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Abstract
The aim of this article is introducing and researching hyperbolic modules, bihyperbolic modules, topological
hyperbolic modules and topological bihyperbolic modules. In this regard, we define balanced, convex and
absorbing sets in hyperbolic and bihyperbolic modules. In particular, we investigate convex sets in hyperbolic
numbers set (it is a hyperbolic module over itself) by considering the isomorphic relation of this set with
2−dimensional Minkowski space. Moreover, bihyperbolic numbers set is a bihyperbolic module over itself, too.
So, we define convex sets in this module by considering hypersurfaces of 4−dimensional semi Euclidean space
that are isomorphic to some subsets of bihyperbolic numbers set. We also study the interior and closure of some
special sets and neighbourhoods of the unit element of the module in the introduced topological bihyperbolic
modules. In the light of obtained results, new relationships are presented for idempotent representations in
topological bihyperbolic modules.
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1. Introduction
J. Cockle introduced commutative quaternions as Tessarine numbers in [10, 11, 12]. Besides C. Segre studied these numbers
by denominating them bicomplex numbers [3]. Afterwards, G. B. Price comprehensively analyzed bicomplex numbers,
functions defined by bicomplex power series, derivatives, integrals, holomorphic functions and also their generalizations to
higher dimensions [7]. Actually, the system of bicomplex numbers (Tessarine numbers) is a special case of the commutative
fourcomplex numbers system that was generalized by F. Catoni et al. in [6]. The set of generalized commutative quaternions is
defined as

{q| q = t + ix+ jy+kz; t,x,y,z ∈ R}

where i2 = k2 = α , j2 = 1, ij = ji = k. A generalized commutative quaternion is called an elliptic, parabolic or hyperbolic
commutative quaternion, respectively; provided that α < 0, α = 0 or α > 0. In the case of α =−1, the elliptic quaternions
corresponds to bicomplex numbers. However, the case of α = 1 has not been handled as well as the bicomplex case. In the
meantime, the commutative quaternions and their higher versions were considered by S. Olariu and in the case of α = 1, a
commutative quaternion was called hyperbolic fourcomplex number in [20]. Recently, the set of zeros of polynomials of
hyperbolic fourcomplex numbers were studied and these numbers were denominated bihyperbolic numbers since they can be
written as a pair of hyperbolic numbers [1].

On the other hand, the hyperbolic fourcomplex numbers are used in digital signal processing and these numbers are called
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multi-hyperbolic numbers [4]. Also, multi-hyperbolic numbers are a generalization of the hyperbolic fourcomplex numbers,
since multi-hyperbolic numbers include the hyperbolic fourcomplex numbers.

Apart from all these, detailed surveys on the algebraic [13], geometric and topological [14], and combinatorial properties
[8, 9] of bihyperbolic numbers were given. However, bihyperbolic modules and topological bihyperbolic modules have not
investigated yet.

The real or complex vector space, topological vector space and balanced, convex and absorbing sets in these spaces are
known very well in the literature [2, 21]. These concepts are thought again with the discovery of the quaternions and especially
commutative quaternions. For instance, the bicomplex modules are introduced with the discovery of bicomplex numbers. The
set of bicomplex numbers is a commutative ring. Hence, the researches on modules over this ring are accelerated with new
results on commutative algebra [5, 16]. Also, topological bicomplex modules are presented and balanced, convex and absorbing
sets are investigated in these modules [17, 18].

As its known, the set of hyperbolic numbers is a subalgebra of the algebra of bicomplex numbers and the system of
hyperbolic numbers is an active studying area in several disciplines. Besides, hyperbolic module and convex set in this module
partially are studied in [15]. In connection with these, we introduce hyperbolic modules, bihyperbolic modules, topological
hyperbolic modules and topological bihyperbolic modules. Also, we give new results on these subjects by using the idempotent
representations of bihyperbolic numbers which were analyzed in detail [13, 14].

2. Preliminaries
Definition 2.1. The set of bihyperbolic numbers is defined as

H2 = {ζ | ζ = z1 + j2z2, z1,z2 ∈ H (j1)}

where j1, j2 are hyperbolic units satisfying j1j2 = j2j1 = j3, j2s = 1, js 6=±1 for s= 1,2,3 and H (j1) = { z| z = x+ j1y : x,y ∈ R}
is the set of hyperbolic numbers based on hyperbolic unit j1 [13].

Definition 2.2. The set of multi-hyperbolic numbers is given by

Hn =
{

A+ jnB
∣∣ A,B ∈ Hn−1, j2n = 1, jn 6=±1

}
for n ∈ Z+.

The set H0 is the real numbers set and the set H1 is the hyperbolic numbers set corresponding H (j1) in the previous
definition. In the rest of the article, the notion H will be used for the hyperbolic numbers set based on the hyperbolic unit j1.

The space, null, and time cones of z0 ∈ H are defined as

SH (z0) =
{

z ∈ H| (z− z0)(z− z0)> 0 or z = z0

}
,

NH (z0) =
{

z ∈ H| (z− z0)(z− z0) = 0
}
,

and
T H (z0) =

{
z ∈ H| (z− z0)(z− z0)< 0 or z = z0

}
,

respectively [14].

Although the sets H and H2 are commutative rings with unity according to the addition and multiplication operations, they
do not have field structure algebraically since they have non-invertible elements according to multiplication operation.

There are especially non-invertible elements such as

e1,js =
1+ js

2
and e2,js =

1− js
2

for s = 1,2,3.

These numbers are hyperbolic numbers with the hyperbolic units js and they are called idempotent elements because of(
e1,js

)n
= e1,js and

(
e2,js

)n
= e2,js for n ∈ Z+ [13]. Every element of H2 can be written as a linear decomposition of the set
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{
e1,js ,e2,js

}
in three different ways which are ζ = ζ1,js e1,js +ζ2,jse2,js for ζ ∈ H2 with s = 1,2,3. The coefficients of the linear

decompositions of a bihyperbolic number are bihyperbolic numbers for s = 1 and hyperbolic numbers based on the hyperbolic
unit j1 for s = 2,3. These representations are given for s = 1,2 in [13] and for s = 3 in [6]. More details about the idempotent
representations of bihyperbolic numbers can be found in [13, 14].

There is another idempotent representation of bihyperbolic numbers in the literature. Briefly, a bihyperbolic number
ζ = x0 + j1x1 + j2x2 + j3x3 can be written as ζ = w1i1 +w2i2 +w3i3 +w4i4 where i1, i2, i3 and i4 are bihyperbolic components
such that i1 =

1+j1+j2+j3
4 , i2 =

1−j1+j2−j3
4 , i3 =

1+j1−j2−j3
4 , i4 =

1−j1−j2+j3
4 and w1 = x0 + x1 + x2 + x3, w2 = x0− x1 + x2− x3,

w3 = x0 + x1− x2− x3 and w4 = x0− x1− x2 + x3 where x0,x1,x2,x3 ∈ R [20]. Hence, a partial order is defined on the
real vector space H2 by using this representation in [13]. It defines as ζ ≤ ϕ for ζ ,ϕ ∈ H2 if and only if wk ≤ w̃k where
ζ = wkik and ϕ = w̃kik for k = 1,2,3,4 [13]. Moreover, positive bihyperbolic numbers set is given with this partial or-
der such that H+

2 = {ζ |ζ = wkik,wk ≥ 0} [13]. Also, positive hyperbolic numbers are known in the literature such that
H+ =

{
z| z = x+ j1y = (x+ y)e1,j1 +(x− y)e2,j1 , x+ y≥ 0, x− y≥ 0

}
[5].

