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Abstract:The search of bearing geometry and performance which satisfies at best design objective along with design criteria is not 
so easy task. Design optimization of hydrodynamic bearings is very complex in nature. The complexity and time consuming nature 
of the design process of hydrodynamic bearings warranted the development of a new methodology. The purpose of this study is to 
use of the genetic algorithm in the optimal design of  a three-lobe preloaded fluid film bearing in essence developing the bearing 
configurations that optimize power loss along with other design criteria namely fluid film thickness, stability parameter, film 
temperature, and film pressure. The results obtained and presented in this study are compared to results from numerical optimization 
methods such as gradient-based method, and show the potential of the genetic algorithm in optimization of three-lobe preloaded 
hydrodynamic bearings. This robust method has been designed to search for most feasible solutions to problems and has gained 
recognition in many fields. 
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Genetik Algoritma Kullanılarak Hidrodinamik Yatakların Tasarımında Güç 
Kaybı Minimizasyonu 

 
Özet:Hidrodinamik yatakların tasarımında önemli olan geometri ve performansın tasarım kriterlerini sağlaması kolay bir iş 
değildir. Hidrodinamik yatakların tasarım optimizasyonu doğal olarak çok karmaşıktır. Bu karmaşık ve zaman gerektiren 
hidrodinamik yatakların tasarımı yeni bir tasarım yöntemini gerekli kılmaktadır. Bu çalışmanın amacı genetik algoritma metotunu 
kullanarak hidrodinamik yatakların tasarımında önemli olan güç kaybını en aza indirmek aynı zamanda yağ filmi kalınlığı, 
stabilizasyon parametresi, yağ filmi sıcaklığı ve yağ basıncı için en uygun değerleri bulmada önemli rol oynayan yatakların 
konfigurasyonunu en iyi şekilde tasarlamaktır. Bu çalışmada elde edilen sonuçlar klasik olan numerik metotla elde edilen sonuçlarla 
karşılaştırılarak genetik algoritmanın potansiyeli ve kabiliyeti gösterilmiştir. Genetik algoritma tabii seleksiyon (seçim) tekniğini 
kullanarak tanımlanan sınırlar içinde tarama yapan ve genetik fikrine dayalı uygun araştırma tekniğidir. Gün geçtikçe genetik 
algoritma daha iyi tanınmakta ve bir çok alanda uygulanmaktadır.  
 
Anahtar Kelimeler: güç kaybı, genetik algoritma, optimizasyon, hidrodinamik yataklar 
 
 

_______________________________ 
 
Introduction 
 
Successful operation with increased efficiency and higher 
power requirement in modern high-speed rotor-bearing 
systems is very much dependent upon behavior of the 
bearings which support the rotor. The bearings provide 
damping [1], which is adequate for many rotating system 
designs, and their stiffness properties affect the stability 
of the rotor-bearing system [2]. The power loss 
performance objective is an important element in the 
design and optimization of hydrodynamic bearings. For 
this study, power loss reduction is a primary goal in the 
design of three-lobe preloaded bearings. 

Many numerical optimization methods have been 
developed and used for design optimization of 
hydrodynamic bearings. Most of these methods are based 
on  gradient  techniques.  These  methods  are   reasonably 
effective for well-behaved objective functions. This is 
because the gradient of the function helps to guide the 
direction of the search. However, when the continuity and 
existence of derivatives of the function are not assured, 
gradient methods lack robustness and may trap in local 
optima. To overcome these problems, many different 
approaches exist in the literature. 
The development of faster computer has allowed 

for more robust and efficient optimization methods. One 
of these methods is the genetic algorithm, which has 

gained recognition as a general problem solving technique 
in many applications. The genetic algorithm is guided 
 

random search technique. It is parameter search procedure 
based on the idea of natural selection and genetics [3]. It 
uses objective function information instead of derivatives 
as in numerical method such as gradient-based method. 

