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M. GÜZELTEPE, AND G. GÜNER
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Abstract. In this paper, a new family of t−error correcting perfect codes
over Hurwitz integers is presented. To obtain these perfect codes, the perfect

t−dominating sets over the circulant graphs are used. The codewords of such

perfect codes are generated by the elements of a subgroup of the considered
group.

1. Introduction

If a code satisfy the sphere-packing bound in any given metric, then the code
called perfect code. Perfect codes are important since perfect codes plays an im-
portance role in coding theory. The first perfect codes which were subspaces of
Zn2 were defined by Hamming in [4]. The first non-linear perfect 1−error correct-
ing binary code was constructed by Vasil’ev in [15]. Vasil’ev’s construction was
generalized to q−ary case by Lindström and independently Schönheim in [10, 14].
Group and non-group perfect codes which were not equal to any linear code were
given by Heden in [5]. Besides, perfect codes have been investigated with respect
to some other metrics such as the Lee metric, the Mannheim metric, the Lipschitz
metric. Some perfect codes with respect to the Lee metric introduced in [9]. Hu-
ber defined Mannheim metric, and presented perfect 1−Mannheim error correcting
codes (shortly OMEC) in the metric in [8]. The dimension of OMEC codes not
only n− 1, but also n− k (k > 1) were constructed by Güzeltepe and Heden in [3].
The Lipschitz metric was presented and some perfect codes over Lipschitz integers
were introduced with respect to the Lipschitz metric in [11, 12]. A generalization of
perfect Lee-error-correcting codes and perfect 1−error correcting Lipschitz weight
codes were presented by Heden and Güzeltepe in [6, 7].

The Hurwitz metric was introduced in [1, 3]. Besides, Güzeltepe constructed
linear codes over Hurwitz integers with respect to the Hurwitz metric for a Hurwitz
prime in [1]. These linear codes were not perfect.
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On the other hand, the common trait of the papers [1, 2, 3, 6] is that the perfect
codes were obtained by using a chosen prime over relevant structures. Unlike these
articles, we use only odd Hurwitz integers being product of distinct primes to
construct perfect codes over Hurwitz integers. The main idea in the presented paper
is inspired by the article [13]. In that paper [13], a method for defining new metrics
over two-dimension signal spaces and families of perfect codes of length one over
lattice constellations obtained by Gaussian integers and Eisenstein Jacobi integers
were presented by Mart́ınez et al. They mainly considered QAM-like signal spaces
and defined a new distance over QAM-like constellations imported from degree-four
circulant graphs whose nodes were labeled with Gaussian integers. By means of
these graphs, they constructed perfect t−correcting codes over Gaussian integers
with length one.

The rest of the paper is organized as follows. In Section 2, basic definitions and
theorems in Hurwitz integers are given. A connection between Circulant graph and
Hurwitz integers is obtained in Section 3. Perfect t−dominating sets is defined in
Section 4. Using these sets, perfect codes over Hurwitz integers are constructed
in that section. In terms of average energy and bandwidth occupancy, a simple
comparison between these perfect codes and some perfect codes given in literature
is presented in the last section.

2. On Hurwitz integers

In this section, we give some basic definitions and theorems which we need
throughout our study.

Definition 2.1 (see [3]). Hamilton Quaternions H (R) is the free R−module over
the symbols 1, i, j, k and the set of Hamilton Quaternions is defined as following:

H (R) = {a0 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ R} .
Here, 1 is the multiplicative identity. Morever,

(1) i2 = j2 = k2 = −1 and
(2) ij = −ji = k; jk = −kj = i; ki = −ik = j.
(3) If q = a0 + a1i + a2j + a3k is a quaternion, then its conjugate is denoted

by q∗ and q∗ = a0 − (a1i+ a2j + a3k) .
(4) The norm N (q) of q ∈ H (R) is N (q) = qq∗ = a20 + a21 + a22 + a23 and

N (q1q2) = N (q1)N (q2), that is, the norm N is a multiplicative norm.

Definition 2.2 (see [3]). The Lipschitz integers H(Z) is a subset of H (R) and is
defined as

H (Z) = {a0 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ Z} .

Definition 2.3 (see [2]). The set of Hurwitz integers is the set H = H (Z) ∪
H
(
Z + 1

2

)
, that is,

H =
{
a0 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ Z ∨ a0, a1, a2, a3 ∈ Z + 1

2

}
=

{
a0+a1i+a2j+a3k

2 : a0, a1, a2, a3 ∈ Z, a0 ≡ a1 ≡ a2 ≡ a3 (mod 2)
}
.