On the other hand, a bihyperbolic number ζ = x0 + j1x1 + j2x2 + j3x3 has three conjugates such that

ζ
j1 = x0 + j1x1− j2x2− j3x3, ζ

j2 = x0− j1x1 + j2x2− j3x3 and ζ
j3 = x0− j1x1− j2x2 + j3x3 [6]. Considering these conju-

gates, the hyperbolic valued modulus is introduced [9]. It is defined as |ζ |js =
√∣∣∣ζ ζ

js
∣∣∣ for s = 1,2,3 and named js−modulus

of ζ . Also, by taking x0x1−x2x3 = 0, x0x2−x1x3 = 0 and x0x3−x1x2 = 0, three different hypersurfaces of H2 are defined such
that

M1 = {x0 + j1x1 + j2x2 + j3x3|x0x1− x2x3 = 0} ,

M2 = {x0 + j1x1 + j2x2 + j3x3|x0x2− x1x3 = 0}

and
M3 = {x0 + j1x1 + j2x2 + j3x3|x0x3− x1x2 = 0} .

The modulus of ζ is given by

|ζ |j1 =
√
|x02 + x12− x22− x32|,

|ζ |j2 =
√
|x02− x12 + x22− x32|

and

|ζ |j3 =
√
|x02− x12− x22 + x32|

in M1, M2 and M3, respectively [13]. The cones of a bihyperbolic number ζ0 ∈Mk ⊆ H2 are classified as

SMk (ζ0) =
{

ζ ∈Mk|(ζ −ζ0)(ζ −ζ0)
jk > 0 or ζ = ζ0

}
,

NMk (ζ0) =
{

ζ ∈Mk|(ζ −ζ0)(ζ −ζ0)
jk = 0

}
,

T Mk (ζ0) =
{

ζ ∈Mk|(ζ −ζ0)(ζ −ζ0)
jk < 0 or ζ = ζ0

}
and they are called space cone, null cone, and time cone for k = 1,2,3, respectively [14].

Definition 2.3. Let X be a vector space over a field F (real or complex numbers set) and ∅ 6= A⊆ X be a subset. If λx ∈ A or
λA⊆ A where λA := {λx| x ∈ A} for every x ∈ A and every λ ∈ F with |λ | ≤ 1, then A is balanced (circled) set [19].

Definition 2.4. Let X be a vector space over the real numbers field R and ∅ 6= A⊆ X. A is convex if the line segment connecting
x and y is included in A for all x,y ∈ A. This means that (1− t)x+ ty ∈ A for 0≤ t ≤ 1 [19].

Definition 2.5. Let X be a vector space over a field F (real or complex numbers set) and ∅ 6= A⊆ X. A is absorbing set, if
some real number λ > 0 for all x ∈ X, x ∈ µA for all scalars µ ∈ F that is |µ| ≥ λ where µA := {µa| a ∈ A} [19].
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3. Topological Hyperbolic Modules

Definition 3.1. Let (X ,⊕) be a commutative group. If the operations

⊕ : X×X → X and � : H×X → X

(u,v)→ u+ v (z,u)→ z�u

satisfy the properties
(z1z2)�u = z1� (z2�u) ,

(z1 + z2)�u = (z1�u)⊕ (z2�u) ,

z1� (u⊕ v) = (z1�u)⊕ (z1� v) ,

1H �u = u, (1H = 1+ j10 = 1)

for every z1,z2 ∈ H and every u,v ∈ X, then (X ,H,⊕,�,+, ·) is called H−module. Later on, z�u will be denoted by zu.

Example 3.2. Hyperbolic numbers set H, bihyperbolic numbers set H2 and multi-hyperbolic numbers set Hn for n ∈ Z+ are
H−modules.

Remark 3.3. Real numbers set R is not H−module because of H×R→ H.

Since hyperbolic numbers set H includes the isotropic numbers, the unit balls in H can be classified into three types. So, let
us define a new three types of balanced sets by considering three different cases for each hyperbolic number λ = λ1 + j1λ2 ∈ H

satisfying |λ |H =

√∣∣∣λλ

∣∣∣=√∣∣λ 2
1 −λ 2

2

∣∣≤ 1.

Definition 3.4. Let X be a H−module, ∅ 6= B⊆ X and λ = λ1 + j1λ2 ∈ H.

i) B is called SH−balanced set if λB⊆ B for every λ ∈ SH (O) such that λ 2
1 −λ 2

2 ≤ 1,

ii) B is called NH−balanced set if λB⊆ B for every λ ∈ NH (O) that is λ 2
1 −λ 2

2 = 0,

iii) B is called T H−balanced set if λB⊆ B for every λ ∈ T H (O) such that −1≤ λ 2
1 −λ 2

2 .

Here, SH (O), NH (O) and T H (O) denotes the space cone, the light cone and the time cone of H at the origin, respectively.

Example 3.5. The subsets SH (O) and T H (O) in H−module H are SH−balanced sets. But, they are not NH−balanced set
and T H−balanced set. Also, the subset NH (O)⊆ H is T H,NH and SH−balanced set.

The partial order on the real vector space H2 was introduced in [13]. The definition of H−convex set is given in [15] by
using such an order as follows: Let X be a H−module and ∅ 6= B⊆ X . If λx+(1−λ )y ∈ B for every x,y ∈ B and λ ∈ H+

with 0≤ λ ≤ 1, then B is called H−convex set. Nevertheless, here we investigate especially the H−module H. Eventually,
three different definitions of convex sets which are geometrically meaningful will be given in H−module H for the first time as
follows.

Definition 3.6. Let B be a non-empty subset of H−module H. For all x,y ∈ B and all λ ∈ R with 0≤ λ ≤ 1,

i) B is called SH−convex set if y ∈ SH (x) and λx+(1−λ )y ∈ B,

ii) B is called NH−convex set if y ∈ NH (x) and λx+(1−λ )y ∈ B,

iii) B is called T H−convex set if y ∈ T H (x) and λx+(1−λ )y ∈ B.

This definition indicates that the classical definition of the convexity is valid for the convexity of a subset of the hyperbolic
numbers set. However, three different convexity types are needed depending on whether the line segments connecting all two
different elements of the set belong to either the space cone, the light cone or the time cone.

Definition 3.7. Let X be a H−module and ∅ 6= B⊆ X. For all x ∈ X,

i) B is called SH−absorbing set if there is a non-negative real number λ such that x ∈ µB for all µ ∈ SH (O)⊆ H with
|µ|H ≥ λ ,
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ii) B is called T H−absorbing set if there is a non-negative real number λ such that x ∈ µB for all µ ∈ T H (O)⊆ H with
|µ|H ≥ λ .

Definition 3.8. Let X be a H−module and τ is a Hausdorff topology on X. If the operations

+ : X×X → X

· : H×X → X

are continuous, then the pair (X ,τ) is called a topological hyperbolic module or topological H−module.

4. Topological Bihyperbolic Modules

Since (H2,+, ·) is a commutative ring with unity, we can construct a module structure over this ring. For instance, the
bihyperbolic numbers set H2 or the multi-hyperbolic numbers set Hn for n ∈ {2,3,4, . . .} are H2−modules.

Let X be an arbitrary H2−module with the classical addition and multiplication operations. The idempotent representations
of the elements of X are given correlatively the elements of H2 in the following theorem.

Theorem 4.1. Let X be a H2−module. Then X = e1,jsX + e2,js X for s = 1,2,3.

