SOME NEW DIFFERENCE SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULI

Ersin Güzelsoy, Metin Başarır

Özet- Bu çalışmada, modülüs fonksiyon dizisi yardımıyla bazı yeni fark dizi uzayları tanımlanarak bunların birtakım özellikleri çalışıldı.

Anahtar kelimeler- Dizi uzayları, fark dizileri, modulus fonksiyonu.

Abstract- The main object of this paper is to introduce and study some difference sequence spaces defined by using a sequence of moduli.

Key words- Sequence spaces, difference sequences, modulus functions.

I.Introduction

Let w be the space of all real (or complex) $x=(x_k)$ sequences and , c_0 and c denote respectively the Banach spaces of bounded,null and convergent sequences, normed as usual by $||x|| = \sup_k |x_k|$. A sequence $x \in \mathbb{R}$ is said to be almost convergent [6] if all Banach limits of x coincide. Lorentz[6] proved that x is almost convergent to s if and only if

$$\lim_{m \to \infty} m^{-1} \sum_{i=n+1}^{n+m} x_i = s, \text{ uniformly in } n.$$

Let denote the space of all almost convergent sequences.

Maddox[2][3] has defined x to be strongly almost convergent to number s if

$$\lim_{m\to\infty} \mathbf{m}^{-1} \sum_{i=n+1}^{n+m} |\mathbf{x}_i - \mathbf{s}| = 0, \text{ uniformly in n }.$$

By [], we denote the space of all strongly almost convergent sequences.it is easy to see that []

Several authors have discussed the spaces of strongly

E.Güzelsoy, Atatürk Fen Lisesi, İstanbul /Türkiye M.Başarır, Department of Mathematics, Sakarya University, 54100, Mithatpaşa, Sakarya/Türkiye: basarir@sakarya.edu.tr

almost convergent sequences. The class of sequences which are strongly almost convergent with respect to a modulus was introduced by Pehlivan[8] as an extension of the definition of strongly almost convergence. Esi [1] extended strongly almost convergent sequence spaces to w [A,p,F], w[A,p,F] and w₀[A,p,F] for $p=(p_k)$ with $p_k>0$, nonnegative $A=(a_{nk})$ regular matrix and a sequence of moduli , which generalized the spaces [F (f)], [F(f)] and [F₀(f)] of Pehlivan [8].

We recall that a modulus function f is a function from $[0,\infty)$ to $[0,\infty)$ such that

- (i) f(x)=0 iff x=0,
- (ii) $f(x+y) \le f(x)+f(y)$ for all $x,y\ge 0$,
- (iii) f is increasing,
- (iv) f is continuous from the right at zero.

A modulus may be bounded or unbounded (Ruckle[9] and Maddox[5]).

In this paper we introduce and examine some new difference sequence spaces by using a sequence of moduli. Let F be a sequence of moduli and $p=(p_k)$ be a sequence of strictly positive real numbers and suppose that $A=(a_{nk})$ be a nonnegative regular matrix. We define

$$w[A,p,F] = \{ x \in w :$$

$$\lim_{m\to\infty}\sum_{k=1}^{\infty} a_{mk} [f_k \mid x_{k+n} - s \mid]^{p_k} = 0, \text{ uniformly in } n,$$

for some s }

$$w_0[A,p,F] = \{ x \in w :$$

$$\lim_{m\to\infty}\sum_{k=1}^{\infty} a_{mk}[f_k \mid x_{k+n} \mid]^{p_k} = 0, \text{ uniformly in n } \}$$

$$w [A,p,F] = \{ x \in w :$$

$$\sup \sum_{m,n}^{\infty} a_{mk} [f_k | x_{k+n} |]^{p_k} = 0, \text{ uniformly in n } \}$$

where $x = (x_k) = (x_k - x_{k+1})$ and for convenience, we put $f(|x_k|)^{p_k}$ instead of $\{f(|x_k|)\}^{p_k}$. Let E be any of the spaces w[A,p,F], $w_0[A,p,F]$ and w[A,p,F]. Then it is easy to see that $E \subset E$. w [A,p,F]. Then it is easy to see that $E \subset E$.

When $f_k=f$ and $p_k=1$ for all k, we denote these sequence spaces by w[A,p], $w_0[A,p]$ and w[A,p]. If $x \in w[A,p]$ we say that $x=(x_k)$ is -strongly almost A-summable to s with respect to the modulus f. If $p_k=1$ for all k, we write w[A,F], w[A,F] and $w_0[A,F]$ for w[A,p,F], w[A,p,F], and $w_0[A,p,F]$, respectively.

