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Article History Abstract − This study presents a simulator to obtain numerical solution of convection-diffusion equa-
tion. It includes explicit, fully implicit and semi-implicit time discretization techniques. In addition 
to time discretization techniques, this simulator contains several space discretization methods such 
as first-order upstream and UMIST (University of Manchester Institute of Science and Technology) 
techniques. It is observed that the use of UMIST or semi-implicit techniques in the different numer-
ical simulator decreases numerical errors. However, the combination of UMIST and semi-implicit 
methods is not available in literature. The proposed numerical simulator is suitable for easily using 
the different combinations of time and space discretization methods. Second objective of this study 
is to present a novel combination that includes both semi-implicit time discretization technique and 
UMIST space discretization method to minimize numerical errors namely numerical dispersion and 
unphysical oscillation. Alt-hough UMIST method suppresses unphysical oscillation, it causes a small 
and undesired oscillation at flood front for very large Courant number. Thirdly, this study proposes a 
minor modification on the UMIST method to elimi-nate this unphysical oscillation. The novel com-
bination of modified UMIST method and semi-implicit technique decreases numerical dispersion sig-
nificantly and suppress unphysical oscillation effectively. Moreover, the numeri-cal result of proposed 
model is very close to analytical solution.
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1. Introduction

A great number of physical phenomena and many real processes are effectively modeled by partial 
differential equations. One of the most widely used types of partial differential equations for describing 
these physical processes is the unsteady convection-diffusion equation. The convection–diffusion equation 
is used in simulating transport process (Peng et. al., 2013), flow in oil and gas reservoirs (Kurganov & 
Tadmor, 2000), non-isothermal injection techniques, chemical displacement, miscible displacement and 
immiscible displacement (Kamalyar et. al., 2014), pollutant dispersion in a river estuary (Morton, 2019), 
etc. Following Equation 1.1 shows one-dimensional form of convection-diffusion equation.

There are two basic way to solve convection-diffusion equation. While one of them is analytical solution, 
the other is numerical techniques. Nowadays, there is no any analytical solution of multi-dimensional and 
complex physical systems. Therefore, it is necessary to use numerical techniques for these complicated 
problems. The finite difference method is one of the most commonly used numerical techniques for solu-
tion of convection-diffusion equation. This method has been used for many years due to its simplicity, prac-
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ticality and effectiveness. The finite difference method is applied for time discretization or space discretiza-
tion. There are a number of time and space discretization techniques in literature. However, some of them 
stand out such as explicit, fully implicit and semi-implicit techniques for time discretization and first-order 
upstream and UMIST (University of Manchester Institute of Science and Technology) methods for space 
discretization. Although the explicit method is efficient for some simple conduction problems, it needs sta-
bility criteria. Otherwise, it is unstable especially for high Courant number and large time step size. When 
using the explicit method, the time step size is chosen with care to get well-posed numerical solution. This 
requirement sets a serious constraint for the explicit method because choosing small time step size causes 
the simulation time to become quite long. Even though the implicit method is stable for large time step size 
and high Courant number, it leads to numerical dispersion like the explicit method. On the other hand, sec-
ond-order accurate semi-implicit method significantly reduces numerical dispersion. One another method 
to decrease numerical dispersion is to use higher-order space discretization techniques for example UMIST 
method. However, the combination of semi-implicit and UMIST methods is not available in literature. The 
objective of this study is to combine second-order accurate semi-implicit method and UMIST technique in 
order to minimize numerical errors.

The analytical solutions of some one-dimensional systems exist in literature. They are used to validate the 
reliability of numerical methods. After verification of numerical techniques with analytical solution for 
simple and one-dimensional problem, proposed numerical techniques may be used for sophisticated and 
multi-dimensional problems. All numerical methods used in this study are checked with the following an-
alytical solutions.

If physical dispersion coefficient is zero, equation 1.2 (Peaceman, 2000) is undefined. The convection-dif-
fusion equation transforms to the transport equation for that cases (cancelling of first term in Equation 1.1). 
The transport equation is used for convection-dominated fluid flow. The analytical solution of transport or 
advection equation is described in following Equation 1.3 (Sarra, 2002).

In Equation 1.3, G(x0) refers to initial condition. The exact solution of transport equation depends mainly 
on initial condition and it may be defined as propagation of all points on the initial condition with the same 
speed that is constant velocity (Sarra, 2002).

2. Materials and Methods

The convection-diffusion equation is solved using time discretization and space discretization 
techniques. While accumulation term (last term in Equation 1.1) is approximated by time discretization 
methods, convection term (second term in Equation 1.1) and diffusion term (first term in Equation 1.1) are 
estimated by space discretization techniques. Although there are a number of space and time discretization 
methods, some of them lead to unacceptable numerical errors. One of the aims of this study is to select best 
combination of space and time discretization techniques in order to minimize numerical dispersion and 
suppress unphysical oscillation.