Proof. Let x ∈ X . Then e1,js + e2,js = 1 for e1,js ,e2,js ∈ H (js)⊆ H2 and s = 1,2,3. Hence, the element x can be written as

x =
(
e1,js + e2,js

)
x = e1,js x+ e2,jsx.

Since each element of X can be written as above, it can be generalized to the whole set.

Here if we write e1,jsX = X1,js and e2,js X = X2,js , then X = X1,js +X2,js .

Corollary 4.2. Let X be a H2−module. Then, there are e1,jsX = e1,jsX1,js and e2,jsX = e2,js X2,js equations for s = 1,2,3.

Proof. Let e1,jsX = X1,js . Then multiplying both sides of this equation from left by e1,js gives us e1,js

(
e1,jsX

)
= e1,js X1,js . Hence

e1,jsX = e1,js X1,js , since e1,js and e2,js are the idempotent elements. Similarly, we can write e2,js

(
e2,jsX

)
= e2,jsX2,js whenever

e2,jsX = X2,js . So, e2,jsX = e2,js X2,js is obtained.

Corollary 4.3. Let X be a H2−module. Then, X = e1,js X1,js + e2,js X2,js for s = 1,2,3.

Corollary 4.4. Let X be a H2−module. Then, X1,js and X2,js are H2−submodules of X for s = 1,2,3.

Proof. Let X be a H2−module and X1,js ⊆ X for s = 1,2,3. Moreover, let t1, t2 ∈ X1,js . There are the elements x and y
in X satisfied the equations t1 = e1,js x and t2 = e1,jsy, since X1,js = e1,js X . (X ,+) is a commutative group, since X is a
H2−module. Hence, x− y ∈ X . So, t1− t2 = e1,jsx− e1,jsy = e1,js (x− y) ∈ e1,jsX = X1,js . On the other hand, let ζ ∈ H2 and
t ∈ X1,js . The product of ζ and t is ζ t =

(
ζ1,jse1,js +ζ2,js e2,js

)(
e1,jsx

)
= ζ1,js e1,jsx and ζ1,jsx ∈ X since X a H2−module. Hence

ζ t = e1,js ζ1,jsx ∈ e1,jsX = X1,js . Consequently, X1,js is a H2−submodule of the H2−module X . Similarly, the set X2,js is a
H2−submodule of the H2−module X .

Especially, the subsets X1,js and X2,js are H−submodules of the H2−module X for s = 2,3 since ζ1,js ,ζ2,js ∈ H.

Corollary 4.5. The subsets e1,js H2 and e2,jsH2 are H2−modules for s = 1,2,3. Especially, these sets are H−modules for
s = 2,3.

Definition 4.6. Let X be a H2−module. If there is a finite H2−base such that {xl : l = 1, . . . ,n} ⊆ X, then X is a free

H2−module. The free H2−module X can be written as X =

{
x | x =

n
∑

l=1
ζlxl , ζl ∈ H2,xl ∈ X

}
.

Definition 4.7. Let X be a free H2−module.

A :=

{
x̃ | x̃ =

n

∑
l=1

ζlxl , ζl ∈ H,xl ∈ X

}
⊆ X

is a free H−module depending on the H2−base of X.
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Here, when the elements of any subset A of the free H2−module X are written as a linear combination of the finite base
{xl : l = 1, . . . ,n} ⊆ X , if the coefficients are bihyperbolic number, then the subset A is a free H2−module depends on the
H2−base of X .

Example 4.8. Each element of H2 can be written as a linear combination of the idempotent elements e1,js and e2,js for s = 1,2,3
such that ζ = ζ1,js e1,js +ζ2,jse2,js ∈H2. Also, the set

{
e1,js ,e2,js

}
is linearly independent. Therefore, the subset

{
e1,js ,e2,js

}
⊆H2

is a base of the H2. It is known that ζ1,js ,ζ2,js ∈ H2 for s = 1 and ζ1,js ,ζ2,js ∈ H for s = 2,3. So, H2 is a free H2−module for
s = 1. Moreover, H2 is a free H−module according to H2−base for s = 2,3.

Now, let us give the necessary conditions for any subset of a H2−module to be balanced, convex or absorbing set. In order
to give the conditions specified here, there must be a real-valued norm on the ring in which the module structure is defined.
Since there are real-valued norms on the hypersurfaces Mk ⊆ H2 for k = 1,2,3, related conditions will be given and theorems
will be proved by using the elements of Mk.

Three different balanced (circular) sets, convex sets and two different absorbing (swallowing) sets have emerged on the
H2−module due to the presence of light cone on hypersurfaces Mk ⊆ H2.

Firstly, the following definition of a balanced (circular) set is given by considering the three different conditions for each

bihyperbolic number ζ ∈Mk ⊆ H2 satisfying the condition |ζ |jk =
√∣∣∣ζ ζ

jk
∣∣∣≤ 1.

Definition 4.9. Let X be a H2−module, ∅ 6= B⊆ X and ζ ∈Mk ⊆ H2 (k = 1,2,3).

i) B is called SMk−balanced set if ζ B⊆ B for every ζ ∈ SMk (O) such that ζ ζ
jk ≤ 1,

ii) B is called NMk−balanced set if ζ B⊆ B for every ζ ∈ NMk (O) such that ζ ζ
jk = 0,

iii) B is called T Mk−balanced set if ζ B⊆ B for every ζ ∈ T Mk (O) such that −1≤ ζ ζ
jk .

Here the sets SMk (O), NMk (O) and T Mk (O) are the space cone, the null cone and the time cone at the origin in the
hypersurfaces Mk, respectively.

Theorem 4.10. Let X be a H2−module and the set B is a SMk−balanced or T Mk−balanced subset of X for k = 1,2,3.

i) ζ B = B for every ζ ∈Mk ⊆ H2 such that |ζ |jk = 1.

ii) ζ B = |ζ |jk B for every ζ ∈Mk ⊆ H2 such that |ζ |jk 6= 0.

Proof. i) Let ζ ∈Mk such that |ζ |jk = 1. Since B is a SMk−balanced or T Mk−balanced set, ζ B⊆ B. On the other hand∣∣∣∣ 1
ζ

∣∣∣∣
jk

=
1
|ζ |jk

= 1.

So 1
ζ

B⊆ B and in this way B⊆ ζ B. Consequently ζ B = B.

ii) Let’s take any ζ ∈Mk such that |ζ |jk 6= 0. Then ∣∣∣∣∣ ζ

|ζ |jk

∣∣∣∣∣
jk

= 1.

So,
ζ

|ζ |jk
B = B

from the condition (i). Hence, we have ζ B = |ζ |jk B.

Theorem 4.11. Let X be a H2−module and the set B is a SMk−balanced subset of X for k = 1,2,3.
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i) For s = k = 1, e1,jsB = B1,js and e2,js B = B2,js are SMk−balanced subsets of H2−modules e1,jsX = X1,js and e2,js X = X2,js ,
respectively.

ii) For s,k = 2,3 and s = k, e1,js B = B1,js and e2,js B = B2,js are SH−balanced subsets of H−modules e1,jsX = X1,js and
e2,jsX = X2,js , respectively.

Proof. i) Let X be a H2−module and B be a SMk−balanced subset of X for k = 1. Therefore, ζ x ∈ B for all x ∈ B and all
ζ ∈ SMk (O) such that ζ ζ

jk ≤ 1. Assume that the idempotent representation of ζ is ζ = ζ1,js e1,js +ζ2,jse2,js for s = 1.