Numerical search methods are good at "exploitation but 
not exploration" of the parameter space [4]. They focus 
on areas around the current design point, using local 
gradient calculations to move to a better design. Since 



there may not be exploration for all regions of the 
parameter space, they can more easily be trapped in local 
optima [4]. The genetic algorithm is a class of general 
purposes algorithm that can provide a remarkable balance 
between exploration and exploitation of the search space 
[5]. From this point of view, this study provides use of the 
genetic algorithm to seek the most feasible solution to this 
problem. The genetic algorithm is new to the field of 
bearing system analysis, and in current literature there is 
limited work in the area of rotor-bearing systems using 
the genetic algorithm. Interested reader can refer to the 
studies by Saruhan et al. [6] and Saruhan et al. [7]. 
 
The Genetic Algorithm 
 
The genetic algorithm is an efficient search technique 
which applies the rules of natural genetics to explore a 
given search space [8]. It is being applied successfully to 
find solutions to problems in engineering and science [9]. 
This robust adaptive searching technique has gained 
recognition as a general problem solving technique in 
many optimization problems. The genetic algorithm is 
well behaved for problems with combination of complex, 
discontinuous, and discrete functions. The genetic 
algorithm maintains a population of encoded solutions, 
and guides the population towards the most feasible 
solution [3]. Thus, it searches the space of possible 
individuals and seeks to find the best fitness strings. 
Rather than starting from a single point solution within 
the search space as in traditional methods, the genetic 
algorithm begins with an initial set of random solutions of 
population. The solutions are represented by strings 
(chromosomes), which are coded as a series of zeros and 
ones. The genetic algorithm is non-deterministic search 
optimization method and does not require differential. 
Viewing the genetic algorithm as an optimization 
technique, it belongs to the class of zero-order 
optimization methods [10] and [11], which requires only 
function evaluations. 
The description of the genetic algorithm is outlined in 
Figure 1. An initial population is chosen randomly in the 
beginning and the fitness of each individual in initial 
population members is evaluated. Then an iterative 
process starts until the termination criteria have been 
satisfied. There are many different ways to determine 
when to stop running the genetic algorithm. One method 
is to stop after a preset number of generations which is 
used in this study or a time limit. Another is to stop after 
the genetic algorithm has converged. Convergence is the 
progression towards uniformity. A string is said to have 
converged when 95 % of the population share the same 
value [24]. After the evaluation of each individual fitness 
in the population, the genetic operators -- selection, 

crossover, and mutation -- are applied 
generation. Other genetic operators are a
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algorithm creates a new set of "chro
information of the previous generati
repeated until an acceptable solution is fo
 

 
Figure I Flow Chart for the Genetic Algo
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Figure 2 A typical symmetric three-lobe bearing 
 
Design Variables 
 
There is a strong relationship among the design objective 
and design criteria functions. There are common design 
variables that influence these, the objective function and 
the design criteria functions. These variables are the main 
factor in determining the design problem. The design 
vector of variables included pad axial length to journal 
diameter ratio, pad (lobe) arc length, bearing radial 
clearance, pad offset factor, pad preload factor, and 
bearing orientation with respect to load expressed as: 
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where     (number  of  design  variables ). NDVi ,.........1=

Pad axial length to journal diameter ratio has effect on 
fluid induced instability. A key parameter used in 
describing fixed pad (lobe) bearings is the fraction of 
converging pad to full pad length. This ratio is called pad 
offset factor and defined as: 
 

χα /PP L=                                                       (2) Ω  
 
where andPL χ  are length of pad (lobe) with converging 
film thickness and full pad arc length respectively. br
Preload is referred to static loads, which are forces 
applied to the rotor system. Because the preload can affect 
the shaft centerline position, stability of rotor system is 
considered. Preload factor can be expressed as [12]: pr

sr
 

( ) pbp cccfactorpreloadPad −=                  (3) 
 
Bearing pad clearance, , and bearing radial clearance, 

, can be computed as: 
pc

bc
 

spp rrc −=     ;   sbb rrc −=                            (4) 
 
where , , and  are radius of bearing pad, radius of 
journal, and radius of bearing at minimum bore, 
respectively. 

pr sr br

 
State Variables 
 
State variables are the physical quantities, which is 
describing the bearing configuration, operating 
conditions, and loading of the rotor-bearing system. These 
parameters are journal rotational speed, rotor mass, 
journal external load, journal unbalance, lubricant 
properties, lubricant pressure, and lubricant temperature. 
 