2.1. Time Discretization

Time discretization is applied to transient or unsteady problems and it is also called as temporal 
discretization. Temporal discretization is the integration of diffusion and convection terms over each time 
steps. Explicit, implicit and semi-implicit methods are the most widely used approaches to calculate the 
integral over a time step. The explicit and the fully implicit methods are first-order time discretization 
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methods and they leads to significant numerical errors namely numerical dispersion. The explicit method 
gives stable results with numerical dispersion for small Courant number. However, it is not stable for large 
Courant number. The coefficient of interested grid block central value for previous time step in numerical 
solution of explicit method must be positive (Versteeg & Malalasekera, 2007) because next time step values 
are calculated by adding to previous time step values. Following stability criteria must be provided for 
numerical solution of convection-dominated fluid flow equation using explicit time scheme and first-order 
upstream space discretization method.

The coefficient of  at right-hand side in Equation  2.1 must be positive. The following inequality (Equation  
2.2) is obtained to provide positive coefficient of.

Figure 1. Explicit scheme for first-order upstream method (dx=0.1).

Figure 1 shows numerical solutions of advection equation (physical dispersion is zero, D=0) using the 
explicit time discretization method and first-order upstream space discretization technique for 0.55 and 1.03 
Courant number (for both cases space interval are same, dx=0.1 and time step sizes are 0.055 and 0.103 for 
green line with circle and red line with star, respectively). According to Figure 1, the explicit method for 
small Courant number (Nc=0.55) is stable (there is no oscillation) with large numerical dispersion (green 
line with circle). However, the explicit method is unstable (it has large unphysical oscillation) when Courant 
number is greater than 1 (red line with star) due to the large time step size (dt=0.103). This numerical result 
is far away from analytical solution and it’s not acceptable to model any physical system. This is the main 
disadvantage of explicit time discretization methods that are not convenient for large time step sizes or 
large Courant number. The implicit time discretization methods should be used to suppress unphysical 
oscillation (red line) for large Courant number and higher-order space discretization method should be used 
to diminish numerical dispersion (green line).
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Figure 2 indicates numerical results of fully-implicit scheme and first-order upstream space discretization 
technique for 0.55, 1.03 and 1.7 Courant number (for both cases space interval are same, dx=0.1 and time 
step sizes are 0.055, 0.103 and 0.17 for green, red and blue lines, respectively). According to numerical 
results of Figure 2, increasing of the time step sizes leads to numerical dispersion without any oscillation.
The main advantage of fully-implicit method over the explicit scheme is stability. The implicit method 
is unconditional stable and it can be used even for large time step size and high Courant number. The 
small time step interval must be selected for explicit method in order to provide stability requirement and 
obtain meaningful numerical results. The small time step size causes the numerical solution to take quite 
long. Therefore, the fully-implicit method is used to reduce total simulation time. In spite of the stability 
advantage of fully-implicit technique, the numerical results in Figure 2 are far from analytical solution due 
to the numerical dispersion. When time step size or Courant number increases, the numerical dispersion of 
implicit method becomes greater. Hence, higher-order methods are used to minimize numerical dispersion 
like semi-implicit time discretization method.

The semi-implicit method called also as Crank-Nicolson technique (Crank & Nicolson, 1947) is second-
order accurate approximation and it reduces numerical errors effectively. Following equations show full 
discretization of convection-diffusion equation using explicit, fully-implicit and Crank-Nicolson method 
respectively. In Equation 2.3, superscripts n and n+1 refer to current time step and next time step. Subscripts 
i, i-1/2, i+1/2 are index for nodes, left face value and right face value, respectively. The face values are used 
to numerically calculate the first derivative.

Figure 2. Implicit scheme for first-order upstream method (dx=0.1).
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In Figure 3, it’s assumed that black curved line is a continuous function. The objective in numerical inte-
gration is to determine the area under the continuous function between tn and tn+1 time intervals. According 
to Figure 3, the integral approximations of explicit and fully-implicit methods have significant numerical 
errors at lower side and upper side of the function. Therefore, these techniques lead to numerical disper-
sion. However, numerical integration of semi-implicit method is closer to analytical integration. Hence, 
it reduces numerical dispersion seriously (see the pink line in Figure 4). The numerical results in Figure 
4 are designed for large Courant number (Nc=1.7) in order to indicate the effect of large time step sizes. 
It’s assumed that space (dx=0.1) and time (dt=0.17) intervals are same for both cases to compare different 
types of time discretization. In Figure 4, blue line is first-order time discretization method and it causes 
large numerical dispersion. It has large numerical errors due to ineffective numerical integration technique. 
However, the pink line is second-order method and it decreases numerical errors significantly. That’s why 
it’s closer to analytical solution compared to first-order technique.