Since ζ ∈ SMk (O) and ζ ζ
jk ≤ 1, ζ1,js ∈ SMk (O) and ζ1,js

(
ζ1,js

)jk ≤ 1. An element t ∈ e1,jsB1,js = e1,js B is represented
by t = e1,js x for x ∈ B.

Hence, ζ1,jst = ζ1,jse1,js x = e1,js ζ1,jsx = e1,js ζ x ∈ e1,js B = e1,jsB1,js where e1,js ζ = e1,js

(
ζ1,js e1,js +ζ2,jse2,js

)
= e1,jsζ1,js .

So, the set e1,js B1,js is SMk−balanced set of the H2−module e1,js X1,js . Similarly, the set e2,js B = B2,js is a SMk−balanced
set of the H2−module e2,js X = X2,js for s = k = 1.

ii) Let X be a H2−module and B be a SMk−balanced subset of X for k = 2,3. Hence, ζ x ∈ B for all x ∈ B and all
ζ ∈ SMk (O) such that ζ ζ

jk ≤ 1. The idempotent representation of ζ is ζ = ζ1,jse1,js + ζ2,js e2,js for s = 2,3 and
e1,jsζ = e1,js

(
ζ1,js e1,js +ζ2,jse2,js

)
= e1,jsζ1,js . Moreover, the coefficient ζ1,js ∈ H ⊆ H2 is ζ1,js ∈ SH (O) and it provides

the inequality ζ1,jsζ1,js ≤ 1 for s,k = 2,3 s = k. An element t ∈ e1,jsB1,js = e1,js B can be written as t = e1,js x since
x ∈ B. Thus, ζ1,jst = ζ1,jse1,js x = e1,js ζ1,js x = e1,js ζ x ∈ e1,js B = e1,jsB1,js . So, the sets e1,js B1,js are SH−balanced sets of
H−modules e1,js X1,js for s,k = 2,3 and s = k. Similarly, the sets e2,jsB = B2,js are SH−balanced sets of H−modules
e2,jsX = X2,js for s,k = 2,3 s = k.

Theorem 4.12. Let X be a H2−module and B be a NMk−balanced subset of X for k = 1,2,3.

i) For s = k = 1, e1,jsB = B1,js and e2,js B = B2,js are NMk−balanced subsets of H2−modules e1,js X = X1,js and e2,jsX = X2,js ,
respectively.

ii) For s,k = 2,3 and s = k, e1,js B = B1,js and e2,js B = B2,js are NH−balanced subsets of H−modules e1,jsX = X1,js and
e2,jsX = X2,js , respectively.

Theorem 4.13. Let X be a H2−module and B be a T Mk−balanced subset of X for k = 1,2,3.

i) For s = k = 1, e1,js B = B1,js and e2,js B = B2,js are T Mk−balanced subsets of H2−modules e1,jsX = X1,js and e2,js X = X2,js ,
respectively.

ii) For s,k = 2,3 and s = k, e1,js B = B1,js and e2,jsB = B2,js are T H−balanced subsets of H−modules e1,js X = X1,js and
e2,jsX = X2,js , respectively.

Theorem 4.14. Let X be a H2−module and B be a NMk−balanced subset of X for k = 1,2,3. Then e1,jsB = B1,js ⊆ B and
e2,jsB = B2,js ⊆ B for s = 1,2,3 and s 6= k.

Proof. Let x ∈ B and an element t ∈ e1,js B1,js = e1,js B be given by t = e1,jsx. Since the set B is NMk−balanced set, ζ x ∈ B
for all ζ ∈ NMk (O). e1,js ∈ NMk (O) for s,k = 1,2,3 and s 6= k. Thus, if we choose ζ = e1,js , then e1,js B1,js ⊆ B. Similarly, if
ζ = e2,js is chosen, e2,js B2,js ⊆ B for s,k = 1,2,3 and s 6= k.

The inclusions e1,js B = B1,js ⊆ B and e2,js B = B2,js ⊆ B do not exist for a SMk−balanced or T Mk−balanced subset B of
H2−modules X . Because the idempotent components e1,js and e2,js are e1,js ,e2,js /∈Mk for s = k and e1,js ,e2,js ∈ NMk for s 6= k.

Definition 4.15. Let X be a H2−module and ∅ 6= B⊆ X. B is a H2−convex set if ζ x+(1−ζ )y ∈ B for all x,y ∈ B and all
ζ ∈ H+

2 such that 0≤ ζ ≤ 1.

Theorem 4.16. Let X be a H2−module and ∅ 6= B⊆ X is a H2−convex subset of X.

i) The sets e1,js B and e2,js B are H2−convex sets of H2−modules e1,jsX and e2,jsX for s = 1, respectively.

ii) The sets e1,js B and e2,js B are H−convex sets of the H−modules e1,jsX and e2,jsX for s = 2,3, respectively.
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iii) There are the inclusions e1,js B⊆ B and e2,jsB⊆ B for s = 1,2,3, if θ ∈ B where θ is the unit element of the H2−module
X.

Proof. i) Let B be a H2−convex subset of the H2−module X and t1, t2 ∈ e1,js B for s = 1. There exist x,y ∈ B such that
t1 = e1,jsx ∈ e1,jsB and t2 = e1,jsy ∈ e1,jsB. Consider ζ = ζ1,jse1,js + ζ2,js e2,js ∈ H+

2 for all ζ1,js ,ζ2,js ∈ H+
2 such that

ζ1,js ,ζ2,js ∈ [0,1]. If ζ1,js ,ζ2,js ∈ [0,1], then ζ ∈ [0,1] [13]. Thus, since the set B is H2−convex, ζ x+(1−ζ )y ∈ B for
x,y ∈ B, ζ ∈ H+

2 and ζ ∈ [0,1]. In that case,

e1,js (ζ x+(1−ζ )y) = e1,js
((

ζ1,js e1,js +ζ2,js e2,js
)

x
+
(
1−
(
ζ1,js e1,js +ζ2,jse2,js

))
y
)

= ζ1,js e1,jsx+
(
1−ζ1,js

)
e1,js y

= ζ1,jst1 +
(
1−ζ1,js

)
t2 ∈ e1,jsB.

From here, the set e1,jsB is a H2−convex subset of H2−modules e1,js X . Similarly, it can be proved that the set e2,jsB is
H2−convex subset of H2−module e2,jsX for s = 1.

ii) Let t1 = e1,js x ∈ e1,js B and t2 = e1,js y ∈ e1,jsB for x,y ∈ B and s = 2,3. ζ = ζ1,js e1,js + ζ2,js e2,js ∈ H+
2 such that

ζ1,js ,ζ2,js ∈ H+ and ζ1,js ,ζ2,js ∈ [0,1]. Hence, ζ ∈ [0,1]. Since the set B is H2−convex set ζ x+(1−ζ )y ∈ B. Similarly,
we get

e1,js (ζ x+(1−ζ )y) = e1,js
((

ζ1,js e1,js +ζ2,js e2,js
)

x
+
(
1−
(
ζ1,jse1,js +ζ2,jse2,js

))
y
)

= ζ1,jse1,js x+
(
1−ζ1,js

)
e1,jsy

= ζ1,jst1 +
(
1−ζ1,js

)
t2 ∈ e1,js B.