Definition 2.4 (see [3]). If the norm of a Hurwitz integer q is an odd integer, then
the element q is called an odd Hurwitz integer. Similarly, if the norm of a Hurwitz
integer α is a prime integer, then the element α is called prime Hurwitz integer.
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In this study, we use only odd Hurwitz integers to construct perfect codes over
Hurwitz integers.

Definition 2.5. Let q1, q2 be two elements of Hurwitz integers H and let α be an
odd Hurwitz integer. If there exists β ∈ H such that q1 − q2 = αβ, then q1, q2 ∈ H
are left congruent modulo α and it is denoted as q1≡lq2 (mod α) .

Let Hα denotes the complete set of left coset representatives. In this situation,
the elements of Hα are not left congruent each other modulo α. Right congruent
can be defined like left congruent.

Theorem 2.6 (see [2]). If α is an odd Hurwitz prime, then the size of Hα is equal

to N(α)
2
.

Corollary 2.7. Let 0 6= α and β be in H and let β be a left-divisor of α. Then
the subgroup generated by the element β is denoted by 〈β〉 and the number of the

elements of the subgroup 〈β〉 is equal to N(α)
2/
N(β)

2.

Proof. Hα is an additive group and 〈β〉 is a subgroup of Hα. So, the proof is clear
from the Lagrange Theorem. �

3. Circulant graph and Hurwitz integers

In this section, a connection between circulant graph CN (j1, . . . , jm) and Hα is
given.

Definition 3.1. The distance β, γ ∈ Hα is defined as

dα(β, γ) = N(δ),

where δ = a0 + a1i + a2j + a3k denotes an element in the coset β − γ in Hα with
|a0|+ |a1|+ |a2|+ |a3| minimum. We also define the weight of β ∈ Hα as

wα = dα(β, 0).

There are 24 elements of weight one in Hurwitz integers H. These elements are
±1,±i,±j,±k and ± 1

2 ±
i
2 ±

j
2 ±

k
2 . From now on ε denotes the following set:{

±1,±i,±j,±k,±1

2
± i

2
± j

2
± k

2

}
.

By adding the elements of the set ε one by one to γ ∈ Hα, we determine the
elements at distance one from exactly γ.

Definition 3.2. Let 0 6= α ∈ H be an odd Hurwitz integer. If we take

(1) V = Hα is the set of vertices (nodes) and
(2) E = {(β, γ) ∈ V × V : dα (β, γ) = 1} is the set of edges,

then Gα (V,E) defines a graph generated by α.

Definition 3.3. (see [13]) A circulant graph with N vertices and jumps {j1, j2, · · · , jm} ,
where m < N/2, is an undirected graph in which each vertex n, 0 ≤ n ≤ N − 1,
is adjacent to all the vertices n ± ji, with 1 ≤ i ≤ m. We denote this graph as
CN (j1, j2, · · · , jm) .

Theorem 3.4. Let e1 ∈ {i, j, k} and let α = a0 + a1i + a2j + a3k = a0 + a1i +
(a2 + a3i)e1 ∈ H be an odd Hurwitz integer. Then CN(α)2 (j1, . . . , j12) and Gα are
isomorphic graphs.
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Figure 1. The graph G−1+2i+2j

In[4]:= A = CirculantGraph@81, 813, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24<D

EdgeCount@AD

GraphDiameter@AD

Out[4]=

Out[5]= 972

Out[6]= 3

Figure 2. The graph C81(13, . . . , 24)
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Proof. The edges of Gα and the edges of CN(α)2(j1, . . . , j12) are chosen as the
elements of Hα and the elements of ZN(α) × ZN(α), respectively. Therefore, it is
sufficient to prove that Hα and ZN(α) × ZN(α) are isomorphic groups. We now
consider the function

ψ : ZN(α) × ZN(α) → Hα
(q1, q2) 7→ (x1 + y1) i+ (x2 + y2) e1 ( mod α) ,

where x1, y1, x2, y2 ∈ ZN(α), q1 = a0x1 +a1y1, q2 = a2x2 +a3y2 (mod N(α)). The
function ψ is a bijective function. The bases of these groups Hα and ZN(α)×ZN(α)

are e2, e3 ∈ {1, i, j, k} and {(1, 0) , (0, 1)}, respectively. Hence we get ψ ((1, 0)) =
e2, ψ ((0, 1)) = e3, where ψ ((x, y)) = β1e2 + β2e3 (mod α), x, y ∈ ZN(α) and
β1, β2 ∈ Hα. Hence, the proof is completed.