The left-hand side terms in Equations 2.3, 2.4 and 2.5 can be expressed as a function of time namely F(t). 
The Figure 3 shows numerical integral of Equations 2.3, 2.4 and 2.5 respectively.

Figure 3. Integral approximations for explicit method (a), implicit method (b) and semi-implicit method (c).

Figure 4. Implicit and semi-implicit scheme for first-order space method (Nc=1.7, dx=0.1 and dt=0.17).
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2.2. Space Discretization

The space discretization techniques are applied to convection and diffusion terms. The diffusion term 
is discretized using second-order central difference method and only grid block or node central values 
are required to calculate numerical result of diffusion term. On the other hand, space discretization of 
convection term depends on grid block face values. However, there is no any exact knowledge about face 
values in numerical calculation. It may be predicted using some techniques. Therefore, the numerical errors 
arise from these approximations. Equations 2.6 and 2.7 show first-order upstream method (Ertekin et. al., 
2001) and TVD (Total Variation Diminishing) technique (Harten, 1984, Sweby, 1984) respectively.

The second term at right-hand side in Equation 2.7 is anti-diffusive term. It decreases numerical dispersion. 
The flux limiter for UMIST (University of Manchester Institute of Science and Technology) technique is 
described by following Equation 2.8 that is an extension of the Quick method (Leonard, 1979).

In Equation 2.8, r is gradient ratio and it is defined as following Equation 2.9 (Wolcott et. al., 1996).

The UMIST technique reduces numerical dispersion effectively because it’s higher-order space discretization 
method. The first-order upstream space discretization method and the UMIST space discretization technique 
with the implicit time discretization method has been used in Figure 5. It is assumed that space interval is 
0.15 (dx=0.15), time interval is 0.1 (dt=0.1) and Courant number is 0.67 (Nc=0.67). According to Figure 
5, the UMIST method gives sharper flood front than first-order upstream technique and it is closer to 
analytical solution. The use of higher-order technique (UMIST) decreases the space discretization errors. 
However, the numerical solution using UMIST method (third-order in space discretization) and implicit 
scheme (first-order in time discretization) still has numerical dispersion due to the time discretization 
errors. The combination of the semi-implicit method (second-order in time discretization) and the UMIST 
technique may bring the numerical solution closer to the analytical solution.

3. Results and Discussion

In this study, the importance of the use of higher-order finite difference technique is investigated. 
Nowadays, the explicit scheme (Lundgren & Mattsson, 2020) is still used to solve partial differential 
equation. However, it is unstable for large Courant number and large time step sizes (see red line in Figure 
1). The small time step sizes must be used for the explicit scheme to obtain stable numerical results (see 
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green line in Figure 1). The use of small time step sizes causes quite long simulation time. Therefore, the 
higher-order techniques in space and time discretization for large time step sizes and large space intervals 
must be used to decrease total simulation time and obtain more accurate numerical results. It is observed 
that the application of UMIST space discretization method (third-order in space discretization) to the semi-
implicit time discretization technique reduces numerical errors because semi-implicit method is second-
order scheme. Moreover, proposed model is very stable and it is very close to analytical solution (see red 
line in Figure 6). This proposed model works properly for moderate Courant number (lesser than 1) and it 
diminish numerical dispersion impressively. Nevertheless, the novel combination of the UMIST method 
with the semi-implicit technique causes to a small unphysical oscillation at the flood front (see red line in 
Figure 6). In this study, it was observed that reducing the upper limit of the UMIST flux limiter function 
suppresses these undesired oscillations. In Figure 6, it is assumed that space interval is 0.1 (dx=0.1), time 
interval is 0.13 (dt=0.13) and Courant number is 1.3 (Nc=1.3). Figure 6 shows UMIST method with 2.0 and 
1.3 upper limits for semi-implicit time discretization method. The proposed model (blue circles) minimizes 
numerical dispersion without any unphysical oscillation even for large Courant number.

It is important note that please use Supplementary material 1 and Supplementary material 2 or Supplementary 
material 3 in order to obtain all figures in this study.