Constraints 
 
Constraints considered for optimum design of the three-
lobe journal bearing in rotor-bearing system include the 
followings: Design Using the Genetic Algorithm 
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Bearing temperature is an important criteria that should be 
met because it can be dangerous enough to give a failure 
in journal bearings and thus the whole system. The limit 
of acceptable high temperature assumed in this study is 
200  (93.33 C0F 0), to avoid oxidation and standing with 

a good condition. Minimum temperature occurs beyond 
the inlet groove in the direction of shaft rotation [13], 
while the maximum temperature occurs in the vicinity of 
the minimum film thickness [14].  
The effect of pressure in fluid film is reflected by the 
density and viscosity of the lubricant [15]. It is a common 
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knowledge that in almost all fluid film bearings, as the 
film thickness decreases the pressure increases. The 
amount of fluid that needs to be supplied for the bearing 
is also a factor in bearing performance.  
Rouch [16] and Abdul-Wahed [17] suggested that the 
dynamic response of the system at bearing location should 
be less than 30 percent of the clearance or less than film 
thickness otherwise the properties of bearing are not 
valid. Beside the constraints outlined so far the geometric 
inequality constraints also are conducted such as bearing 
pad length, bearing orientation, and attitude angle 
constraints. 
 
Objective Function 
 
The objective function for power loss is:  
 

objective  losspowerFobjective =                       (6) 
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where  is power loss function and is 
number of constraints.  

objectiveF NCON

One of most important aspects of the genetic algorithm is 
fitness function. Fitness function measures and rates the 
coded variable vectors in order to select the fittest strings 
that lead the solution. Constraint optimization problem 
have been transformed into an unconstrained optimization 
problem and handled by penalizing the objective function 
value by quadratic penalty function, P , which is used to 
ensure that the bearing system meets any imposed 
constraints. In case of any violation of a constraint 
boundary, the fitness function of corresponding solution 
is penalized and kept within feasible regions of design 

space. The penalty coefficients, , for the -th 
constraint have to judiciously selected because the good 
solutions importantly depends on these values of penalty 
coefficients. 

jr j

 
Construction of Design Variables and the Genetic 
Algorithm 
 
The first step for applying the genetic algorithm to the 
assigned design problem is encoding of the design 
variables as a string. This string typically refers to a 
solution to the problem. Rather from starting from a 
single point solution within the search space as in 
traditional methods, the genetic algorithm is initialized 
with a population of solutions, which specify the number 
of strings in each generation. The genetic algorithm uses a 
selection scheme to select best individuals, strings, from 
the population to insert into a mating pool by using the 
fitness function. Individuals from the mating pool are 
used by selection operators to generate new candidates for 
forming the basis of the next generation of solution. 
Each design variable vector has a specified range so that 

upperlower ixixix )()()( ≤≤ . The continuous design 
variables vector are represented and discretized to a 
precision of ε  ( 01.0=ε ). The number of digits in the 
binary string, l , is estimated from the following 
relationship [18]: 
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where  and  are the lower and upper 
bound for design variable vector respectively. Suitable 
representation, coding, of the design vectors is a success 
key in the genetic 
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algorithm. The six design vectors of variables are coded 
into binary digits {0, 1} as shown in Table 1. The binary 
string representation for the vector of design 
variables, , can be placed head-to-tail to form one 
long string, referred to as a chromosome. This 
chromosome represents a solution to the design problem. 
Table 2 shows string of 40 binary digits denotes the 
concatenated design variables vector. A randomly 
selected set, for this study a 150-string, of potential 
solutions is initialized to form the starting population as 
can be seen in Table 2. Population size influences the 
number of search points in each generation. A guideline 

for an appropriate population size is suggested by 
Goldberg [19]. 