When $A=(a_{mk})=(C,1)$ Cesaro matrix and $f_k=f$ for all k, we obtain following sequence spaces.

 $[F(f,p)] = \{ x \in w :$

$$\lim_{m\to\infty} m^{-1} \sum_{i=n+1}^{n+m} [f \mid x_i - s \mid]^{p_i} = 0, \text{ uniformly in } n,$$

for some s }

 $[F_0(f,p)] = \{ x \in w :$

$$\lim_{m\to\infty} \mathbf{m}^{-1} \sum_{i=n+1}^{n+m} [f|\mathbf{x}_i|]^{p_i} = 0, \text{ uniformly in n } \}$$

$$[F (f,p)] = \{x \in w : \sup_{m,n} m^{-1} \sum_{i=n+1}^{n+m} [f \mid x_i \mid]^{p_i} < \}$$

Note that if A=(C,1) Cesaro matrix, $p_k=1$ and $f_k(x)$ = x for all k, then $w[A,p,F] = () = \{ x : x \in \}$. Also in this case w[A,p,F] = ()

For a sequence of moduli $F=(f_k)$, we give following condiitons;

(1)
$$\sup_{k} f_k(t) < \text{for all } t > 0$$
,

(2) $\lim_{t\to\infty} f_k(t) = 0$ uniformly in $k\ge 1$.

We remark that in case $f_k=f$ for all k, where f is a modulus, the condiitons (1) and (2) are automatically fulfilled.

II.Main Results.

Theorem 1. Let $p=(p_k)$ be bounded. Then w[A,p,F], w[A,p,F] and $w_0[A,p,F]$ are linear spaces of the complex field.

<u>Proof.</u> Let $\sup_k p_k = H$. If a_k, b_k and α are complex numbers, then we have [2,p.346]

(3)
$$|a_k+b_k|^{p_k} \max(1,2^{H-1})(|a_k|^{p_{k+1}}|b_k|^{p_k})$$
 and

(4) $|\alpha|^{p_k} \max(1, |\alpha|^H)$

The result follows from (3) and (4). Theorem 2. Let A be a nonnegative regular:

Theorem 2. Let A be a nonnegative regular matrix and $F=(f_k)$ be a sequence of moduli. If (1) holds then

$$w[A,p,F] \subset w [A,p,F]$$

Proof. It is a direct consequence of (3).

Theorem 3. $w_0[A,p,F]$ and w[A,p,F] are linear topological space paranormed by g defined by

$$g(x) = \sup_{m,n} \left\{ \sum_{k=1}^{\infty} a_{mk} [f_k | x_{k+n} |]^{p_k} \right\}^{1/M}$$

where $H=\sup p_k < \infty$, $M=\max(1,H)$.

<u>Proof.</u> From Theorem 2, for each $x \in w[A,p,F]$, g(x) exists. Clearly g(0)=0, g(x)=g(-x). Take any $x,y \in w[A,p,F]$. Since p_k / M 1 and $M \ge 1$, using the Minkowski's inequality and definition of f, we have g(x+y) = g(x)+g(y). To check the continuity of multiplication, let us take any complex λ and $x \in w[A,p,F]$. Whence $\lambda \to 0$, $x \to 0$ imply $g(\lambda x) \to 0$ and also $x \to 0$, λ fixed imply $g(\lambda x) \to 0$. We now show that $\lambda \to 0$, $x \to 0$ imply $g(\lambda x) \to 0$. As $m \to \infty$, let

$$b_{mn} = \sum_{k=1}^{\infty} a_{mk} [f_k(|x_{k+n} - s|)]^{p_k} \rightarrow 0, uniformly in n.$$