Hence, the sets e1,js B for s = 2,3 are H−convex subsets of H−modules e1,jsX . Also, it can be proved that the sets e2,js B
are H−convex subsets of H−modules e2,jsX for s = 2,3 in a similar manner.

iii) Let B be a H2−convex subset of the H2−module X and θ ∈ B. t ∈ e1,js B for s = 1,2,3. There is an element x ∈ B
such that t = e1,js x ∈ e1,js B. Considering that θ ∈ B, since B is H2−convex subset e1,js x+

(
1− e1,js

)
θ = e1,jsx = t ∈ B

where 0≤ e1,js ≤ 1 and e1,js ∈ H+
2

(
H+ ⊆ H+

2

)
for x,θ ∈ B. Consequently e1,js B⊆ B is obtained. Similarly, we deduce

e2,jsB⊆ B for s = 1,2,3.

Lemma 4.17. Let X be a H2−module and the sets {Bl : l arbitrary} be any H2−convex subsets of X. Then, the set ∩
l

Bl = B

is H2−convex, too.

Theorem 4.18. Let X be a H2−module and ∅ 6= B⊆ X be a H2−convex subset. Then, B = e1,js B+ e2,js B for s = 1,2,3.

Proof. Assume that B is a H2−convex subset of H2−modules X and take x ∈ B. e1,js x ∈ e1,js B and e2,js x ∈ e2,js B for s = 1,2,3.
Since e1,js + e2,js = 1 then

x =
(
e1,js + e2,js

)
x = e1,jsx+ e2,jsx ∈ e1,js B+ e2,js B.

Thus, B⊆ e1,jsB+e2,js B. Conversely, let us take t1 ∈ e1,js B and t2 ∈ e2,jsB where t1 = e1,js x and t2 = e2,jsy for x,y ∈ B. Since the
set B is H2−convex, t1 + t2 = e1,js x+ e2,jsy = e1,jsx+

(
1− e1,js

)
y ∈ B where e1,js ,e2,js ∈ H+

2 and 0≤ e1,js ,e2,js ≤ 1. Therefore,
e1,jsB+ e2,jsB⊆ B. This completes the proof.

Theorem 4.19. Let X be a H2−module and ∅ 6= B⊆ X. If the sets e1,jsB and e2,js B are H2−convex sets for s = 1,2,3 then the
set e1,jsB+ e2,jsB is a H2−convex subset of X, too.

Proof. Assume that x,y ∈ e1,js B+ e2,js B and ζ ∈ H+
2 such that 0 ≤ ζ ≤ 1. Then, x = e1,js x+ e2,js x and y = e1,js y+ e2,js y

where e1,js x, e1,jsy ∈ e1,js B and e2,jsx, e2,js y ∈ e2,jsB. The idempotent representation of ζ is ζ = ζ1,jse1,js + ζ2,js e2,js . Hence,
0≤ ζ1,js ,ζ2,js ≤ 1 and ζ1,js ,ζ2,js ∈ H+

2 because of ζ ∈ H+
2 . Since the sets e1,jsB and e2,jsB are H2−convex, then

e1,jsζ1,jsx+ e1,js

(
1−ζ1,js

)
y ∈ e1,jsB,

e2,js ζ2,jsx+ e2,js

(
1−ζ2,js

)
y ∈ e2,jsB.
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Therefore,
ζ x+(1−ζ )y = ζ1,jse1,js x+ζ2,js e2,jsx+

(
1−ζ1,js

)
e1,js y+

(
1−ζ2,js

)
e2,js y

= ζ1,js e1,jsx+
(
1−ζ1,js

)
e1,js y+ζ2,js e2,jsx+

(
1−ζ2,js

)
e2,js y

and [ζ x+(1−ζ )y] ∈ e1,jsB+ e2,js B. This proves the assertion.

Especially, if we take H2−modules X = H2, three different convex set definitions which are meaningful geometrically are
given for the first time in the following definition.

Definition 4.20. Let B⊆Mk ⊆ H2 be a subset of H2−module H2 for k = 1,2,3. For all x,y ∈ B and all real numbers λ ∈ R
such that 0≤ λ ≤ 1, then

i) B is called SMk−convex set if λx+(1−λ )y ∈ B and y ∈ SMk (x),

ii) B is called NMk−convex set if λx+(1−λ )y ∈ B and y ∈ NMk (x),

iii) B is called T Mk−convex set if λx+(1−λ )y ∈ B and y ∈ T Mk (x).

Theorem 4.21. Let B⊆Mk ⊆H2 be a SMk−convex subset of H2−module H2. The sets e1,jsB = e1,jsB1,js and e2,js B = e2,js B2,js
are, respectively s,k = 1,2,3,

i) SMk−convex subsets of H2−modules e1,jsH2 and e2,jsH2 if s = k,

ii) NMk−convex subsets of H2−modules e1,js H2 and e2,js H2 if s 6= k.

Proof. i) Let us take t1, t2 ∈ e1,jsB1,js for s = k s,k = 1,2,3. There are arbitrary elements x,y ∈ B such that t1 = e1,js x and
t2 = e1,jsy. Since the set B is a SMk−convex set, λx+(1−λ )y ∈ B where y ∈ SMk (x) and λ ∈ R such as 0 ≤ λ ≤ 1.
Moreover, we find

e1,js (λx+(1−λ )y) = λe1,js x+(1−λ )e1,js y
= λ t1 +(1−λ ) t2 ∈ e1,js B
= e1,jsB1,js .

Also, if t1, t2 ∈ e1,js B1,js , then t1 = e1,jst1 and t2 = e1,jst2. When s = k, if y ∈ SMk (x), then t2 ∈ SMk (t1) from [14].
Consequently, the sets e1,js B are SMk−convex subsets of the H2−modules e1,js H2. Similarly, it is proven that the sets
e2,jsB are SMk−convex subsets of H2−modules e2,js H2 for s = k.

ii) Following a similar way to the first proof and considering that if y ∈ SMk (x), then t2 ∈ NMk (t1) for s 6= k from [14], it is
proven that the sets e1,js B are NMk−convex subsets of H2−modules e1,jsH2. Similarly, the sets e2,jsB are NMk−convex
subsets of H2−modules e2,js H2, too.

Theorem 4.22. Let B⊆Mk ⊆H2 be a NMk−convex subset of H2−module H2. The sets e1,js B = e1,jsB1,js and e2,jsB = e2,js B2,js
are NMk−convex sets of H2−modules e1,jsH2 and e2,jsH2 respectively s,k = 1,2,3 where s = k or s 6= k.

Theorem 4.23. Let B⊆Mk ⊆H2 be a T Mk−convex subset of H2−module H2. The sets e1,jsB = e1,jsB1,js and e2,js B = e2,js B2,js
are, respectively s,k = 1,2,3,

i) T Mk−convex subsets of H2−modules e1,jsH2 and e2,jsH2 if s = k,

ii) NMk−convex subsets of H2−modules e1,js H2 and e2,js H2 if s 6= k.

Definition 4.24. Let X be a H2−module and ∅ 6= B ⊆ X. Some real numbers λ > 0 for all x ∈ X and for all scalars
µ ∈Mk ⊆ H2 such that |µ|jk ≥ λ (k = 1,2,3),

i) B is called SMk−absorbing set if x ∈ µB and µ ∈ SMk (O),

ii) B is called T Mk−absorbing set if x ∈ µB and µ ∈ T Mk (O).

Theorem 4.25. Let X be a H2−module and ∅ 6= B⊆ X. If the subset B is a SMk−absorbing set (k = 1,2,3). Then
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i) e1,jsB = e1,js B1,js and e2,jsB = e2,jsB2,js are SMk−absorbing sets of H2−modules e1,js X = X1,js and e2,js X = X2,js for
s = k = 1, respectively.

ii) e1,jsB = e1,js B1,js and e2,js B = e2,jsB2,js are SH−absorbing sets of H−modules e1,jsX = X1,js and e2,js X = X2,js for
s,k = 2,3 and s = k, respectively.

