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Abstract— This paper presents a machine learning-based kin 

detection method for multi-robotic and swarm systems. Detecting 

surrounding objects and distinguishing robots from these objects 

(kin detection) are essential in most multi-robotic applications. 

While infrared, ultrasonic, and vision systems were mainly used 

for applying the robot detection and relative positioning task in the 

literature, studies using the Lidar-based approach are limited. The 

proposed method uses the Lidar sensor to discover the work area 

and determine the distance and the angle of all kin members 

relative to the observer robot. The main steps of the proposed 

method can be summarized as follows: 1) the Lidar distance points 

are read and stored as a vector with some preprocessing, 2) the 

acquired distance points representing different objects in the 

environment are separated from each other using a segmentation 

method, 3) to classify the segmented objects, the segment 

classification process starts with extracting five features for each 

object, then these features are fed to various machine learning 

classification algorithms to distinguish the kin robots, 4) the 

segments classified as a kin robot in the previous step are handled, 

and the relative position is found for each of them. A new mobile 

robot prototype has been modeled and equipped with a Lidar 

sensor using ROS platform. Lidar has been used to collect data, 

and four different classification methods have been tested to verify 

the efficiency of the method using Gazebo simulation platform. 

 

 
Index Terms— kin detection, robot detection, relative 

positioning, machine learning, ROS, Gazebo 

I. INTRODUCTION 

N THE PAST, the interest of scientists has been focused on 

finding ways to help humans in their daily life and facilitate 

some complex tasks they do. However, this attention has 

changed in the last decades to develop machines that can 

replace humans and replicate their actions. On the other side, 

while human takes days or even hours to perform a task with a 

possible error rate, robot, in turn, performs that task with much 

less time, more efficiently, and with a zero-error rate.  
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Therefore, it is quite natural to witness a big revolution in 

robotics that is considered a branch of science that aims to 

design machines that can perform tasks on human commands 

or by themselves to make human work easier or more 

productive. Robotics is one of the most scientific fields that has 

seen significant progress in the last few decades. This progress 

ranges from personal assistant robots to multi-robotic and 

intelligent swarm robotics systems. 

 Robots are integrated machines usually made up of sensors, 

actuators, control systems, and some dedicated software and 

worked either depending on human commands or 

autonomously to perform various tasks. According to the 

degree of mobility of robots, there are two main types of robots: 

the fixed robots, which cannot move in their environment, and 

the mobile robots, which can travel in the environment by using 

various means of locomotion. However, mobile robots are more 

desirable nowadays due to their navigation and sensing 

capabilities useful for many different tasks [1, 2]. Mobile robots 

can be seen today in all aspects of life; autonomous vehicles, 

robot vacuums, assistant robot devices, search and rescue 

robots are some examples. Moreover, instead of working 

individually, mobile robots can now work in cooperation mode 

to accomplish critical tasks beyond a single robot's capabilities, 

as in the case of multi-robot and swarm robotic systems.  

Swarm robotics is an innovative approach that allows large 

numbers of robots to collaborate and coordinate with each other 

to perform critical tasks that are beyond the capabilities of an 

individual robot. The robots used in the swarm are relatively 

simple and have limited abilities compared to standalone robot 

systems. The main idea of swarm robotics is inspired by 

studying the collective behavior of social animals that can 

cooperate and coordinate among themselves for solving 

everyday problems such as foraging and flocking [3]. The term 

"swarm" or "swarm intelligence" was first launched by Beni 

[4], who was interested in cellular automata systems at that 

time. Beni and others [5] used the term "cellular robots" to refer 

to a group of robots with unique characteristics that closely 

match the insect's swarms. After that, Beni chose the word 

"swarms" as a better term for cellular robots. Later, the term 

"swarm" evolved, and many new concepts and terms emerged 

from it, such as swarming, swarm optimization, "swarm 

engineering, and swarm robotics [6]. 