)(ix The real value of the design variable vectors can be 
transformed from binary string by following relationship 
[20]: 
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where  represents the decimal value of string for 
design variable vectors which is obtained by using base-2 
form. 
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Table 1   Coding of design variable vectors into binary digits. gits. 
  

Design Variables Vectors     Binary String  String Lenth (bits) Design Variables Vectors     Binary String  String Lenth (bits) 
)(ix        l         l  

  
Pad axial length / journal diameter    0 1 0 1 0 0   6  Pad axial length / journal diameter    0 1 0 1 0 0   6  
Pad arc length      0 1 0 1 0 0   6 Pad arc length      0 1 0 1 0 0   6 
Bearing radial clearance     1 0 1 0 0    5 Bearing radial clearance     1 0 1 0 0    5 
Pad offset factor                 0 0 1 0 0 0 1      7 Pad offset factor                 0 0 1 0 0 0 1      7 
Pad preload factor     0 0 1 0 1 0 1 0   8 Pad preload factor     0 0 1 0 1 0 1 0   8 
Bearing orientation wrt. load    1 0 0 0 1 0 0 1   8 Bearing orientation wrt. load    1 0 0 0 1 0 0 1   8 

  
  
Table 2   A set of starting population. Table 2   A set of starting population. 
  

Initial Population Initial Population 
Concatenated variables vectors head-to-tail Concatenated variables vectors head-to-tail 

  
                                                                                                                                                                            )1(x )2(x )3(x )4(x )5(x )6(x

)(ix

)1(x )2(x )3(x )4(x )5(x )6(x
  
 010100          010100         10100       0010001     00101010   10001001  010100          010100         10100       0010001     00101010   10001001 
1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1  1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1  
 100111          100010          01001       1100011     10101010   01110110  100111          100010          01001       1100011     10101010   01110110 
2 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 2 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 
. .  .  .  .  .  . . .  .  .  .  .  . 
. .  .  .  .  .  . . .  .  .  .  .  . 
 001101          0111000              10011       0011100      00011001   10001010  001101          0111000              10011       0011100      00011001   10001010 
150 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 150 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 
  
  
he selection scheme used in the algorithm code is a 
tournament selection with a shuffling technique for 
choosing random pairs for mating. Shuffling technique 
rearrange the population in random order for selection. 
Tournament selection approach works as follows: a pair 
of individuals from mating pool is randomly picked and 
the best-fit two individuals from this pair will be chosen 
as a parent. Each pair of parent creates two Child as 
described in the method of uniform crossover shown in 
Figure 3. A specialized mechanism, elitism, is added to 
the genetic algorithm. Elitism forces the genetic algorithm 
to retain the best individual in a given generation to 
proceed unchanged into the following generation [21]. 
This ensures the genetic algorithm that converges to 
appropriate solution. In other words, elitism is a safeguard 
against operation of crossover and mutation operators that 
may jeopardize the current best solution.  

he selection scheme used in the algorithm code is a 
tournament selection with a shuffling technique for 
choosing random pairs for mating. Shuffling technique 
rearrange the population in random order for selection. 
Tournament selection approach works as follows: a pair 
of individuals from mating pool is randomly picked and 
the best-fit two individuals from this pair will be chosen 
as a parent. Each pair of parent creates two Child as 
described in the method of uniform crossover shown in 
Figure 3. A specialized mechanism, elitism, is added to 
the genetic algorithm. Elitism forces the genetic algorithm 
to retain the best individual in a given generation to 
proceed unchanged into the following generation [21]. 
This ensures the genetic algorithm that converges to 
appropriate solution. In other words, elitism is a safeguard 
against operation of crossover and mutation operators that 
may jeopardize the current best solution.  
A uniform crossover operator is used in this study. 
Crossover is very important in the success of the genetic 