Proof. i) Let’s take x̃ ∈ e1,j1X for s = 1. There is an element x ∈ X such that x̃ = e1,j1x. Since B is SM1−absorbing
set for k = 1, x ∈ µB for some real numbers λ > 0 and all scalars µ ∈ SM1 (O) such as |µ|j1 ≥ λ . If we take
µ = µ1,j1e1,j1 +µ2,j1e2,j1 , then

x̃ = e1,j1 x ∈ e1,j1 µB = e1,j1

(
µ1,j1 e1,j1 +µ2,j1e2,j1

)
B = µ1,j1e1,j1B

is obtained. On the other hand, if µ ∈ SM1 (O), then |µ|j1 =
∣∣µ1,j1

∣∣
j1

and hence µ1,j1 ∈ SM1 (O) from the [14]. Conse-

quently, x̃ ∈ µ1,j1e1,j1B for some real numbers λ > 0 and for all scalars µ1,j1 ∈ SM1 (O) such that
∣∣µ1,j1

∣∣
j1
= |µ|j1 ≥ λ . In

that case, the set e1,j1B = e1,j1B1,j1 is a SM1−absorbing subset of H2−module e1,j1X = e1,j1X1,j1 .

ii) Consider x̃ ∈ e1,j2X for s = k = 2 where x̃ = e1,j2x and x ∈ X . Since B is SM2−absorbing set for k = 2, x ∈ µB for some
real numbers λ > 0 and for all scalars µ ∈ SM2 (O) such that |µ|j2 ≥ λ . Hence

x̃ = e1,j2x ∈ e1,j2 µB = e1,j2

(
µ1,j2e1,j2 +µ2,j2e2,j2

)
B = µ1,j2e1,j2B

is obtained where µ = µ1,j2e1,j2 +µ2,j2e2,j2 . On the other hand, |µ|j2 =
∣∣µ1,j2

∣∣
H and µ1,j2 ∈ SH (O) from the [14]. Hence,

the set e1,j2 B = e1,j2B1,j2 is SH−absorbing set of H2−modules e1,j2X = e1,j2X1,j2 . The case s = k = 3 can be proved by
using the similar way.

Theorem 4.26. Let X be a H2−module and ∅ 6= B⊆ X. If the subset B is T Mk−absorbing set for k = 1,2,3, then

i) e1,jsB = e1,js B1,js and e2,jsB = e2,js B2,js are T Mk−absorbing sets of H2−modules e1,jsX = X1,js and e2,jsX = X2,js for
s = k = 1,

ii) e1,jsB = e1,jsB1,js and e2,jsB = e2,js B2,js are T H−absorbing sets of H−modules e1,js X = X1,js and e2,jsX = X2,js for
s,k = 2,3 and s = k.

Topological bihyperbolic module which is not previously found in the literature is defined as follows.

Definition 4.27. Let X be a H2−module and τ is a Hausdorff topology on X. If the operations

+ : X×X → X

· : H2×X → X

are continuous, then the pair (X ,τ) is called a topological bihyperbolic module or topological H2−module.

When the topological vector spaces were introduced in [21], there was a condition such that the single point sets are
closed according to the topology on it. The topological vector spaces are Hausdorff space with this condition. But, when the
topological vector spaces were introduced in the literature, it was not said that the topology which is corresponding with the
topological vector spaces are Hausdorff topology. The reason for this is usually that most of the spaces already provide the
Hausdorff property. For instance, the topologies generated by norms on the normed vector space or the topologies generated
by metrics are Hausdorff topologies. These structures which are using in the functional analysis frequently appear in the
topological vector spaces, too. Although this article has more general structure than these structures, the topology corresponding
with H2−module is taken as Hausdorff topology, unless otherwise stated.

Theorem 4.28. Let (X ,τ) be a topological H2−module. The families

τ1,js =
{

e1,jsG : G ∈ τ
}
,

τ2,js =
{

e2,jsG : G ∈ τ
}

are Hausdorff topologies on the H2−modules X1,js and X2,js for s = 1,2,3, respectively. Especially, they are Hausdorff
topologies on H−modules X1,js and X2,js for s = 2,3, respectively.
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Theorem 4.29. Let (X ,τ) be a topological H2−module and
(
Xi,js ,τi,js

)
be topological spaces for s = 1,2,3 and i = 1,2. Then,

the operations
+ : Xi,js ×Xi,js → Xi,js ,

· : H2×Xi,js → Xi,js

are continuous.

Especially, the subsets X1,js and X2,js are H−modules of the H2−modules X , since ζ1,js ,ζ2,js ∈ H where
ζ = ζ1,js e1,js +ζ2,jse2,js ∈ H2 for s = 2,3. Hence, the operations

+ : Xi,js ×Xi,js → Xi,js

· : H×Xi,js → Xi,js

are continuous for s = 2,3 and i = 1,2, too.

Corollary 4.30. Let (X ,τ) be a topological H2−module. The pair
(
Xi,js ,τi,js

)
are topological H2−modules for s = 1,2,3 and

i = 1,2. Especially, the pair
(
Xi,js ,τi,js

)
are topological H−modules for s = 2,3 and i = 1,2, too.

Theorem 4.31. Let (X ,τ) be a topological H2−module. If the operation Ty : X → X for any y ∈ X is defined as Ty (x) = x+ y
for all x ∈ X, then it is a homeomorphism.

Proof. The operation Ty is continuous by the definition of the topological module and it is bijective by the axioms of the
module. Moreover, T−1

y (x) = T−y (x) = x− y and Ty ◦T−y = T−y ◦Ty = I are obtained. Therefore, the operation T−1
y = T−y is

also continuous. Consequently, the operation Ty is a homeomorphism.

Theorem 4.32. Let (X ,τ) be a topological H2−module. If the operation Mζ : X → X for any ζ ∈H∗2 is defined as Mζ (x) = ζ x
for all x ∈ X, then it is a homeomorphism.

Proof. The operation Mζ is continuous by the definition of the topological H2−module and it is bijective by the axioms of the
module. M−1

ζ
(x) = M1/ζ

(x) = x
ζ

for ζ ∈ H∗2 and Mζ ◦M1/ζ
= M1/ζ

◦Mζ = I are obtained. Hence, the operation M−1
ζ

= M1/ζ

is also continuous. This completes the proof.

We will investigate the properties of the interiors and the closures of the subsets of the H2−module X in the following
theorems. A◦ represents the interior of the set A and Ā represents the closure of the set A.

Theorem 4.33. Let X be a topological H2−module and ∅ 6= B⊆ X. Then the followings are satisfied.

i)
(
e1,js B

)◦
= e1,jsB

◦ and
(
e2,jsB

)◦
= e2,js B

◦ (s = 1,2,3).

ii)
(
e1,js B

)
= e1,js B̄ and

(
e2,js B

)
= e2,js B̄ (s = 1,2,3).