In the last few decades, and due to the tremendous 

technological progress, considerable development was 

achieved in swarm intelligence and multi-robot cooperation. 
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Swarm robotics studies have been developed primarily to 

address the tasks that require working according to cooperative 

behavior. Şahin [3] chose to classify tasks according to the 

nature of the task as follows: 

 

 Tasks that cover a region such as surveillance and 

environmental monitoring 

 Tasks that are critical and dangerous such as rescue and 

mine detection 

 Tasks that scale up or scale down in time 

 Tasks that require redundancy, such as establishing a 

dynamic communication network on the battlefield 

 

Brambilla et al. [7] categorized tasks according to a slightly 

different perspective. They classify tasks according to 

behaviors where they proposed four categories of collective 

behaviors: 

 

 Spatially-organizing behaviors including aggregation, 

pattern formation, chain formation, self-assembly and 

morphogenesis, and object clustering and assembling 

 Navigation behaviors such as collective exploration, 

coordinated motion, and collective transport 

 Collective decision-making such as agreement 

(consensus achievement) and specialization (task 

allocation) 

 Other collective behaviors may contain some other 

works such as collective fault detection, group size 

regulation, and human–swarm interaction 

 

However, regardless of the type of task required, in most 

cases, the robots in the swarm have to navigate in an 

environment populated by various objects. Provided that the 

robots are equipped with some sensors, it is crucial to 

distinguish the team members from the other objects and 

estimate their relative positions based on the sensors' data. 

Detecting surrounding objects in the environment and 

distinguishing swarm members from these objects (often called 

"kin detection task") is essential for collective behaviors 

discussed above. It is also worthy to note that this process does 

not confine to detecting the robots, but it also means 

localization since the approximate coordinates of the robots can 

be recovered from the sensors data. Several studies have 

proposed solutions to tackle the kin detection and relative 

positioning task. Different sensors have been used to implement 

this task, such as infrared (IR), ultrasound, vision, Lidar 

sensors. The infrared-based approach is the most common 

approach for solving the robot detection and relative 

positioning task. A major advantage of using Lidars for robot 

detection and positioning is outdoor efficiency. Unlike IR-

based systems, Lidars can be designed to work in outdoor 

environments more efficiently. 

One of the IR-based robot detection and relative positioning 

systems was constructed by Kelly and Martinoli [15]. The 

proposed IR system can reveal the distance and orientation of 

each robot in the multi-robot system. Each robot in the team 

was equipped with twelve IR Light Emitting Diodes (LEDs) 

and four photodiodes controlled by a PIC microcontroller. 

LEDs have been distributed around the robot's perimeter in a 

manner that ensures as much coverage as possible of the 

surroundings. The photodiode receivers have also been fixed at 

90 degrees from each other to be able to sense signals in all 

directions. The distance from each robot to another and the 

bearing can be determined by comparing all four receivers' 

received signal strengths. The flocking task has been 

implemented using eight robots to test the method. Since the 

IR-based approach is the most method that has been used in 

literature, there are a lot of robot platforms that use this 

approach to tackle kin detection, relative positioning, and other 

related tasks [16-23]. 

As an example of using non-IR-based systems, Bolla et al. 

[8] developed a visual kin recognition and localization method 

that can detect and identify kin robots in a swarm robotic 

system. The main idea of the suggested method depends on 

using the Fast Fourier Transform (FFT) to extract the peak in 

the FFT spectrum related to the zebra pattern used to distinguish 

robots in the swarm. Moreover, the proposed method is not only 

able to detect the kin robots but can also estimate their distances 

and to make identification among them too. Other studies that 

have used the vision-based approach to achieve the detection 

and positioning problem for multi-robot systems are [9-11]. 

The relative positioning system, which uses ultrasonic 

sensors, developed by Rivard et al. [12], is another example of 

a non-IR-based system. The proposed system consists of one 

ultrasonic transmitter, three receivers, and one RF 

communication link. The detection method depends on 

evaluating the time-of-flight of ultrasonic pulses from the 

transmitter to the receiver that has revealed the signal first. The 

role of the RF link is to determine the time-of-flight of 

ultrasound pulses as it spreads much faster than ultrasound 

pulses. Other studies that use ultrasonic sensors are [13] and 

[14]. 

Although Lidars have been heavily used in robotics [24-26] 

and autonomous vehicles [27-29], Lidar-based kin detection 

and relative positioning methods are very limited in the 

literature, and most of these studies do not solve the entire 

problem. Premebida et al. [30] have presented some algorithms 

to perform segmentation and feature extraction based on data 

acquired from the Lidar sensor. For data segmentation, which 

aims to group segments into sets to distinguish the different 

objects in the environment, two different methods have been 

suggested:  Point-Distance-Based Segmentation Methods 

(PDBS) and Kalman Filter-Based Segmentation Methods 

(KFBS). While in the feature extraction process, three different 

geometric primitives (lines, circles, and ellipses) have been 

used to formulate the extraction and fitting problem since these 

geometric shapes can be described as cases of conics. Teixidó 

et al. [31] have presented a proposal for circular marker 

detection and external mobile robot tracking. The proposed 

work uses an external fixed 2D Lidar to detect cylindrical 

objects attached to a mobile robot. Circle fitting based on the 

least-squares method with an algorithm for outlier avoidance 
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has been used in the cylindrical target detection. Several 