�

Example 3.5. Let α = −1 + 2i+ 2j. Fig. 1 shows the graph Hα and Fig. 2 shows
the graph C81(13, . . . , 24). The vertexes given in Fig. 1 shows one twelfth of all
vertexes. The diameter of these graphs is 3. This shows that the distance between
0 and the elements of Hα is less than or equal to 3, that is, N(q) ≤ 3 for all q ∈ Hα.

4. Perfect t−Dominating Sets and Perfect Codes Over the Hurwitz
Integers

In this paper, we study on arbitrary parameter t, give conditions for the existence
of perfect t−dominating sets.

Proposition 1. If α is a Hurwitz integer and ρ1, ρ2 ∈ ε then the norm N(α) is
equal to the norm N(ρ1αρ2).

Proof. Recall that the norm N is a multiplicative norm and N(ρ1) = N(ρ2) = 1
since ρ1, ρ2 ∈ ε . Hence, we have

N (ρ1αρ2) = N (ρ1)N (α)N (ρ2) = N (α) .

�

It is clear that if α1, · · · , αr are odd Hurwitz integers then α1 . . . αr is an odd
Hurwitz integer.

Proposition 2. Let α be an odd Hurwitz integer and let β1, β2 ∈ H. If

β1 = β2 (mod α) ,

then
ρ1β1ρ2 = ρ1β2ρ2 (mod ρ1αρ2 ) .

Proof. If β1 = β2 (mod α), then we get

β2 = β1 + αδ, δ ∈ H.
Multiplying left sides of the above equation by ρ1 and right sides by ρ2, we obtain

ρ1β2ρ2 = ρ1 (β1 + αδ) ρ2 = ρ1β1ρ2 + ρ1 (αδ) ρ2
= ρ1β1ρ2 + ρ1

(
α
(
ρ2ρ

−1
2

)
δ
)
ρ2

= ρ1β1ρ2 + ρ1 (αρ2)
(
ρ−1
2 δρ2

)
= ρ1β1ρ2 + (ρ1αρ2) δ1.

This shows that
ρ1β1ρ2 = ρ1β2ρ2 (mod ρ1αρ2 ) .

�
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The proof of next proposition is straightforward from the proof of Prop. 2.

Proposition 3. Let α be an odd Hurwitz integer. If the set {ε1, ε2, · · · , εn} is a
partition of Hα then the set {ρ1ε1ρ2 , ρ1ε2ρ2, · · · , ρ1εnρ2} becomes a partition of
Hρ1αρ2 .

The proof of next lemma is straightforward from Prop. 3.

Lemma 4.1. Gα1
∼= Gα2

if there exist ρ1, ρ2 ∈ ε such that α1 = ρ1α2ρ2, where
α1, α2 ∈ H.

Definition 4.2. Let α be a Hurwitz integer. A sphere (ball) centered at γ with
radius t in Gα is defined as

Bt (γ) = {β ∈ Hα : dα (β, γ) ≤ t} ,
where t ∈ N. If q ∈ Hα is in the Bt (γ) , then it is said that the vertex q is
t−dominated by the vertex γ.

We give the following definition as in [13].

Definition 4.3. Let a vertex subset S ⊂ Gα and t ∈ Z+. If every vertex of Gα is
t−dominated by a unique vertex in S, then S is called a perfect t−dominating set.

Example 4.4. For α = 1 + 3i+ 2j+ k and γ = −2j− k, the set of B1 (−2j − k) =
{β ∈ H1+3i+2j+k : d1+3i+2j+k (β,−2j − k) ≤ 1} is a sphere centered at −2j − k
with radius 1 in H1+3i+2j+k.

If t = 0, then d1+3i+2j+k (β,−2j − k) = 0. Hence, we get β = −2j − k and −2j−
k ∈ B1 (−2j − k) .

If t = 1, then d1+3i+2j+k (β,−2j − k) = 1. So, we add all of the elemets of weight
one to γ = −2j − k in an effort to determine 1−dominating set of γ = −2j − k.

For −1: β = (−2j − k)−1 = −1−2j−k ≡ 1
2−

i
2 + j

2 + 3k
2 (mod 1 + 3i+ 2j + k) .

