees as a function of the membrane strain or not. Rasmussen and Chick [10] are used to validate the finite
1ne the Poisson’s ratio to zero will  keep the shell modeling strategies for the mvestigation of mteraction
dchoess constunt and will allow the elements it for  between axial loading and minor axis bending. The cross-
stram large rotation analysis | 1. section used i the experimental test was a slender I-

scction  fabricated  from  high  strength  stecl

" . | | -
formulation 1s based on a first order shear e )
with . =350 AMPa .

ormation theory. In other words the shell employs

displacementand rotation interpolation in the  The pieasured cross-sectional dimensions. in addition to

. ol Mindlin-Reissner - theory. —but the shear 0y timate forces applicd to the models. are tabulated in
clormations  are then  obtamed  directly  trom  a table |
C o

lcration of the nodal detormations. This approach 1s
be consistent with the assumption that cross-
remain plain but not normal to the Gauss surface Table | Measured specimen lengths and applied loads

1 the shell.

,f ’“ hu l)’; /{ \l P
'S uses a lower order quadrature rule, called  Specimen  (mm)  (mm)  (mm) _ (mmy__ (mm) _ (kNm)  (kN)

itcgratton, to calculate the S4R  element
A smgle mtegration pomnt 1s used 1n this
clement. Reduced integration has two mam  3500-3 497 498  240.00 23950 650 957 553
ves 1t stgnihicantly reduces running time by using

3500-2 #.02 4,95 240.50  240.00  4.50

Lh
LN
e
=
N
>

| | _ : _ | 350)0-4 396 500  240.00  239.00  6.00 13.2 3127
samplimg points: and with fewer sampling points,
. . . SO1()-5 S S PN, 71t S( ( 3
the more complicated displacement modes offer 3500-3 .01 .00 24050 0 239.50 450 39.63 63
csistance  to  deformation. This increases the
i finte element analysis [5]. Sometimes using )
of fimite clement analysis [5]. Sometimes using (o0 491 501 24000 240.00 450 179 430

mtegration viclds element stiffness matrices that

one or more false zero encrgy mode, which may S5800-3 499 501  241.00 230.00  5.00 7.26 318

the cause ol an unstable. or very inaccurate

4], Tlowever:  ABAQUS  overcomes this

1 bv using hourglass control. Hourglass control ~ 111.2 Material Model

an artificial (and usually quite small) stitthess to

so-called drilling degree of treedom on the shell. This

value depends on the factors usually given as a
iraction ot typical shear modulus for material [1]

SR00-+ 3.07 505  241.00  240.00  5.50 1R.21 181

The behavior in the strain-hardening region i1s generally
based on the nominal stress and enginecring strain; which
arc calculated without considering the change in arca of
the cross-section. However, the change in the cross-
sectional area of the specimen may be an important

11. TEST SPECIMEN parameter when large deformations occur. In these cases
the stramn hardening range should be characterized using
Geometry of the specimen the true stress, obtained by dividing the load by the

current arca of the specimen. Nominal stress and strain
data for uniaxial test for isotropic matertal can be
converted mnto true stress and logarithmic plastic stramn by
using the following equations;

cmussen and Chick [10] had tested a series of thin

led 1-beams 1 combined compression and minor axis

They focus on a single I-shaped cross-section
nominal dimensions appear in figure 3.

m_— {i“ o=y Rasmussen and Chick presented stress-strain properties

| - ) DMJ ooﬂ of material loaded 1n tension in their report. Residual

lee e ool stresses are 1.10t included in this research since 1t 1s known

I | S o= == - to have no influence over the observed strength of hot-
'1\ rolled structural members.

(;l} tl"l

Uniaxial tension test results carried out under quasi-static
conditions are adjusted to be static values according to

the paper [7]. In that paper stress levels are decreased by
Lising this simgle cross-section, three distinct study cases  27.57 MPa because of the difference between the

VNomenclature (Rasmussen and Chick, 1995)

are considered through the variation of the member  dynamic test loading and the actual static loading. Static
unbraced length.  Specifically, short (Lb = 800mm), vyield stress is independent of testing procedure and the
medium (Lb = 3500mm), and long (Lb = 5800mm) behavior of testing machine. Static yield stress is defined

members are treated in therr work. In this study beams as the stress level when the stramn rate is zero or when the
wWith 3300 mm and 3800 mm lengths from the rescarch of

25
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testing speed 1s zero [10]. In figure 4 difterence between
static and dvnamic loading can be seen.