experiments have been accomplished to evaluate the 

positioning error obtained in the center estimation process of 

the cylindrical targets, where different distances, orientations, 

and target diameters have been used. In [32], two laser range 

finder sensors have been used to obtain the full field of view for 

a mobile robot. The proposed method lets a robot estimate a 

distance (range) and an angle (bearing) to another robot in the 

environment using measurements extracted from the raw data 

provided by the Lidar. The method uses circle fitting to find 

circular objects and filter out outliers in the set of detected 

circular objects. Kalman filter has also been used to improve 

the estimate of the relative robot position. Four distinct 

scenarios have been tested using MBot robots to determine the 

detection and tracking method's performance. In [33], Zhou et 

al. have chosen to use machine learning methods to implement 

the object detection task (similar to the kin detection task). Like 

others, they have used the Lidar to distinguish circular and 

straight objects from other targets. The proposed method 

depends on three main stages. The first stage is the 

segmentation process, where authors have proposed an 

improvement to the segmentation approach in [34] and called it 

the Improved Dietmayer method (IDIET). In the second stage, 

five different features have been defined for each. Finally, the 

Support Vector Machine (SVM) machine learning method has 

been used to detect the target circular objects. Another Lidar-

based kin detection study was performed by us recently [35]. 

This study developed a geometric approach for kin detection 

and used the same simulation model and the Lidar for the 

proposed method.  

This paper is organized as follows. Section 2 presents an 

overview of ROS, Gazebo, and URDF files used to simulate 

and model our robot. Section 3 introduces the proposed robot 

detection and positioning. Finally, we end this paper with the 

experiments and the experimental results. 

II. ROBOT MODELING AND SIMULATION 

In this study, a mobile robot model has been designed and 

simulated in the Gazebo simulation environment. The 

simulated robot has been equipped with a Lidar to detect 

different objects in the environment. The sensor data has been 

obtained using the ROS topics communication method. Then 

this raw data has been processed in ROS and utilized in the kin 

detection and relative positioning system. ROS, Gazebo, and 

the robot model are briefly explained in the following sections 

subsequently. 

 

A. ROS 

 The ROS stands for Robot Operating System, an open-source 

robot software platform that provides services expected from 

any operating system like hardware abstraction, device control, 

communication between processes, and file management. It 

also offers various tools and libraries which give the ability to 

build, write, debug, and run code across different workstations 

[36]. ROS is not a real operating system in the conventional 

sense such as Windows, Linux, and Mac, but it is a meta-

operating system that runs over the installed operating system, 

and it can perform processes such as scheduling, data 

transmission/reception, loading, monitoring, and error handling 

by utilizing virtualization layer between applications and 

distributed computing resources. ROS has been built in small 

software modules called "nodes." Each node can be described 

as one executable program that can run independently and 

communicate with other nodes to send and receive data by 

establishing peer-to-peer links. Nodes exchange data using 

"messages" that could be either primitive or composed. ROS 

provides three mechanisms for communication between these 

nodes provided by passing messages: topics, services, and 

actions. Topics is an asynchronous unidirectional message 

transmission/reception method used to exchange data 

continuously. Services is a bidirectional synchronous 

communication method that depends on request/reply messages 

and is often used to command a robot to perform a specific 

action. Action is very similar to the service method, but it 

contains feedback messages that periodically report task states 

to the client. 

 

B. Gazebo 

Gazebo is one of the most popular simulators in the field of 

robotics. It has an integrated development environment that 

provides robots, sensors, environment models for 3D 

simulation and offers realistic simulation with its physics 

engine [37]. It has been selected as the official simulator of the 

DARPA Robotics Challenge in the US due to its high 

performance and having various plugins for different robot and 

sensor types. Using these plugins, we can read sensors data 

from Gazebo or send commands to motors by using APIs. 

Gazebo is developed and distributed by Open Robotics, which 

is in charge of ROS and its community, so it is compatible with 

ROS. 