For $|\lambda| < 1$ we have

$$\{ \sum_{k=1}^{\infty} a_{mk} [f_k(|\lambda x_{k+n}|)]^{p_k} \}^{1/M}$$

$$\left\{ \sum_{k>n} a_{mk} [f_k(|x_{k+n}-s|)]^{p_k} \right\}^{1/M} +$$

$$\left\{\sum_{k\leq N} a_{mk} \left[f_k(|\lambda x_{k+n} - \lambda s|)\right]^{p_k}\right\}^{1/M} +$$

$$\left\{\sum_{k=1}^{\infty} a_{mk}[f_k(|\lambda s|)]^{p_k}\right\}^{1/M}$$

Let $\varepsilon > 0$ and choose N such that for each n,m and k > N implies $b_{min} < \varepsilon/2$. For each N, by continuity of f_k for all k, as $\lambda \to 0$,

$$\left\{\sum_{k\leq N} a_{mk} \left[f_k(|\lambda x_{k+n} - \lambda s|)\right]^{p_k}\right\}^{1/M} +$$

$$\left\{\sum_{k=1}^{\infty} a_{mk}[f_k(|\lambda s|)]^{p_k}\right\}^{1/M} \to 0$$

Then choose $\delta < 1$ such that $|\lambda| < \delta$ implies

$$\left\{ \sum_{k \leq N} a_{mk} [f_k(|\lambda x_{k+n} - \lambda s|)]^{p_k} \right\}^{1/M} +$$

$$\left\{\sum_{k=1}^{\infty} a_{mk}[f_k(|\lambda s|)]^{p_k}\right\}^{1/M} < \epsilon/2$$

Hence we have

$$\left\{\sum_{k=1}^{\infty} a_{mk} [f_k(|\lambda x_{k+n}|)]^{p_k}\right\}^{1/M} < \varepsilon$$

 $g(\lambda x) \rightarrow 0 \ (\lambda \rightarrow 0)$. Thus w[A,p,F] is paranormed

linear topological space by g.

Theorem 4. Suppose that A be a nonnegative regular matrix and $F=(f_k)$ be a sequence of moduli then

- (i) () \subset w [A,p,F].
- (ii) If $0 < p_k \le q_k$ for all k and (q_k/p_k) bounded, $w[A,q,F] \subset w[A,p,F]$.
- (iii) If (1) and (2) hold then $w[A,p] \subset w[A,p,F]$.
- (iv) If $\beta = \lim_{t \to \infty} (f_k(t) / t) > 0$ for all k then

w[A,p]=w[A,p,F].

Proof. (i) is trivial.

- (ii) If we take $w_{k,n} = [f_k(|x_{k+n} s|)]^{p_k}$ for all k and n then using the same technique of Theorem 2 of Nanda [7] it is easy to prove (ii).
 - (iii) Using the same technique of Theorem 4 of Maddox [4] it is easy to prove this.
 - (iv) We must show $w[A,p,F] \subset w[A,p]$. For any modulus function, the existence of positive limit given with β was given in Maddox[5]. Now $\beta>0$ and let $x \in w[A,p,F]$. Since $\beta>0$, for every t>0 we write $f_k(t) \geq \beta t$ for all k. From this inequality, it is easy to see that $x \in w[A,p]$. This completes the proof.

Theorem 5. Suppose that $F=(f_k)$ and $G=(g_k)$ be a sequences of moduli and $g_k \ge f_k$ for all k then lim $[f_k(x)/g_k(x)] < \text{implies} \quad w[A,p,G] \subset$

 $x \rightarrow \infty$ w[A,p,F].

Proof. It is trivial.

REFERENCES

- [1] Esi, A., Some new sequence spaces defined by a sequence of moduli, Tr.J.of Mathematics, 21 (1997) 61-68.
- [2] Maddox, I.J., Spaces of strongly summable sequences, Quarterly J. Math. Oxford 18(2) (1967) 345-55.
- [3] Maddox, I.J., A new type of convergence, Math.Proc.Camb.Phil.Soc., 83 (1978) 61-64.
- [4] Maddox, I.J., Sequence spaces defined by a modulus, Math.Proc.Camb.Phil.Soc.,100 (1986) 161-66.
- [5] Maddox, I.J., Inclusions between FK spaces and Kutner's theorem, Math.Proc. Camb.Phil.Soc. 101 (1987) 523-527.
- [6] Lorentz ,G.G., A contribution to the theory of

divergent sequences, Acta Math., 80(1948) 167-190.

[7] Nanda S., Strongly almost summable and strongly almost convergent sequences, Acta Math. Hung. 49 (1-2) (1987) 71-76.

- [8] Pehlivan, S., A sequence space defined by a modulus, Erciyes Univ.Journal of Science, 5(1-2) (1989)875-880.
- [9] Ruckle, W.H., FK-spaces in which the sequence of coordinate vectors in bounded, Canad.J.Math. 25 (1973) 973-78.