4. Conclusion

This study has presented a numerical simulator for convection-diffusion equation. This simulator includes 
explicit, fully-implicit and semi-implicit time discretization techniques. It has been observed that explicit 
method requires the stability criteria and it is unstable for large Courant number. The time step size must 
be reduced to provide stability criteria for explicit scheme. However, decreasing time step size causes 
long simulation time. The fully-implicit method has been used because it is stable even for large Courant 
number. Despite the stability advantage of fully-implicit method, it is first-order accurate scheme like 
explicit method. Thus, the implicit method leads to numerical dispersion for large time step size. The 
second-order accurate semi-implicit or Crank-Nicolson time discretization method has been selected to 
minimize numerical dispersion. The proposed numerical simulator has also several space discretization 

Figure 5. First-order upstream and UMIST methods for implicit scheme (Nc=0.67, dx=0.15 and dt=0.1).
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methods. The first-order upstream method is a scheme without any unphysical oscillation. Nonetheless, 
it is first-order method and it has large numerical dispersion. Although the higher-order UMIST method 
decreases numerical dispersion successfully, it has been noticed that the combination of UMIST method 
with semi-implicit technique causes a small unphysical oscillation at flood front. In this study, it is proposed 
to decrease upper limit of UMIST flux limiter function in order to suppress this undesired oscillation. The 
proposed model has minimized numerical dispersion without any unphysical oscillation. In this study, it is 
observed that this novel combination of modified UMIST method and semi-implicit technique minimizes 
the most important numerical errors namely numerical dispersion and unphysical oscillation and it is 
very close to analytical solution. Moreover, the novel combination method can be easily applied to all 
type of convection-diffusion problem especially for most recent physical problems such as the simulating 
miscible displacement, immiscible displacement, chemical displacement and non-isothermal injection, the 
contaminant and sediment movement in the rivers, lakes and groundwater aquifers, simulating transport 
and flow in oil and gas reservoirs, particularly in two-phase flow. Finally, all Matlab codes related to the 
numerical simulator have been added to Supplementary Materials in order to facilitate other researchers’ 
work.
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Symbols

U = concentration or interested value

D = physical dispersion

Nc = courant number

dt = timestep

dx = space interval

v = velocity

Figure 6. Application of UMIST methods to semi-implicit scheme (Nc=1.3, dx=0.1 and dt=0.13).
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Subscripts

i = index for nodes in the x direction

i-1/2 = index for left face values

i+1/2= index for right face values

Superscripts

n = old timestep

n+1 = current timestep
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Supplementary Materials 

Supplementary material 1. Sub-function to run the numerical simulator. 

function y=TVD(x) 

% Select Space Discretization Method (SDM) 

%For First Order Upstream Method->SDO=1 

%For UMIST->SDO=30 

SDO=30; 

if SDO==1%First Order Upstream 

y=0; 

elseif SDO==30%UMIST 1.3 

y=max(0,min([2,2*x,(3*x+1)/4,(x+3)/4])); 

end 

end 

Supplementary material 2. The numerical simulator. 

Note: In order to run Matlab codes in Supplementary material 2, it’s required to get ‘’TVD.m’’ Matlab 

file. It can be obtained using Supplementary material 1 The name of the Matlab file must be ‘’TVD’’ 

without quotes. Secondly, designed TVD.m Matlab file and the numerical simulator mfile (in 

Supplementary material 2) must be at the same path. Thirdly, if you don’t want to use Supplementary 

material 1 and Supplementary material 2 in order to run Matlab file, you can use Supplementary material 

3. 

tic; clc; clearvars; 

%%INPUT DATA 

t=7.7;%Total simulation time 

dt=0.13;%Time interval 

I=120+1;%Number of points at i-direction 

dx=0.1;%Space interval 

X=dx/2:dx:I*dx-dx/2;%Distance 

W=1;%W=1(upstream) W=0.5(mid-point) W=0(downstream) 

Q=0.5;%Q=1(implicit) Q=0.5(CN) Q=0(explicit) 

vf=1;%Velocity*(df/du) 

L=vf*dt/dx;%Courant Number 

D=0;%Physical dispersion 

K=D*dt/2/dx^2;%Diffusion term coefficient 

U00=0.5; Ui0=0;%Initial Condition 

U0n=1; UIn=0;%Boundary Condition 

Ucc=0.00001;%Convergence Criteria 

dU=10^-8;%NRI interval 

%%OUTPUT DATA 

Up(1)=U00; 

Up(2:I)=Ui0; 