 

C. Robot description 

In the world of robot simulation, it is so common to have the 

ability to model your robot, handle various sensor data received 

from this robot, control the robot by actuators, and test or 

evaluate algorithms. In ROS, robot models could be described 

in an XML format called Unified Robot Description Format 

(URDF). URDF files describe the physical configuration of the 

robot, such as how many wheels it has, where they are placed, 

and which directions they turn in. This format is designed to 

represent a wide variety of robots, from a two-wheeled toy to a 

walking humanoid. Regardless of the complexity of the robot, 

there are two essential elements to model any robot: links and 

joints. Links are the rigid parts of the robot, such as a chassis or 

a wheel, while joints work to connect these links, defining how 

they can move with respect to each other. In a URDF file, links 

are represented through <link> and </link> tags which 

represent one specified part of the robot's model (one link), 

while <joint> and </joint> tags are used to describe the type of 

joint between two specified links (parent and child links) [30]. 

Additionally, each link or joint can have some subtags that can 

define the characteristics of this link or joint. For instance, the 

link mass and inertia over different axes could be determined 
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inside the link tags. Fig. 1 shows one link and one joint of the 

modeled robot as an example of these tags. 

 

 
 

Fig.1. A portion of the URDF file containing one link (base_link) and one joint 

(middle1_link_joint) of the modeled robot. 

 

The essential components (links and joints) for our robot 

model and the visual state of these components as a result of 

interpreting the URDF file using the RViz tool (a 3D 

visualization tool of ROS) are shown in Fig. 2. 

 

 

 
 

 

Fig.2. The URDF links that have been used to model our robot in ROS  

 

After building the kinematics model of the robot in the 

previous stage, the model has to have some sensors to interact 

with the environment and solve our robot detection and relative 

positioning problem. The robot model has equipped with a 

differential driver and a Lidar sensor. The Lidar used to acquire 

surrounding data is the RPLidar A1, a 2D laser that can scan 

area ranges from 0.15cm up to 12m in all directions (360° of 

angular range) [39]. The RPLidar A1 runs clockwise to perform 

a 360° scan within a 12-meter range. The system measures 

distance data in more than 8000 times per second and with high-

resolution distance output (<1% of the distance) and (≤1 of the 

angle). In this study, we have used a gazebo plugin related to 

the laser sensor, where we have adjusted the plugin parameters 

to meet the specifications of the RPLidar sensor. 

 

III. KIN DETECTION AND POSITIONING METHOD 

The proposed method uses the Lidar sensor to collect the 

dataset and handle the kin detection and relative positioning 

task. As mentioned above, the Lidar gives 360 distance points 

(di, 0 ≤ i ≤ 359) starting from the front of the sensor that 

corresponds to orientation 0° and goes clockwise to cover a 

360° field of view. 

Lidar-based studies commonly use circular robots or any 

circular object attached to the robot (as in our case where we 

use a circular-shaped Lidar) and take advantage of the 

circularity of these robots or objects attached to them for 

implementing robot detection. The main idea of these studies is 

to find segments from Lidar measurements corresponding to 

objects in the environment and apply geometric or machine 

learning methods to find member robots. As Fig. 3 shows, our 

method implements kin detection task by applying the 

following steps: (1) acquisition of laser data and preprocessing 

(2) segmentation of data using the point-distance-based 

segmentation method, (3) extracting five features for each 

segment and applying the machine learning methods to classify 

segments and distinguish the kin robots from them, and (4) 

finding the relative position of the segments classified as a kin 

robot in the previous step. 

 

 
Fig.3. Flowchart of the kin detection method proposed in this paper  

 

There are two assumptions for the proposed method. 

 

 Known radius: The radius of the circular object/robot is 

known. In our case, the radius of  Lidar RPLidar A1 is 

0.035m.  
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 No occlusion: Each robot in the swarm is completely 

visible to the observer robot. 

A. Data acquisition and preprocessing 

As mentioned in the previous section, the Lidar being used 

measures 360 distance points. Each of the raw laser points is 

represented in the polar coordinate system as {(di,θi); 0 ≤ i ≤ 

359}, where di is the distance measured from the center of the 

observer robot to the object and θi the relative angle of the 

measurement (see Fig. 4). First, the acquired Lidar data are 

stored as vectors (di, θi).  

There is a difference between the simulated Lidar model and 

the real Lidar. In the real world, the Lidar returns the maximum 

range value for objects outside its operating range (which 

means that there is no obstacle against the laser beams). 

However, for the laser sensor plugin that we used, the simulated 

Lidar gives an infinity value for such a case. So, to tackle that, 

we convert the infinity values obtained from the laser sensor 

plugin to the Lidar max range value (𝑑𝑚𝑎𝑥). In the same way, 

any object located at (𝑑𝑚𝑎𝑥) from the observer robot will not be 

visible to the Lidar.  