Proof. i) Let’s take x ∈
(
e1,js B

)◦. There exists an open neighbourhood G⊆ X such that x ∈ e1,js G⊆ e1,js B where x = e1,js y
and y ∈ G. Clearly, y ∈ G◦. Thus, x = e1,jsy ∈ e1,jsB

◦ and
(
e1,jsB

)◦ ⊆ e1,jsB
◦ are obtained. Conversely, let’s take

y ∈ B◦. Hence, e1,js y ∈ e1,jsB
◦. If y ∈ B◦, then there is an open neighbourhood G ⊆ X such as y ∈ G ⊆ B. Therefore,

e1,jsy ∈ e1,jsG⊆ e1,jsB. Since G is the open set in X , the set e1,jsG is also an open set in e1,jsX from Theorem 4.28 , too.
Consequently, e1,jsy ∈

(
e1,js B

)◦ and e1,js B
◦ ⊆

(
e1,js B

)◦ are obtained. These two inclusions prove the assertion. Similarly,

it can be shown that
(

e2
js

B
)◦

= e2
js

B◦.

ii) Let’s take x ∈
(
e1,js B

)
. There exists a net {xl} ∈ e1,js B such that {xl} → x. Moreover, the net {yl} ∈ B where

{xl} =
{

e1,jsyl
}

can be taken such as {yl} → y. Hence, y ∈ B̄. This means that {xl} =
{

e1,js yl
}
→ e1,jsy. Since

the topological space (X ,τ) is Hausdorff, the spaces
(
e1,jsX ,τ1,js

)
are Hausdorff, too. So, if there is the limit of a net in

the subset e1,jsB⊆ e1,js X , it is unique. Therefore, x = e1,jsy ∈ e1,js B̄. From here, the inclusion
(
e1,js B

)
⊆ e1,js B̄ is obtained.

Conversely, take y ∈ B̄. Hence, e1,jsy ∈ e1,js B̄. If y ∈ B̄, then there is a net {yl} ⊆ B such that {yl}→ y. Therefore, there

exists a net
{

e1,js yl
}
⊆ e1,jsB such as

{
e1,js yl

}
→ e1,jsy. So, e1,js y ∈

(
e1,js B

)
and e1,js B̄⊆

(
e1,jsB

)
are obtained. Similarly,

one can prove that
(
e2,jsB

)
= e2,js B̄.
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Theorem 4.34. Let X be a topological H2−module and ∅ 6= B ⊆ X. If B is a H2−convex subset of X then the following
relations are satisfied for s = 1,2,3.

i) B◦ = e1,jsB
◦+ e2,jsB

◦,

ii) B̄ = e1,js B̄+ e2,js B̄,

iii) B◦ is H2−convex,

iv) B is H2−convex.

Proof. i) Take into consideration x ∈ B◦. Then x =
(
e1,js + e2,js

)
x = e1,js x+ e2,js x ∈ e1,js B

◦
+ e2,js B

◦
since e1,js + e2,js = 1.

So B
◦ ⊆ e1,jsB

◦
+ e2,js B

◦
. On the other hand, since B is H2−convex, B = e1,js B+ e2,js B from Theorem 4.18. Hence,

e1,jsB
◦
+ e2,js B

◦
is an open subset of the topological H2−module X where e1,js B

◦
+ e2,jsB

◦ ⊆ e1,jsB+ e2,js B = B. But, the
largest open set contained in B must be B◦. So, e1,js B

◦
+ e2,js B

◦ ⊆ B
◦
. This completes the proof.

ii) If x ∈ B̄ is taken, then x ∈ e1,js B̄+ e2,js B̄ and B̄⊆ e1,js B̄+ e2,js B̄ are obtained. Note that in a topological vector space X if
A⊆ X and B⊆ X , then Ā+ B̄⊆ A+B [21]. Thus,

e1,js B̄+ e2,js B̄ = e1,jsB+ e2,jsB⊆ e1,jsB+ e2,jsB = B̄

from Theorem 4.33.

iii) Since B is H2−convex, ζ x+(1−ζ )y ∈ B for all x,y ∈ B and for all ζ ∈ H+
2 such that 0 ≤ ζ ≤ 1. This means that

ζ x+(1−ζ )y is an element of B when the elements x and y are scanning the set B. So, ζ B+(1−ζ )B⊆ B is obtained.
B
◦
= ζ B

◦
+(1−ζ )B

◦ ⊆ B since B◦ ⊆ B. Assume that ζ = 0. Therefore, ζ B
◦
+(1−ζ )B

◦
= B

◦ ⊆ B
◦
. Now, let’s take

ζ 6= 0. Since the addition and multiplication with scalar operations are homeomorphisms in X and B
◦
is an open set

in X , ζ B◦+(1−ζ )B◦ is an open set, too. But, the largest open set contained in B is B◦. So, ζ B◦+(1−ζ )B◦ ⊆ B◦.
Consequently, B◦ is a H2−convex set.

iv) Let B be a H2−convex subset of the topological H2−module X . Let’s define an operation

ϕζ : X×X → X

(x,y)→ ζ x+(1−ζ )y

for all ζ ∈ H+
2 such that 0 ≤ ζ ≤ 1. Since X is a topological H2−module, the addition and the multiplication with

scalar operations are continuous on X and hence the operation ϕζ is continuous, too. Moreover, since B is H2−convex,
ϕζ (B×B) ⊆ B for ζ ∈ H+

2 such as 0 ≤ ζ ≤ 1. Therefore, ϕζ (B×B) ⊆ B. So we get ϕζ (B×B) ⊆ ϕζ (B×B) since
the operation ϕζ is continuous. Consequently, ϕζ

(
B×B

)
= ϕζ (B×B) ⊆ B. Hence, B is a H2−convex subset of the

topological H2−module X .

Theorem 4.35. Let X be a topological H2−module and the subset ∅ 6= B⊆ X be a SMk−balanced subset of X for k = 1,2,3.
Then, the sets B and B◦ are SMk−balanced sets under the condition θ ∈ B◦ where θ is the unit element.

Proof. Let’s take ζ ∈ SMk (O) such that ζ ζ
jk ≤ 1. If ζ = 0, then ζ B = {θ} ⊆ B. We assume that ζ 6= 0. Since B ⊆ X

is a SMk−balanced subset, ζ B ⊆ B. Hence ζ B ⊆ B. Considering that the multiplication with the scalar operation is a
homeomorphism for ζ ∈ H∗2 from Theorem 4.32, ζ B = ζ B ⊆ B is obtained. Therefore, B is a SMk−balanced set. Assume
that θ ∈ B◦. First, if ζ = 0, then ζ B◦ = {θ} ⊆ B◦. Secondly, let’s take ζ 6= 0. ζ B⊆ B since B⊆ X is a SMk−balanced subset.
Thus, (ζ B)◦ ⊆ B◦ and ζ B◦ = (ζ B)◦ ⊆ B◦ from Theorem 4.32. Consequently, B◦ is a SMk−balanced set.

Theorem 4.36. Let X be a topological H2−module and the subset ∅ 6= B⊆ X be a NMk−balanced subset of X for k = 1,2,3.
Then B is a NMk−balanced set.

Proof. Let’s take ζ ∈ NMk (O) such that ζ ζ
jk = 0. If ζ = 0, then ζ B = {θ} ⊆ B. We assume that ζ 6= 0. Since B ⊆ X is a

NMk−balanced subset, ζ B⊆ B. Hence, ζ B⊆ B.ζ B⊆ ζ B from Theorem 4.32. Finally, ζ B⊆ ζ B⊆ B is obtained and so B is a
NMk−balanced set.
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The multiplication with scalar operation has inverse only for ζ ∈ H∗2 . Since the inverse of the multiplication with scalar
operation must be continuous so that ζ B◦ ⊆ (ζ B)◦, B◦ do not have to be a NMk−balanced set while the subset B is a
NMk−balanced set.