Then we get 1
2 −

i
2 + j

2 + 3k
2 ∈ B1 (−2j − k) .

For 1: β = (−2j − k) + 1 = 1−2j−k ≡ − 1
2 + i

2 + 3j
2 −

k
2 (mod 1 + 3i+ 2j + k) .

Then we get − 1
2 + i

2 + 3j
2 −

k
2 ∈ B1 (−2j − k) .

By processing similar technique for 24 elements of weight one, we obtain 1−dominating
set of γ = −2j − k ∈ Hα as

B1 (−2j − k) =
{
−2j − k,− 1

2 + i
2 + 3j

2 −
k
2 ,

1
2 −

i
2 + j

2 + 3k
2 ,

3
2 + i

2 + j
2 + 3k

2 , 1 + 2i,

−j − k,− 3
2 + i

2 + j
2 −

k
2 ,−2j, 32 −

i
2 + j

2 + k
2 ,

1
2 + i

2 −
3j
2 −

k
2 ,

− 1
2 + i

2 −
3j
2 −

k
2 ,

1
2 −

i
2 −

3j
2 −

k
2 ,−1 + i+ j, 12 + i

2 −
3j
2 −

3k
2 ,

− 1
2 −

i
2 −

3j
2 −

k
2 ,

1
2 −

3i
2 + j

2 −
3k
2 , 1 + j + k,−1 + j, 12 −

i
2 −

3j
2 −

3k
2 ,

−1 + i+ j − k,−2 + j, 1− i+ j + k, 1 + k,−1 + j − k, 1− i+ k} .

Theorem 4.5. (1) If 0 6= β ∈ Hα, N (β) = 5 and β |α , then the set of the
subgroup 〈β〉 generated by β is a perfect 1−dominating set in Gα.

(2) If 0 6= β ∈ Hα, N (β) = 7 and β |α , then the set of the subgroup 〈β〉
generated by β is a perfect 2−dominating set in Gα.

Proof. 1. Let N(β) = 5 and β |α We prove that dα (σ, τ) ≥ 3 for all σ, τ ∈ 〈β〉 , σ 6=
τ . Since σ and τ are the elements of 〈β〉, there are δ1, δ2 in Hα such that σ = βδ1
and τ = βδ2. Thus, we have

dα (σ, τ) = dα (σ − τ, 0) = dα (βδ1 − βδ2, 0) = dα (βγ, 0) ,
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where γ = δ1 − δ2(modα). Let us assume that

dα (σ, τ) = dα (βγ, 0) < 3.

In this situation, there is an element q in Hα such that βγ is equal to q modulo α,
that is, q = βγ (modα). According to Def. 6, we get

dα (σ, τ) = dα (σ − τ, 0) = dα(βγ, 0) = N(q) < 3.

Since q = βγ (modα) and β is a left divisor of α, we get

βγ = q + αγ1, α = βγ2,

respectively, for some γ,γ2 ∈ H. Thus, we obtain

βγ = q + αγ1 = q + (βγ2) γ1 = q + β (γ2γ1)
⇒ q = β (γ − γ2γ1)

and

N (γ − γ2γ1) =
N (q)

N (β)
.

But, this is contradict to the definition of the norm since N(β) = 5, N(q) < 3, so,

N (γ − γ2γ1) = N(q)
N(β) /∈ Z. Hence, the proof is completed.

�

Here, note that σ 6= τ , so, N(q) 6= 0. A similar proof can be obtained for the
case 2.

Theorem 4.6. Let us assume that there is a Hurwitz integer β and let N(β)2

denotes the number of Hurwitz integers which the norm of these integers is less
than or equal to t. In this situation, there exists a perfect t−dominating set in Hα
if there exists a prime p such that the norm of β is equal to p.

It is well known that there is a natural way of defining perfect error-correcting
group codes with length one by means of perfect dominating sets over known graphs.
Some examples associated with this topic can be seen in [13].

We use Mathematica software program to determine the codes given in this
paper. As an illustration, we give the following algorithm in Fig. 5 for getting
perfect 1−dominating set. In that algorithm, we take α = 1 + 3i + 2j + k and
β = 2 + i. The first column of the table ”K”, one can see the table ”K” when the
program runs, denotes the elements of Hα, the second column denotes the elements
which dominated by the elements of 〈β〉, the set ”SW1” denotes the set E ∪ {0},
the set ”B1γ” denotes Hurwitz integers which the norm between γ ∈ 〈β〉 and these
elements is 1. Note that any Hurwitz integer a0 + a1i + a2j + a3k is shown as
Quaternion[a0, a1, a2, a3] in Mathematica. We don’t show the outputs since they
takes up too much space in the paper.