Un(1)=U0n; Un(2:I-1)=NaN; Un(I)=UIn; 

for n=1:t/dt%Time iteration 

if Q==0%Explicit solution 

for i=2:I-1 

if i==2 

rf=Up(i); lf=Up(i-1); 

else 

rf=Up(i)+0.5*max(0,TVD((Up(i+1)-Up(i))/(Up(i)-Up(i-1))))*(Up(i)-Up(i-1)); 

lf=Up(i-1)+0.5*max(0,TVD((Up(i)-Up(i-1))/(Up(i-1)-Up(i-2))))*(Up(i-1)-Up(i-2)); 

end 

Un(i)=dt*(D*(Up(i+1)-2*Up(i)+Up(i-1))/dx^2-vf*(rf-lf)/dx)+Up(i); 

end 

Up=Un;%End of explicit solution 

else%Implicit solution 

Uv=Up; 

it=1; 



vUv=Ucc; 

while vUv>=Ucc%NR iteration 

iU=Uv+dU; 

%Determination of A and B Matrices 

%A matrix 

f(1:I)=NaN; 

for ii=1:I 

if ii==1 

f(ii)=K*(Uv(ii+1)-2*U0n+U0n+Up(ii+1)-2*Up(ii)+Up(ii))-L*(Q*(U0n-U0n)+(1-Q)*(Up(ii)-

Up(ii)))-U0n+Up(ii); 

elseif ii==2 

f(ii)=K*(Uv(ii+1)-2*Uv(ii)+U0n+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(Uv(ii)-U0n)+(1-

Q)*(Up(ii)-Up(ii-1)))-Uv(ii)+Up(ii); 

elseif ii==3 

rvi=(Uv(ii+1)-Uv(ii))/(Uv(ii)-Uv(ii-1)); lfvi=max(0,TVD(rvi)); 

ADTvi=0.5*lfvi*(Uv(ii)-Uv(ii-1)); rvi_1=(Uv(ii)-Uv(ii-1))/(Uv(ii-1)-U0n); 

lfvi_1=max(0,TVD(rvi_1)); ADTvi_1=0.5*lfvi_1*(Uv(ii-1)-U0n); 

rpi=(Up(ii+1)-Up(ii))/(Up(ii)-Up(ii-1)); lfpi=max(0,TVD(rpi)); 

ADTpi=0.5*lfpi*(Up(ii)-Up(ii-1)); rpi_1=(Up(ii)-Up(ii-1))/(Up(ii-1)-Up(ii-2)); 

lfpi_1=max(0,TVD(rpi_1)); ADTpi_1=0.5*lfpi_1*(Up(ii-1)-Up(ii-2)); 

f(ii)=K*(Uv(ii+1)-2*Uv(ii)+Uv(ii-1)+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(Uv(ii)+ADTvi-

Uv(ii-1)-ADTvi_1)+(1-Q)*(Up(ii)+ADTpi-Up(ii-1)-ADTpi_1))-Uv(ii)+Up(ii); 

elseif 3<ii && ii<I-1 

rvi=(Uv(ii+1)-Uv(ii))/(Uv(ii)-Uv(ii-1)); lfvi=max(0,TVD(rvi)); 

ADTvi=0.5*lfvi*(Uv(ii)-Uv(ii-1)); rvi_1=(Uv(ii)-Uv(ii-1))/(Uv(ii-1)-Uv(ii-2)); 

lfvi_1=max(0,TVD(rvi_1)); ADTvi_1=0.5*lfvi_1*(Uv(ii-1)-Uv(ii-2)); 

rpi=(Up(ii+1)-Up(ii))/(Up(ii)-Up(ii-1)); lfpi=max(0,TVD(rpi)); 

ADTpi=0.5*lfpi*(Up(ii)-Up(ii-1)); rpi_1=(Up(ii)-Up(ii-1))/(Up(ii-1)-Up(ii-2)); 

lfpi_1=max(0,TVD(rpi_1)); ADTpi_1=0.5*lfpi_1*(Up(ii-1)-Up(ii-2)); 

f(ii)=K*(Uv(ii+1)-2*Uv(ii)+Uv(ii-1)+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(Uv(ii)+ADTvi-

Uv(ii-1)-ADTvi_1)+(1-Q)*(Up(ii)+ADTpi-Up(ii-1)-ADTpi_1))-Uv(ii)+Up(ii); 

elseif ii==I-1 

rvi=(UIn-Uv(ii))/(Uv(ii)-Uv(ii-1)); lfvi=max(0,TVD(rvi)); 

ADTvi=0.5*lfvi*(Uv(ii)-Uv(ii-1)); rvi_1=(Uv(ii)-Uv(ii-1))/(Uv(ii-1)-Uv(ii-2)); 

lfvi_1=max(0,TVD(rvi_1)); ADTvi_1=0.5*lfvi_1*(Uv(ii-1)-Uv(ii-2)); 

rpi=(Up(ii+1)-Up(ii))/(Up(ii)-Up(ii-1)); lfpi=max(0,TVD(rpi)); 