It is also possible to apply some filtering to remove noise 

from the Lidar data in this stage. However, we did not apply 

any filtering in this study because we did not add noise to the 

simulated Lidar data. Fig. 4 represents the scanning system of 

the Lidar used, where one object has been placed at a distance 

(𝑑𝑖) and an angle (𝜃𝑖). 

 

 
Fig.4. RPLidar A1 scanning system, where (d_i,θ_i) are the distance and the 

angle of the object relative to Lidar (Adapted from [30]) 
 

B. Segmentation  

Segmentation is the process of transforming the raw laser 

points into groups of segments (useful data), which could be 

robots, humans, or other things. Segments can be defined as a 

set of range measurements (points) close to each other and 

probably belonging to one object. In this work, a PDBS based 

method is used for segmentation [30]. 

Segments are detected by using the derivative (𝜕𝑖) which can 

be calculated by finding the difference between each distance 

point (𝑑𝑖) and the one before it (𝑑𝑖−1). Then, small derivative 

values are filtered using a threshold value  (𝑑𝑡ℎ) which allows 

ignoring the small changes in scan data: 

 

 

𝜕𝑖 = {𝑑𝑖 − 𝑑𝑖−1 𝑖𝑓 |𝑑𝑖 − 𝑑𝑖−1|𝑑𝑡ℎ, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}  
1 ≤ 𝑖 ≤ 359                                     

 

 
 

(1) 

As a result of this operation, for each object in the 

environment, a falling slope (𝜕𝑖 < −𝑑𝑡ℎ < 0) and a rising slope 

(0 < 𝑑𝑡ℎ < 𝜕𝑖) is detected (See Fig. 5 B and 5 C). By 

associating and combining each falling and rising edge, we 

obtain probable segments representing an object in the 

environment. Fig. 5 illustrates this step for four different objects 

(cube, kin, triangular prism, and cylinder) in the Gazebo 

simulator. 

 

 
 

A. The observer robot and four different objects in the Gazebo simulator. The 

objects (from left to right) are: cylinder (1), triangular prism (2), kin robot (3), 
and a cube (4) 

 

 
B. Representation of the Lidar scan data (blue lines) and the differences 
between each scan point and the previous one according to the ray number 

(green lines) for the two objects at the left of Fig. 5. A (object 1 and 2) 
 

 
C. Representation of the Lidar scan data (blue lines) and the differences 

between each scan point and the previous one according to the ray number 
(green lines) for the two objects at the right of Fig 5. A (object 3 and 4) 

 

Fig.5. A representation of the segmentation process using four different objects 
in Gazebo simulator 

1 

2 

3 

4 

1 
 

2 3 4 
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C. Segment classification 

Classification is the act or process of dividing things into 

groups according to their type (kin robot or not). Segment 

classification can be implemented using geometric [30] or 

machine learning [33] methods. In this study, the segment 

classification process has been performed using machine 

learning methods. 

In machine learning, classification is a supervised learning 

approach. The computer program develops a model from the 

sample data (data set) and then uses this model to classify new 

observations. This data set may be bi-class (like our case where 

we attempt to identify whether the object is a robot or not) or 

multi-class. 

This step aims to classify segments to distinguish the kin 

robots from the other objects. The classification process starts 

with collecting the segments' raw data and then converting these 

data to features. Five features have been extracted for each 

segment in the classification stage. Then various machine 

learning classification algorithms have been applied over these 

features, and results have been compared according to several 

performance measures (as described in the next section). 

The features used are fitness, symmetry, radius error, 

circularity, and straightness, denoted by 𝐹𝑓𝑖𝑡, 𝐹𝑠𝑦𝑚, 𝐹𝑟𝑒𝑟, 𝐹𝑐𝑖𝑟  

and 𝐹𝑠𝑡𝑟 respectively. These features have been suggested by 

[33], who have used these features to detect circular objects in 

polar coordinates. They have chosen SVM for classification, 

and just two object types (plastic cast and rectangle paper box) 

have been used to test the algorithm. However, this paper 

suggests using these features to distinguish kin robots from 

other possible obstacles and find their relative positions. We 

have tested several situations and scenarios for various objects 

using four different classification algorithms. The features used 

have been defined as follows: 

 

1) Fitness 

 

The fitness function evaluates how close a given solution is 

to the optimum solution of the desired problem. It determines 

how much a solution is fit. In our case, we can benefit from the 

fitness function to measure how the distance points related to a 

segment (object) fit the circular object representing the kin 

member that we are looking for by using the following 

equation. 