Fig. 4 shows the graph C225(13, 14, . . . , 24) which it is isomorphic to the graph
given in Fig. 3. The diameter of the graph C225(13, 14, . . . , 24) is 5. Using the
technic presented in this paper, one can construct a code that the minimum distance
of the code is less than or equal to 5. The graph immediately gives the minimum
distance of a code presented in this paper.

Fig. 3 shows representation of the Hurwitz graph generated by α = 1 + 3i+ 2j + k.
In the figure, points labeled red denotes the set 〈β〉. Note all vertexes are not given
in the figure. The vertexes given in the figure shows one twelfth of all vertexes.
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Figure 3. A representation of the Hurwitz graph generated by
α = 1 + 3i+ 2j + k

Table I: Some perfect code parameters

α β t
1 + 2i− 3j + k i− 2k 1

− 5
2 + 5i

2 + 3j
2 + k

2
3
2 + i

2 + 3j
2 + k

2 1

− 3
2 + i

2 −
5j
2 + 7k

2
1
2 + i

2 + j
2 + 5k

2 2
3
2 + 5i

2 + 9j
2 + 5k

2
3
2 + 3i

2 + 3j
2 + k

2 2
3 + 4i+ 3j + k 2 + i+ j + k 2
−4 + 5i+ 5j + 5k 1 + 2i+ 2j + 2k 4

Also, we give some perfect t−dominating sets, which directly are perfect codes
at Table I.

5. Some Comparisons

In this section, we compare codes given in the present paper and some codes
given in literature in terms of average energy and bandwidth occupancy. Firstly,
we give a comparison associated with average energy. The average energy calculated
as:

Eavg =
1

M

M−1∑
r=0

|qr|2,
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In[1]:= A = CirculantGraph@15^2, 813, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24<D

EdgeCount@AD

GraphDiameter@AD

Out[1]=

Out[2]= 2700

Out[3]= 5

Figure 4. The graph C225(13, 14, . . . , 24)
.

where qr is in signal space and it has a magnitude (distance from the origin) of

|qr| =
√
q2r,0 + q2r,1 + q2r,2 + q2r,3 and M denotes the number of the constellation.

Table II: Average Energy Comparison

α N(α) Base group Number of constellation Eavg
2 + i 5 Z[i]2+i 5 0.8
2 + i 5 H2+i 25 0.96
3 + 4i 25 Z[i]3+4i 25 4.16

15 1 + 3i+ 2j + k H1+3i+2j+k 225 3.27
3 + 4i 25 H3+4i 625 5.30
3 + 4i 25 Z[i]23+4i 625 8.32

Table II shows that the average energy of codes over Hurwitz integers is better
than the average energy of codes over Gaussian integers.

Secondly, we compare codes in terms of bandwidth occupancy. One of the most
important parameter of analog/digital communication systems is bandwidth. So
far, various modulation and coding techniques are developed to provide bandwidth
efficiency. As we know from the communication theory, to attain the equal channel
capacity required bandwidth must be higher when the codeword number increases
[16, 17]. Bandwidth occupancy BW is calculates as

BW =
Ca

log (1 + SNR)
,

where Ca and SNR denote the channel capacity and signal-to-noise ratio, respec-
tively. The BW of codes over Hurwitz integers is better than the BW of codes over
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Figure 5. Perfect 1−dominating set
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Gaussian integers since the number of codewords in a code over Hurwitz integers
is equal to square of the number of the codewords in a code over Gaussian integers
for the same integer N(α) and the same length n. For example, a code C has
625 codewords in Hurwitz integers while a code C has 25 codewords in Gaussian
integers for the same integer N(α) = 25, α = 3 + 4i, and the same length n = 1.

6. Conclusion

The paper devotes a new family of t−error correcting perfect codes over Hurwitz
integers. Using perfect t−dominating sets over the circulant graphs, these perfect
codes are constructed. Codes given in the present paper and some codes given in
literature in terms of average energy and bandwidth occupancy are compared. It
is shows that the average energy of codes over Hurwitz integers is better than the
average energy of codes over Gaussian integers.
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[6] O. Heden, M. Güzeltepe, On perfect 1-ε-error-correcting codes, Math. Commun. 20, pp.

23-35, (2015).
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