ADTpi=0.5*lfpi*(Up(ii)-Up(ii-1)); rpi_1=(Up(ii)-Up(ii-1))/(Up(ii-1)-Up(ii-2)); 

lfpi_1=max(0,TVD(rpi_1)); ADTpi_1=0.5*lfpi_1*(Up(ii-1)-Up(ii-2)); 

f(ii)=K*(UIn-2*Uv(ii)+Uv(ii-1)+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(Uv(ii)+ADTvi-Uv(ii-

1)-ADTvi_1)+(1-Q)*(Up(ii)+ADTpi-Up(ii-1)-ADTpi_1))-Uv(ii)+Up(ii); 

elseif ii==I 

f(ii)=K*(UIn-2*UIn+Uv(ii-1)+Up(ii)-2*Up(ii)+Up(ii-1))-L*(Q*(UIn-Uv(ii-1))+(1-

Q)*(Up(ii)-Up(ii-1)))-UIn+Up(ii); 

end 

end 

A=f'; 

%B matrix 

B=zeros(I,I); 

fiU(1:I)=NaN; 

for ii=1:I 

if ii==1 

%for east 

fiU(ii)=K*(iU(ii+1)-2*U0n+U0n+Up(ii+1)-2*Up(ii)+Up(ii))-L*(Q*(U0n-U0n)+(1-Q)*(Up(ii)-

Up(ii)))-U0n+Up(ii); 

B(ii,ii+1)=(fiU(ii)-f(ii))/dU; 

elseif ii==2 

%for center 

fiU(ii)=K*(Uv(ii+1)-2*iU(ii)+U0n+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(iU(ii)-U0n)+(1-

Q)*(Up(ii)-Up(ii-1)))-iU(ii)+Up(ii); 

B(ii,ii)=(fiU(ii)-f(ii))/dU; 

%for east 

fiU(ii)=K*(iU(ii+1)-2*Uv(ii)+U0n+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(Uv(ii)-U0n)+(1-

Q)*(Up(ii)-Up(ii-1)))-Uv(ii)+Up(ii); 



B(ii,ii+1)=(fiU(ii)-f(ii))/dU; 

elseif ii==3 

%for west 

rvi=(Uv(ii+1)-Uv(ii))/(Uv(ii)-iU(ii-1)); lfvi=max(0,TVD(rvi)); 

ADTvi=0.5*lfvi*(Uv(ii)-iU(ii-1)); rvi_1=(Uv(ii)-iU(ii-1))/(iU(ii-1)-U0n); 

lfvi_1=max(0,TVD(rvi_1)); ADTvi_1=0.5*lfvi_1*(iU(ii-1)-U0n); 

rpi=(Up(ii+1)-Up(ii))/(Up(ii)-Up(ii-1)); lfpi=max(0,TVD(rpi)); 

ADTpi=0.5*lfpi*(Up(ii)-Up(ii-1)); rpi_1=(Up(ii)-Up(ii-1))/(Up(ii-1)-Up(ii-2)); 

lfpi_1=max(0,TVD(rpi_1)); ADTpi_1=0.5*lfpi_1*(Up(ii-1)-Up(ii-2)); 

fiU(ii)=K*(Uv(ii+1)-2*Uv(ii)+iU(ii-1)+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(Uv(ii)+ADTvi-

iU(ii-1)-ADTvi_1)+(1-Q)*(Up(ii)+ADTpi-Up(ii-1)-ADTpi_1))-Uv(ii)+Up(ii); 

B(ii,ii-1)=(fiU(ii)-f(ii))/dU; 

%for center 

rvi=(Uv(ii+1)-iU(ii))/(iU(ii)-Uv(ii-1)); lfvi=max(0,TVD(rvi)); 

ADTvi=0.5*lfvi*(iU(ii)-Uv(ii-1)); rvi_1=(iU(ii)-Uv(ii-1))/(Uv(ii-1)-U0n); 

lfvi_1=max(0,TVD(rvi_1)); ADTvi_1=0.5*lfvi_1*(Uv(ii-1)-U0n); 

rpi=(Up(ii+1)-Up(ii))/(Up(ii)-Up(ii-1)); lfpi=max(0,TVD(rpi)); 

ADTpi=0.5*lfpi*(Up(ii)-Up(ii-1)); rpi_1=(Up(ii)-Up(ii-1))/(Up(ii-1)-Up(ii-2)); 

lfpi_1=max(0,TVD(rpi_1)); ADTpi_1=0.5*lfpi_1*(Up(ii-1)-Up(ii-2)); 

fiU(ii)=K*(Uv(ii+1)-2*iU(ii)+Uv(ii-1)+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(iU(ii)+ADTvi-