 

𝐹𝑓𝑖𝑡 =
1

𝑚𝑎𝑥(𝜃𝑞)−𝑚𝑖𝑛(𝜃𝑞)
∑ |𝜌𝑞(𝑖) − 𝜌(𝑖)|𝑁

𝑖=1             (2) 

 

Where (𝜌(𝑖), 𝜃(𝑖)) are the corresponding polar coordinates 

for scan distance points, and 𝑁 is the number of these distance 

points. This feature could be used to extract circles and lines. If 

the target object is a circle or line, the corresponding 𝐹𝑓𝑖𝑡 is 

small. Otherwise, 𝐹𝑓𝑖𝑡 is a large number. 

 

2) Circularity 

 

The circularity feature describes how close an object is to a 

true circle. So, we can use this feature to show how an object is 

close to a circle with a known radius by using the following 

equations: 

 

𝛼𝑐𝑡 = 𝑠𝑖𝑛−1 𝑅𝑟

𝜌𝑚𝑖𝑛+𝑅𝑟
                  (3) 

 

𝐹𝑐𝑖𝑟 = |𝛼𝑐𝑡 − 𝛼|                        (4) 

 

𝑅𝑟 is the radius of the Lidar used and 𝜌𝑚𝑖𝑛 represents the 

minimal distance between Lidar and the object. While 𝛼 

represents the measured value of the angle between the 

maximal and the minimal distance between LRF and target 

object, 𝛼𝑐𝑡 denotes the theoretical calculation value of that 

angle. So, the difference of 𝛼𝑐𝑡 and 𝛼 defines the circularity 

feature. 

 

3) Radius error 

 

For circle, we can calculate the difference between the 

theoretical calculation value of the circle radius (𝑅𝑒𝑠𝑡) and the 

original value (𝑅𝑟) which is in our case 0.035cm to define the 

radius error estimation feature as follows: 

 

𝑅𝑒𝑠𝑡 =
𝜌𝑚𝑖𝑛 sin 𝛼 

1−sin 𝛼
                       (5) 

 

𝐹𝑟𝑒𝑟 = |𝑅𝑟 − 𝑅𝑒𝑠𝑡|                     (6) 

 

In theory, for a circle, 𝐹𝑐𝑖𝑟  and 𝐹𝑟𝑒𝑟 are equal to zero. In 

practice, there are measurement errors, so 𝐹𝑐𝑖𝑟  and 𝐹𝑟𝑒𝑟 are not 

exactly equal to zero but are still close to zero. If the detected 

object is not a circle, 𝐹𝑐𝑖𝑟  and 𝐹𝑟𝑒𝑟 are large values. 

 

4) Straightness 

 

It is possible to calculate the straightness degree of the target 

object using the following equations: 

 

𝛼𝑙𝑡 = cos−1 𝜌𝑚𝑖𝑛

𝜌𝑚𝑎𝑥
                        (7) 

 

𝐹𝑠𝑡𝑟 = |𝛼𝑙𝑡 − 𝛼|                          (8) 

 

Where 𝜌𝑚𝑖𝑛and 𝜌𝑚𝑎𝑥 represent the minimal and the maximal 

distance between Lidar and the target object. While (𝛼) 

represents the measured value of the angle between the 

maximal and the minimal distance between LRF and the target 

object, (𝛼𝑙𝑡) denotes the theoretical calculation value of that 

angle. The difference of 𝛼𝑙𝑡 and 𝛼 defines the straightness 

feature. 

For both lines and circles, 𝐹𝑠𝑡𝑟 should have a small value 

close to zero too. For objects with other shapes, 𝐹𝑠𝑡𝑟 becomes a 

larger value. 

 

 

5) Symmetry 

 

Mathematically, symmetry means that one shape becomes 

exactly like another when you move it in some way: turn, flip, 

or slide. For two objects to be symmetrical, they must be the 

same size and shape but have a different orientation from each 

other. Since the Lidar used to distinguish robots is a cylindrical 
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object, the symmetry value we will obtain from the formula 

described below will measure the symmetry of a segment with 

a cylindrical object in Lidar size. 

 

Generally, symmetry level is measured by the Hausdorff 

distance. However, in this paper, 𝐹𝑠𝑦𝑚 is simply computed by: 

 

𝐹𝑠𝑦𝑚 = |
𝑚𝑎𝑥(𝜃𝑞)−𝑚𝑖𝑛(𝜃𝑞)

2
− 𝜃𝑓𝑖𝑡|             (9) 

 

where 𝜃𝑓𝑖𝑡 is the axis of symmetry, and it equals to  

 𝜃𝑓𝑖𝑡 = −
𝔭1

2𝔭2
. 