algorithm. This operator is primary source of new 
candidate solutions and provides the search mechanism 
that efficiently guides the evolution through the solution 
space towards the optimum. In uniform crossover, every 
bit of each parent string has chance of being exchanged 
with corresponding bit of the other parent string. 
Procedure is to obtain any combination of two parent 
strings (chromosomes) from the mating pool at random 
and generate new Child strings from these parent strings 
by performing bit-by-bit crossover chosen according to a 
randomly generated crossover mask [22]. Where there is a 
1 in the crossover mask, the child bit is copied from the 
first parent string, and where there is a 0 in the mask, the 
Child bit is copied from the second parent string. The 
second Child string uses the opposite rule to the previous 
one as shown in Figure 3. For each pair of parent strings a 
new crossover mask is randomly generated. 

A uniform crossover operator is used in this study. 
Crossover is very important in the success of the genetic 

algorithm. This operator is primary source of new 
candidate solutions and provides the search mechanism 
that efficiently guides the evolution through the solution 
space towards the optimum. In uniform crossover, every 
bit of each parent string has chance of being exchanged 
with corresponding bit of the other parent string. 
Procedure is to obtain any combination of two parent 
strings (chromosomes) from the mating pool at random 
and generate new Child strings from these parent strings 
by performing bit-by-bit crossover chosen according to a 
randomly generated crossover mask [22]. Where there is a 
1 in the crossover mask, the child bit is copied from the 
first parent string, and where there is a 0 in the mask, the 
Child bit is copied from the second parent string. The 
second Child string uses the opposite rule to the previous 
one as shown in Figure 3. For each pair of parent strings a 
new crossover mask is randomly generated. 

  
      
    
                       Crossover mask           1001011100100101110010010111001001011100                        Crossover mask           1001011100100101110010010111001001011100 
                       Parent 1                         1010001110101000111010100011101010001110                        Parent 1                         1010001110101000111010100011101010001110 
                       Parent 2            0101010011010101001101010100110101010011                        Parent 2            0101010011010101001101010100110101010011 
                       Child 1            1100001111110000111111000011111100001111                        Child 1            1100001111110000111111000011111100001111 
                       Child 2            0011010010001101001000110100100011010010                        Child 2            0011010010001101001000110100100011010010 
  
Figure 3 Uniform crossover Figure 3 Uniform crossover 
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Crossover operator with different probability, (0.5, 0.7, 
and 0.9), were tested for genetic algorithm performance. 
The results showed that the crossover probability, 0.7, 
performs better than the 0.5 and 0.9. 
Preventing the genetic algorithm from premature 
convergence to a non-optimal solution, which may 
diversity lost by repeated application of selection and 
crossover operators, mutation operator is used. Mutation 
is basically a process of random altering a part of 
individual to produce a new individual by switching the 
bit position from a 0 to a 1 or vice versa. Mutation 
probabilities of 0.001, 0.01, and 0.1 were tested for the 
genetic algorithm performance. For this study, the results 
showed that the mutation probability of 0.001 gives 
preferable results compared to 0.1 and 0.01. It should be 
noted that if a mutation rate 0.1 is selected, many good 
strings are never evaluated. In other words many random 
perturbations are happened with mutation rate 0.1. This 
causes the losing of parent resemblance and is disastrous 
for obtaining the optimum point. 

In summary, the setting parameters of genetic algorithm 
for this study are chosen as follows: Chromosome length 
= 40, population size = 150, number of generation = 150, 
crossover probability = 0.7, and mutation probability = 
0.001.  
 