Uv(ii-1)-ADTvi_1)+(1-Q)*(Up(ii)+ADTpi-Up(ii-1)-ADTpi_1))-iU(ii)+Up(ii); 

B(ii,ii)=(fiU(ii)-f(ii))/dU; 

%for east 

rvi=(iU(ii+1)-Uv(ii))/(Uv(ii)-Uv(ii-1)); lfvi=max(0,TVD(rvi)); 

ADTvi=0.5*lfvi*(Uv(ii)-Uv(ii-1)); rvi_1=(Uv(ii)-Uv(ii-1))/(Uv(ii-1)-U0n); 

lfvi_1=max(0,TVD(rvi_1)); ADTvi_1=0.5*lfvi_1*(Uv(ii-1)-U0n); 

rpi=(Up(ii+1)-Up(ii))/(Up(ii)-Up(ii-1)); lfpi=max(0,TVD(rpi)); 

ADTpi=0.5*lfpi*(Up(ii)-Up(ii-1)); rpi_1=(Up(ii)-Up(ii-1))/(Up(ii-1)-Up(ii-2)); 

lfpi_1=max(0,TVD(rpi_1)); ADTpi_1=0.5*lfpi_1*(Up(ii-1)-Up(ii-2)); 

fiU(ii)=K*(iU(ii+1)-2*Uv(ii)+Uv(ii-1)+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(Uv(ii)+ADTvi-

Uv(ii-1)-ADTvi_1)+(1-Q)*(Up(ii)+ADTpi-Up(ii-1)-ADTpi_1))-Uv(ii)+Up(ii); 

B(ii,ii+1)=(fiU(ii)-f(ii))/dU; 

elseif 3<ii && ii<I-1 

%for west-west 

rvi=(Uv(ii+1)-Uv(ii))/(Uv(ii)-Uv(ii-1)); lfvi=max(0,TVD(rvi)); 

ADTvi=0.5*lfvi*(Uv(ii)-Uv(ii-1)); rvi_1=(Uv(ii)-Uv(ii-1))/(Uv(ii-1)-iU(ii-2)); 

lfvi_1=max(0,TVD(rvi_1)); ADTvi_1=0.5*lfvi_1*(Uv(ii-1)-iU(ii-2)); 

rpi=(Up(ii+1)-Up(ii))/(Up(ii)-Up(ii-1)); lfpi=max(0,TVD(rpi)); 

ADTpi=0.5*lfpi*(Up(ii)-Up(ii-1)); rpi_1=(Up(ii)-Up(ii-1))/(Up(ii-1)-Up(ii-2)); 

lfpi_1=max(0,TVD(rpi_1)); ADTpi_1=0.5*lfpi_1*(Up(ii-1)-Up(ii-2)); 

fiU(ii)=K*(Uv(ii+1)-2*Uv(ii)+Uv(ii-1)+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(Uv(ii)+ADTvi-

Uv(ii-1)-ADTvi_1)+(1-Q)*(Up(ii)+ADTpi-Up(ii-1)-ADTpi_1))-Uv(ii)+Up(ii); 

B(ii,ii-2)=(fiU(ii)-f(ii))/dU; 

%for west 

rvi=(Uv(ii+1)-Uv(ii))/(Uv(ii)-iU(ii-1)); lfvi=max(0,TVD(rvi)); 

ADTvi=0.5*lfvi*(Uv(ii)-iU(ii-1)); rvi_1=(Uv(ii)-iU(ii-1))/(iU(ii-1)-Uv(ii-2)); 

lfvi_1=max(0,TVD(rvi_1)); ADTvi_1=0.5*lfvi_1*(iU(ii-1)-Uv(ii-2)); 

rpi=(Up(ii+1)-Up(ii))/(Up(ii)-Up(ii-1)); lfpi=max(0,TVD(rpi)); 

ADTpi=0.5*lfpi*(Up(ii)-Up(ii-1)); rpi_1=(Up(ii)-Up(ii-1))/(Up(ii-1)-Up(ii-2)); 

lfpi_1=max(0,TVD(rpi_1)); ADTpi_1=0.5*lfpi_1*(Up(ii-1)-Up(ii-2)); 

fiU(ii)=K*(Uv(ii+1)-2*Uv(ii)+iU(ii-1)+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(Uv(ii)+ADTvi-

iU(ii-1)-ADTvi_1)+(1-Q)*(Up(ii)+ADTpi-Up(ii-1)-ADTpi_1))-Uv(ii)+Up(ii); 

B(ii,ii-1)=(fiU(ii)-f(ii))/dU; 