Theorem 4.37. Let X be a topological H2−module and the subset ∅ 6= B⊆ X be a T Mk−balanced subset of X for k = 1,2,3.
Then, B and B◦ are T Mk−balanced sets under the condition θ ∈ B◦ where θ is the unit element.

Theorem 4.38. Let X be a topological H2−module. The followings are satisfied for k = 1,2,3.

i) All neighbourhoods of the element θ contain a SMk−absorbing neighbourhood of the element θ in X.

ii) All neighbourhoods of the element θ contain a SMk−balanced neighbourhood of the element θ in X.

iii) All H2−convex neighbourhoods of the element θ contain a H2−convex and SMk−balanced neighbourhood of the element
θ in X.

Proof. i) Let Uθ be any neighbourhood of θ ∈ X and Vx be any neighbourhood of x ∈ X . If ζ = 0, then M0 (x) = θ . Since
the multiplication with the scalar operation Mζ is continuous, MA0 (Vx)⊆Uθ . Also, there is a neighbourhood of radius
λ > 0 and center 0 ∈ H2 such as A0 ⊆ Mk ⊆ H2. Therefore, there is a neighbourhood Wθ ⊆Uθ such that µx ∈Wθ ,
|µ|jk ≤ λ and µ ∈ (SMk (O)∩A0). Moreover, if we choose 1

λ
= δ , then δ > 0 and x ∈ µ−1Wθ for the scalars µ such as∣∣µ−1

∣∣
jk
≥ δ . Consequently, Wθ is a SMk−absorbing subset of X .

ii) Let Uθ be any neighbourhood of the unit element θ ∈X . Since M0 (θ) = θ and the multiplication with the scalar operation
is continuous, there is a neighbourhood of θ such as Vθ and µVθ ⊆Uθ where the elements of the neighbourhood of
0 ∈ H2 with radius δ > 0 are µ ∈ H2 and |µ|jk ≤ δ . Especially, let’s choose µ ∈ SMk (O). If we say ∪

|µ|jk≤δ

µVθ = Aθ ,

then ∪
|µ|jk≤δ

µVθ = θ for µ = 0 and {θ} ⊆Uθ . If µ 6= 0, then Aθ is a neighbourhood of θ and Aθ ⊆Uθ . Because the

multiplication with the scalar operation is a homeomorphism only for the invertible scalars. On the other hand, take
x ∈ Aθ and ζ ∈ SMk (O) such that |ζ |jk ≤ 1. Hence, there is some y ∈Vθ such as x = µy. We get ζ x = ζ µy ∈ Aθ since
|ζ µ|jk = |ζ |jk |µ|jk ≤ δ . So, Aθ is a SMk−balanced subset of the neighbourhood Uθ .

iii) Let Uθ ⊆ X be a H2−convex neighbourhood of θ ∈ X and A = ∩
|µ|jk=1

µUθ . There is a SMk−balanced neighbourhood

of θ such that Vθ ⊆Uθ from the previous proposition. Hence, µ−1Vθ = Vθ for µ ∈ SMk (O) such that |µ|jk = 1 and
Vθ ⊆ µUθ . Moreover, Vθ ⊆ A. It appears that A is a neighbourhood of θ and θ ∈ A◦ ⊆Uθ . Now, let’s see that the
set A◦ is a H2−convex and SMk−balanced subset. Since the images and inverse images of convex sets under linear
transformations are convex, the sets µUθ are H2−convex for µ ∈ SMk (O) such that |µ|jk = 1. Also, the intersection of
the H2−convex sets is H2−convex. So, the set A = ∩

|µ|jk=1
µUθ is H2−convex, too. Hence, the set A◦ is H2−convex from

Theorem 4.34 (iii). Finally, since µUθ are H2−convex sets containing the element θ , ζ µUθ ⊆ µUθ for all ζ ∈ H+
2 such

that 0≤ ζ ≤ 1. On the other hand, ζ λA = ∩
|µ|jk=1

ζ λ µUθ = ∩
|µ|jk=1

ζ µUθ ⊆ ∩
|µ|jk=1

µUθ = A for λ ∈ SMk (O) such that

|λ |jk = 1. Hence, the set A is SMk−balanced. A◦ is SMk−balanced according to Theorem 4.35 since θ ∈ A◦.

Theorem 4.39. Let X be a topological H2−module. Then the following properties are provided for k = 1,2,3.

i) All neighbourhoods of the element θ contain a T Mk−absorbing neighbourhood of the element θ in X.

ii) All neighbourhoods of the element θ contain a T Mk−balanced neighbourhood of the element θ in X.

iii) All H2−convex neighbourhoods of the element θ contain a H2−convex and T Mk−balanced neighbourhood of the
element θ in X.

Since the multiplication with the scalar operation is a homeomorphism only for the scalars which have a multiplicative
inverse, the neighbourhood of θ ∈ X does not contain NMk−balanced neighbourhood. Also, a H2−convex neighbourhood of
the element θ ∈ X does not contain a NMk−balanced neighbourhood of the element θ .
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[9] D. Bród, A. Szynal-Liana, I. Włoch, On some combinatorial properties of bihyperbolic numbers of the Fibonacci type,

Math. Methods Appl. Sci. Math. Methods Appl. Sci. 44(6) (2021), 4607–4615.
[10] J. Cockle, On certain functions resembling quaternions, and on a new imaginary in algebra, The London, Edinburgh, and

Dublin Philosophical Magazine and Journal of Science, 33 (1848), no. 224. 435–439.
[11] J. Cockle, On a new imaginary in algebra, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science, 34 (1849), no. 226. 37–47.
[12] J. Cockle, On the symbols of algebra and on the theory of Tessarines, The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science, 34 (1849), no. 231. 406–410.
[13] M. Bilgin, S. Ersoy, Algebraic properties of bihyperbolic numbers, Adv. Appl. Clifford Alg. 30 (2020), no. 13.
[14] S. Ersoy, M. Bilgin, Topolojik Bihiperbolik Modüller (Turkish) [Topological Bihyperbolic Modules], 31. National Mathe-

matics Symposium, Erzincan Binali Yıldırım University, Erzincan, Turkey, 2018, pp. 69.
[15] M.E. Luna Elizarrarás, M. Shapiro, C.O. Perez-Regalado, On linear functionals and Hahn-Banach theorems for hyperbolic

and bicomplex modules, Adv. Appl. Clifford Alg. 24 (2014), 1105–1129.



Topological Bihyperbolic Modules — 129/129

[16] M.E. Luna Elizarrarás, M. Panza, M. Shapiro, D.C. Struppa, Geometry and Identity Theorems for Bicomplex Functions
and Functions of a Hyperbolic Variable, Milan J. Math. 88 (2020), 247–261.

[17] R. Kumar, H. Saini, On Hahn Banach separation theorem for topological hyperbolic and topological bicomplex modules,
arXiv preprint arXiv:1510.01538, 2015.

[18] R. Kumar, H. Saini, Topological bicomplex modules, Adv. Appl. Clifford Alg. 26 (2016), no. 4, 1249–1270.
[19] R. Larsen, Functional analysis, Marcel Dekker, New York, 1973.
[20] S. Olario, Complex numbers in n dimensions, North-Holland Mathematics Studies, Elsevier, vol. 190, 2002.
[21] W. Rudin, Functional analysis, 2nd Edition, McGraw Hill, New York, 1991.


	Introduction
	Preliminaries
	Topological Hyperbolic Modules
	Topological Bihyperbolic Modules
	References