 

According to the equations described above, it could be 

noticed that features will be affected by two factors: 

 

 Whether an object is circular, line or not 

 Whether the radius of the detected circular object is 

equal to the kin robot's lidar radius or not. 

D. Kin positioning 

After classifying the segments related to kin robots, it is 

necessary to identify the relative position of these kins. The kin 

positioning process involves estimating the distance and 

relative angle between the observer robot and other kins. As we 

have the distance points of the kin robot, we can obtain the 

relative position of the kin robot by getting the smallest value 

among the distance points. Finally, the index value 

corresponding to the smallest value can be easily used to obtain 

the relative angle of the kin robot.  

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

Experiments are performed in three stages. In the first stage, 

raw data collection is performed. In order to verify the validity 

of the proposed method, various object types (including the kins 

that we are looking for) have been used in the data collection 

stage (see Fig. 6). Different distances, positions, and sizes have 

been used for each object type. The data collection process 

covered the distance 0.2 m (the minimum distance that the Lidar 

can detect) to 1 m. The collected raw data contains the index of 

the first and the last rays that hit the object (or segment), the 

distance values in that range, and a class label ("1" for kins and 

"0" for non-kin objects). Some samples of the raw data set are 

shown in Table 1. 

In the second stage, the raw data set is transformed into a 

feature data set. The feature data set contains five feature values 

for each segment and is stored in a CSV file. Some samples of 

the feature data set are shown in Table 2. 

In the last stage, the feature data set is fed to different 

machine learning classifiers, where we used four different 

classification algorithms for this study which are: random forest 

(RF), SVM, k-nearest neighbor (kNN), and decision tree (DT). 

The collected datasets contain 2230 segments (850 frames for 

kins and 1380 for other shapes). The feature data set was 

divided into training and testing sets using the 20-fold cross-

validation method. Different hyperparameters have been tried 

for each classifier to get the best result. Table 3 shows the best 

parameters obtained for each classification algorithm using the 

grid search method. Table 4 shows the performance measures 

of the classification algorithms used where the best algorithm 

was the random forest with an 86% accuracy score. 

 
Cube object            Cylinder object 

 
Kin object             Octagon object 

 
Hexagon object      Triangular object 

 

Fig.6. The objects used to collect data and extract the features in the segment 
classification process 

 

TABLE I 
SAMPLES OF THE GENERATED RAW DATA SET OBTAINED BY 

LIDAR FOR KINS AND OTHER OBJECTS. THE KIN ROBOTS WERE 

LABELLED WITH (1), AND NON-KINS WERE LABELLED WITH (0) 

 

Seg 
No 

Start 
index 

End 
index 

Distance Points 
Kin or 
not 

1 173 184 0.21 0.21 0.21 … 0 

2 264 270 0.43 0.42 0.41 … 0 

3 239 242 0.77 0.76 0.76 … 0 

4 174 183 0.38 0.37 0.37 … 0 

5 201 204 1.09 1.08 1.07 … 0 

6 267 272 0.70 0.69 0.68 … 0 

7 155 171 0.23 0.22 0.22 … 1 

8 165 171 0.59 0.58 0.57 … 1 

9 121 125 0.75 0.74 0.74 … 1 

10 204 208 0.81 0.79 0.79 … 0 

11 216 225 0.35 0.35 0.34 … 0 

12 263 267 0.89 0.87 0.87 … 0 

13 174 184 0.34 0.33 0.33 … 1 

14 177 181 0.88 0.86 0.86 … 1 

15 262 265 0.98 0.96 0.96 … 1 

16 174 183 0.29 0.29 0.29 … 0 

17 270 274 0.73 0.73 0.73 … 0 

18 272 286 0.22 0.22 0.22 … 0 

19 143 151 0.47 0.46 0.45 … 1 

20 100 104 0.75 0.75 0.74 … 1 

21 340 346 0.53 0.52 0.52 … 1 

22 172 182 0.32 0.32 0.32 … 0 

23 175 180 0.62 0.62 0.61 … 0 
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TABLE II 

THE FIVE FEATURES EXTRACTED FOR THE SEGMENTS SHOWN IN 

TABLE 1. THE FEATURES ARE FITNESS, SYMMETRY, ESTIMATE 
RADIUS ERROR, CIRCULARITY, AND STRAIGHTNESS DENOTED BY 

𝐹𝑓𝑖𝑡, 𝐹𝑠𝑦𝑚, 𝐹𝑟𝑒𝑟, 𝐹𝑐𝑖𝑟  AND 𝐹𝑠𝑡𝑟 

 