Results 
 
The computation was performed on a personel computer 
equipped with an Intel (R) Pentium (R) 4 CPU 3.00 GHz 
512 MB RAM and registered an execution approximately 
for 92 minutes for total of 22500 functions evaluation. 
The distribution of normalized fitness function values for 
generation number one, fifty, and one hundred and fifty is 
given in Figure 4. Figure 5 provides average and best 

fitness function values in each generation as optimization 
proceeds. From the plot, it can be seen that the fitness 
function has converged to a uniform solutions with 
similar values throughout generations. The genetic 
algorithm found the optimal power loss at generation 
number 25. Comparison of the best overall solution found 
with numerical optimization by Roso [23] and this genetic 
algorithm technique is given in Table 3. The results of 
objective function for both methods are presented. As can 
be seen from these results, the genetic algorithm was able 
to obtain in some respect better results than those 
obtained by numerical optimization. The result from 
optimization by the genetic algorithm showed that power 
loss ended with 2.52 hp while numerical method with 
2.65 hp. It should be noted that the selected rotor 
assembly operating at a rotational speed of 28155 rpm is 
absorbing 450 hp. 
The result from optimization showed that logarithmic 
decrement ended with 1.20 while numerical method with 
0.7393. This significant outcome allows the rotor to 
maintain stability. Also it can be seen that the genetic 
algorithm method produced a higher bearing radial 
clearance. Increasing bearing radial clearance provides a 
relatively higher film thickness and lower film pressure. 
The power loss natuarlly increased by increasing the axial 
length of the insert and the length of pad arc. The design 
variables represented by length and diameter, along with 
the effect produced by them on the power loss,  bounded 
by the temperature and pressure allowed limits. Design 
variables are all systematically vary to identify the effects 
of each combination such as: the length of diameter ratio 
and radial clearance increase as the minimum film 
thickness increases. The instability treshold increases with 
larger preloads while tends to decreases as the offset 
factor increases. 

 
Table 3   Comparison of the best overall solution 
found for optimized geometry of bearing, design 
criteria, 
               and objective function by numerical and 
the genetic algorithm optimization methods 
 
     
       Optimization Method 
Bearing Optimized Geometry and Performance     
 Numerical                Genetic 
                                                                                 
 Optimization    Algorithm 
 
Radius at minimum bore, in.           
 0.8141            0.8142       
(20.68mm) 
Pad axial length, in.           
 0.8125            0.8125    
(20.63mm) 
Pad (lobe) arc length, deg.            
 90.00            89.95 
Radial clearance at minimum bore, in.          
 0.00165            0.00177   
(0.0449mm) 

Pad (lobe) clearance, in.            
 0.00294            0.00341   
(0.0866mm) 
Pad (lobe) offset factor            
 0.7551            1.0000 
Pad (lobe) preload factor            
 0.4392            0.4824 
Bearing orientation, deg.            
 112.1            89.3 
Logarithmic decrement            
 0.7393            1.20 
Film thickness, in.            
 0.00077            0.00088   
(0.0223mm) 
Power Loss, hp             
 2.65            2.52          
Film temperature, degF.            
 199.9            183.940       
(84.41Co) 
Film pressure, psi.            
 1028.0            967.0    
(67.98kg/cm2) 
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Conclusions 
 
This study shows the implementation of the genetic 
algorithm and the feasibility of this technique considering 
a three-lobe preloaded fluid film bearing in essence of 
developing the bearing configurations that optimize 
minimum power loss objective. 
The overall results obtained in this study are superior to 
those from a gradient-based optimization method. Instead 
of using a starting point from which progress is made 
toward the identification of the values of the design 
variables that optimize the objective as in the numerical 
optimization method, the genetic algorithm uses an entire 
population of points, moves the population in the 
direction of the optimum, and  

 

tries continuously to refine a population of solutions. 

The genetic algorithm has been shown to be capable of 
solving complex problems where numerical methods have 
experienced difficulties. Thus, the genetic algorithm 
provides the designer an alternative design optimization 
approach to bearings design and, it could be used for an 

initial search followed by traditional methods to locate the 
optimum. 
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