?‘,f',:._.!.'-.'-lj'ill fl'-':t\-':.ll':_ ‘-"‘

Figure 4 Difterence between dynamie loading and static loading {6]

The reported mechanical response values from coupon
testmg appear in table 2 m engmeering units: these are
subsequently adjusted to be static values and then
converted to an 1dealized mululinear true stress and
logarithmic strain format (see tigure 4, table 3,4,5,6 and
7) prior to importation mmto the finite element software

Verification of Nonlinear Finite Element Modelling of [-Shapeg
Steel Beams Under Combined Loading-M.AKTA§

Table 4 Stress -Stram values for Plate 2

oo Ewom e &
435 0.002197 408.3766 ()

435 0.018269 415.3681 0.015867
499.3333 0.061538 502.4825 0.057042
3233 ¥35 Q1173 554.2267 0.10298
523.3333 0.186731 593.4767 0.168066

Table S Stress -Strain values for Plate 3

Oy S o glf:/
436 0.00218 409.3715 0

436 0.011538  413.4517 0.009267
506.6667 0.065385 5122158 0.060637
526.6667 0.105769  554.7928 0.097629
526.6667 0.186538  597.3312 0.167916

Table 6 Stress -Stram values for Plate 4

o | ‘ [ 2+ # . 5 : : : P!
package, 'A BA.QL.S. In table 2 Ly f:“ and f, are static o, . o, gl
compressive vield stress, static tenstle vield stress and
ultimate tensile stress, respectively. 431 0.002155  404.3498 0

431 0.013077 409.0571 0.010809
Tl 2 Moo nrontis: 510 0.061538 513.8056 0.057012
526 0.088462 5449517 0.081903
Specimen  Plate  E fre Vo8 y 526 0.146154 575.2979 0.133397
(GPa) (MPa) (MPa) (MPa)
¥ 2 .
S “ Pk o 2 A0 Table 7 Stress -Strain valucs for Plate 6
3500-3 2 198 450 435 498
b pl

3500-4 3 200 453 4306 506 Ouomi  Coow  Ypue €y

3500-5 4 200 466 431 509 43| 0.002113 404.3315 0

5800)-2 l 199 451 435 502 431 0.009615 407.5652 0.007436

580)0)-3 ) 198 450) 435 498 483.3333 0.046154 478.062  0.0420642

520 0.1 544.421  0.092506

5800-4 l 199 451 435 502

520 0.176923 584.421  0.159903

I11.3 Geometric Imperfections
Table 3 Stress- Stram values for Plate |

Since the verification test case considered in this part of

o . O o the study mvolves minor principal axis tlexure of an I-
non nom (rie In .
shaped beam under the action of pure moment,
4355  0.002188 408874 0 bifurcation related response must be considered as a
1355 0014904 4144099 0.012567 possible factor governing overall reSponsec. When
5073 0.063462 5073492 0.05884 appl.y.mg the fmite ele'mel.lt me.thod_ to l)lftll'cgtlol1-ty})e
) stability problems, 1t 1s oftentimes advisable to
¥ 0.10875 554.5098  0.100305 : : ; : -
Incorporate a reasonable imperfection field into the finite
LW, ().186635  595.404 0.167991

B e —

element model. The mcorporation of the imperfection
field 1s used to perturb the model from the condition of
perfect geometry; failure to do this may result in the
model artificially persisting 1n  the perfect state
throughout the loading history. The potential proximity
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fimte clement displacement solution to an mitial
gcometry arises since such a configuration is a

n atically admissible equilibrium state (even post
ion). However this configuration is meaningless
Llly since the slightest loading disturbance, or
imperfection, would render such an

um state inaccessible to practical cases. As a
ol guarding agamst any potentially physically
response, a rcasonable displacement-based
ction  field should be incorporated nto finite
models whose response has the potential of being
by biturcation buckling. In such cases, it 1s not
ve that the precise governing buckhng mode be
an mitial impertection adopted at the start of the
© solution.  Rather, any mmperfection field used

v possess clements of the dominant features that
amed n the governing mode. In the present
don  study. it 1s observed from linearized
ue buckling analyses, carried out with ABAQUS,
governing mode of instability i minor axis I-
members in pure bending involves localized
within the flange. The perfect geometry was
ith sinusoidally varying imperfection given by