Seg No 𝑭𝒇𝒊𝒕 𝑭𝒄𝒊𝒓 𝑭𝒓𝒆𝒓 𝑭𝒔𝒕𝒓 𝑭𝒔𝒚𝒎 
Kin or 
not 

1 0.03 0.04 0.01 0.25 3.11 0 

2 0.04 0.03 0.01 0.23 4.66 0 

3 0.03 0.01 0.01 0.17 4.19 0 

4 0.12 0.00 0.00 0.30 3.11 0 

5 0.33 0.01 0.02 0.24 3.53 0 

6 0.12 0.00 0.00 0.24 4.70 0 

7 0.08 0.01 0.00 0.34 2.84 1 

8 0.06 0.01 0.00 0.24 2.93 1 

9 0.04 0.01 0.01 0.19 2.14 1 

10 0.04 0.01 0.01 0.16 3.59 0 

11 0.07 0.01 0.00 0.26 3.84 0 

12 0.02 0.00 0.00 0.21 4.62 0 

13 0.05 0.01 0.00 0.27 3.12 1 

14 0.05 0.00 0.00 0.20 3.12 1 

15 0.02 0.00 0.00 0.14 4.60 1 

16 0.00 0.05 0.02 0.26 3.11 0 

17 0.00 0.02 0.02 0.02 4.74 0 

18 0.00 0.10 0.03 0.05 4.87 0 

19 0.09 0.00 0.00 0.27 2.56 1 

20 0.03 0.01 0.01 0.18 1.77 1 

21 0.02 0.01 0.01 0.19 5.98 1 

22 0.12 0.03 0.01 0.35 3.08 0 

23 0.15 0.02 0.01 0.24 3.09 0 
 
 

TABLE III 

THE BEST VALUES OF HYPERPARAMETERS OBTAINED USING THE 
GRID SEARCH METHOD 

 

Algorithm Parameter Value 

Decision tree 

criterion entropy 

max depth 6 

min samples leaf 8 

Random forest 
criterion entropy 

number of trees 100 

KNN number of neighbours 38 

SVM 
kernel function rbf 

regularization 
parameter 

9 

 

This paper proposed a kin detection and positioning 

algorithm. Due to the lack of studies that use the Lidar sensor 

to implement such a task, we have chosen to use the lidar-based 

approach to tackle this task. Our method uses a robot model 

equipped with a Lidar sensor to detect the different objects in 

an environment, distinguish the kin robot member and find the 

relative position of each kin using the machine learning 

classification methods. The features used in the classification 

process have been suggested by Zhou et al. [33] to detect 

circular objects using SVM. However, in this study, we have 

recommended using these features to distinguish kin robots 

equipped with Lidar sensors from other possible obstacles and 

then find the relative positions of each detected kin. 

 
TABLE IV 

PERFORMANCE MEASURES OBTAINED ACCORDING TO THE 

CLASSIFICATION METHODS USED FOR THE KIN DETECTION TASK 
WHERE THE RANDOM FOREST ALGORITHM GIVES THE BEST 

ACCURACY SCORE (86%). 
 

 Accuracy Precision Recall F1_score 

DT 85% 87% 85% 84% 

RF 86% 86% 86% 86% 

kNN 84% 87% 84% 83% 

SVM 82% 86% 82% 81% 
 

Several situations and scenarios for various objects are tested 

using four different classification algorithms. The algorithms 

used are decision tree, random forest, k-nearest neighbors, and 

SVM. The random forest algorithm gave the best result for the 

segment classification with an 86% accuracy score. 

The robot model used in the experiments is a model of an 

early version of the swarm robotic platform called Layka, 

developed by the second author. The Layka swarm robotic 

platform being developed is designed to be used with or without 

ROS. There are some advantages of using ROS for developing 

swarm robotic systems. First, tools and mechanisms supported 

by ROS can simplify debugging swarm robotic systems 

considerably. Second, ROS mechanisms and abstractions allow 

developing modular and platform-independent components. 

Third, ROS has many high-level libraries (such as navigation 

and planning) that can be valuable for swarm robotic systems. 

In future works, we plan to finalize the development of the 

Layka swarm robotic platform, test proposed methods on the 

real robot platform, and analyze the effect of sensor noise which 

is one of the limitations of this study and the previous one [35]. 
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