TX
b A Vvsim(—)

) L

fiite clement analogs of the experimental test
ns, a recasonable displacement-based imperfection
mcorporated into the finite clement models in the
sinusotdally varymg imperfection possessing a
clength of 53, / 2, that 1s phase shifted by 180
between opposite tflange tips (see figure 5) as

maximum displacement amplitude equal to (.2
Hlange thickness or B,/ 100.

i ¢ } f
L S g
'!r'I llﬂ'm? T,"v .y ;
i O DA ;
'h'.'.'f“- -. _:"'_I. ‘ o
i I 4 o \
:i 1 3 ; sitp=vpdal
; ‘;:Iﬁ “tg :5:%! i Iw  Wavel awthotthe
|.l‘ 'IH% o WD :} . sfisordal
i E'MHH S d R e »
Ih "hEr ‘“ -'..':.‘_'f;'“.-'_.., . it
ClnEs oy T
e RN
! [ rm' .'ﬁ s e R
il {lu‘ » \g {w
ii'ﬂ'i;‘h LR i o | el
Bl S Al &
T (R ot : T
: WL .
R N
: :-j,ll' ﬁ\ :1' ' e
f ‘1‘,":;: \_\_" r O L LU X
PN — \
Figure 5 Sinusoidal imperfection
V. FINITE ELEMENT MODEL

inite element mesh: The [-shaped cross-sections are
bui]- up using S4R shell finite elements from ABAQUS
clement libr ary positioned along the middle surfaces of
the cross-sectional constituent plate components (fig 7).

Bodl
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While there 1s also moment gradient loading being
applied at both rgid end segments, thesc end segments
are not of interest in this research; that 1s why they are
modeled as being approximately rigid through the use of
and elastic modulus that is one order of magnitude higher
than that of middle segment. Imperfections were applhed
only on the flanges. In addition, the rigid secgments were
not seeded with imperfections, and mesh densities used

throughout the entire length of the beam wvere constant
and uniform.

Boundary Conditions: The model 1s a simple supported
beam. However; restraint against torsion s applied at the
flange tips at the flexible-rigid transition interfaces. At
the end of the I-shaped member, along the plate edges,
rigid beam elements from the ABAQUS element library
are employed to assist with maintaining ideal kinematics
at points assoclated with the imposition ot boundary
conditions.

Loading:A constant moment loading 1s achieved by
applying tour concentrated forces perpendicular to the
beam longitudinal axis. Axial loads are applied at the
nodes at the roller end of the simply supported beanm. In
figure 6 test layout and finite element model representing
the test 1s given in detail.

I1V.1 Verification of Test Results and Discussion

Results from seven of the experimental specimens
reported from the research program of Rasmussen and
Chick (1995) are compared with equivalent finite element
models. Plots comparing these interaction responses
appear 1n tigures 8 and 9. In thesc hgures, the maxumum
inelastic moment at the mid-span versus the axial load are
plotted. The maximum moment is calculated as the sum
of the end moment and the moment produced by the

eccentricity of the axial force; M =M,
o 1s the mud-span deflection (i1.c. the sum of the primary

and secondary moments). Based on these results, it
appears that the present modeling techniques are
sufficiently robust to undertake the desircd parametric
study. Rasmwussen and Chick [10] also reported the
maximum axtal force and corresponding second order
moment values at the end points. It 1s noted that the
format of these test results allows for an easy comparison
with the design interaction curve in AISC-LRFD since it

+ PSS where

is defined in terms of ultimate axial load (P ) versus

second order elastic moment(M ). In order to

compare the experimental results with design interaction
equations, end monmient must be converted to second
order moments. This can be done by using the following
equation;

M =B xM |

nmeu | endi B .
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)
T S

7

P a value

where Euler buckling load 1s

enforced to be the flexural buckling load about the mmor

principal axis in this context, and M
cridu

end moment coinciding with the controlling value of P .

Constant Momert Region

o — n
__l_.-""’". bl' Regto
o glekt
- = o a—
- - q-"-.-
‘_.r-"'
‘#___,..- - i |
-
',_,..-"" _-l""’r. rl'r.-f' =
) . ‘-'-‘-'d_..., . =
’ - -
il e a
.-"--"-Il =
- -
* ___..-'"f o
L~ Ll
-
o
- ""-'ﬁ#

= -Denotes for Rigid Beam
- A -Denctes PinB.C
. @ -Dencles Roller B.C

e e e L

IFieure 6 Test rig and fimite element modelling

s S T S T

[teure 7 Representative Shell Iinite Element Mesh

1s the tirst order

- o .

¢ -Denotes Restraint of St Venanl's Torsion
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Furthermore, Mcm/u from the ABAQUS results
converted mto /me and  compared  with  the
correspondmg  values  given by  Rasmussen  an

Chick| 10]. Comparison of these values can be seen in
table & Based on results from figure 8 and 9 as well as
the failure loads presented in table 8, it appears that the
present modeling techniques are sufficiently robust t
undertake the current rescarch  work Investigating
combined loading response of I-shaped steel cross-

sections bent about the minor-axis in the presence of axial
compressive loading,

Table X Companson ot ultimate axial load and second order clastic
moments

12 (RN

M meu ( kNm )
Specimen [] A ey, FEA lest
3I50(0)-2 (5 () (ST 00 082 0.80
3500-3 S36.28 SSN) 14.75 15.60
31500-4 44912 427.00 20.11 18.80
350)()-5 (3 07 (5. O1) 40.79 41.50
SRO0)-2 414 51 130,00 5.99 7 B
SRO0O-2 317.29 2R.00 10.02 16.20
S800-4 [91 .85 1R1.00) 28.78 26 B0
M
3500 Series
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600.00 L
g _’*"'----.. g,
. 500.00 - ‘\R‘Q
x (> TR
1 o ' S —
v 400.00 g T
(W v
S | &~ 3500 2
= 300.00 —%—3500_3_
% —%—3500_3
5 200.00 | 3500_4.
-5 3500_4.
3500 5.
100.00 25008
0.00 Mo ~ah i : : , . | T 1
0.00 S5.00 10.00 1500 20.00 2500 30.00 3500 40.00 4500 350.00

Moment (kNm)

Freure 8 Comparison of results for 3500 series
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5800 Series

200.00

150.00

Axial Force (

¥ |
100.00 4

50.00 /

0.00 ;

0.00 10.00 20.00 30.00 40.00 50.00

Moment (kNm)
are Y Compartson ol results for 3800 series

I he ditferences between test results and numerical results
s¢ from the fact that there are some uncertainties n
physical testing as well as fimite element modeling.

the test specnmens, stress stramn properties, yield
neth values of the material, and the plate geometry
nay be ditferent through the section and along the beam
cnath, Also mis-measured and reported mitial geometric
mperfections and residual stresses, unreported material
roperties, such as stress stram properties ot nmaterial
oaded i compression, do have important etfects on the
ults of numencal models. Tension properties of the
nerial are reported for the test specimen studied in this
cscarch. However, because of the Bauschinger atfects,
the tension behavior does not represent the compression
hehavior, In o addition. as deformations become large,

upport and restramt conditions become critical and
vartability in these  values can  change the result
imatically,
V. CONCLUSION
Results from fintte element  modelling  techniques

desceribed mn this paper can sufficiently catch the results of
the  real  experiments. One has to understand the
tormulation or mathematical models used in the software
package and then construct the model. Once the real lab
test s verthied then the parametric study can be carried
outl as desired. The important recommmendations can be
lsted as:

I-Gieneral  purpose  shell  element with  reduced
mitceratiom method catches the behavior of the structure
under investigation.

“-Von-Mises yield model with isotropic hardening model
Works well for materials like steel,

“Sinusoidally  varying  imperfection can be used to
achieye the imperfect structure.

Verification ot Nonhnear Fiite Element Model

1].

5800;2_FEI 2].
. 5800 2 Test
_%—5800_3_FEA
~%—5800_3_Test
5300 4 _FE
. 5800 4 _Te
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