%for center 

rvi=(Uv(ii+1)-iU(ii))/(iU(ii)-Uv(ii-1)); lfvi=max(0,TVD(rvi)); 

ADTvi=0.5*lfvi*(iU(ii)-Uv(ii-1)); rvi_1=(iU(ii)-Uv(ii-1))/(Uv(ii-1)-Uv(ii-2)); 

lfvi_1=max(0,TVD(rvi_1)); ADTvi_1=0.5*lfvi_1*(Uv(ii-1)-Uv(ii-2)); 

rpi=(Up(ii+1)-Up(ii))/(Up(ii)-Up(ii-1)); lfpi=max(0,TVD(rpi)); 

ADTpi=0.5*lfpi*(Up(ii)-Up(ii-1)); rpi_1=(Up(ii)-Up(ii-1))/(Up(ii-1)-Up(ii-2)); 

lfpi_1=max(0,TVD(rpi_1)); ADTpi_1=0.5*lfpi_1*(Up(ii-1)-Up(ii-2)); 

fiU(ii)=K*(Uv(ii+1)-2*iU(ii)+Uv(ii-1)+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(iU(ii)+ADTvi-

Uv(ii-1)-ADTvi_1)+(1-Q)*(Up(ii)+ADTpi-Up(ii-1)-ADTpi_1))-iU(ii)+Up(ii); 

B(ii,ii)=(fiU(ii)-f(ii))/dU; 



%for east 

rvi=(iU(ii+1)-Uv(ii))/(Uv(ii)-Uv(ii-1)); lfvi=max(0,TVD(rvi)); 

ADTvi=0.5*lfvi*(Uv(ii)-Uv(ii-1)); rvi_1=(Uv(ii)-Uv(ii-1))/(Uv(ii-1)-Uv(ii-2)); 

lfvi_1=max(0,TVD(rvi_1)); ADTvi_1=0.5*lfvi_1*(Uv(ii-1)-Uv(ii-2)); 

rpi=(Up(ii+1)-Up(ii))/(Up(ii)-Up(ii-1)); lfpi=max(0,TVD(rpi)); 

ADTpi=0.5*lfpi*(Up(ii)-Up(ii-1)); rpi_1=(Up(ii)-Up(ii-1))/(Up(ii-1)-Up(ii-2)); 

lfpi_1=max(0,TVD(rpi_1)); ADTpi_1=0.5*lfpi_1*(Up(ii-1)-Up(ii-2)); 

fiU(ii)=K*(iU(ii+1)-2*Uv(ii)+Uv(ii-1)+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(Uv(ii)+ADTvi-

Uv(ii-1)-ADTvi_1)+(1-Q)*(Up(ii)+ADTpi-Up(ii-1)-ADTpi_1))-Uv(ii)+Up(ii); 

B(ii,ii+1)=(fiU(ii)-f(ii))/dU; 

elseif ii==I-1 

%for west-west 

rvi=(UIn-Uv(ii))/(Uv(ii)-Uv(ii-1)); lfvi=max(0,TVD(rvi)); 

ADTvi=0.5*lfvi*(Uv(ii)-Uv(ii-1)); rvi_1=(Uv(ii)-Uv(ii-1))/(Uv(ii-1)-iU(ii-2)); 

lfvi_1=max(0,TVD(rvi_1)); ADTvi_1=0.5*lfvi_1*(Uv(ii-1)-iU(ii-2)); 

rpi=(Up(ii+1)-Up(ii))/(Up(ii)-Up(ii-1)); lfpi=max(0,TVD(rpi)); 

ADTpi=0.5*lfpi*(Up(ii)-Up(ii-1)); rpi_1=(Up(ii)-Up(ii-1))/(Up(ii-1)-Up(ii-2)); 

lfpi_1=max(0,TVD(rpi_1)); ADTpi_1=0.5*lfpi_1*(Up(ii-1)-Up(ii-2)); 

fiU(ii)=K*(UIn-2*Uv(ii)+Uv(ii-1)+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(Uv(ii)+ADTvi-Uv(ii-

1)-ADTvi_1)+(1-Q)*(Up(ii)+ADTpi-Up(ii-1)-ADTpi_1))-Uv(ii)+Up(ii); 

B(ii,ii-2)=(fiU(ii)-f(ii))/dU; 

%for west 

rvi=(UIn-Uv(ii))/(Uv(ii)-iU(ii-1)); lfvi=max(0,TVD(rvi)); 

ADTvi=0.5*lfvi*(Uv(ii)-iU(ii-1)); rvi_1=(Uv(ii)-iU(ii-1))/(iU(ii-1)-Uv(ii-2)); 

lfvi_1=max(0,TVD(rvi_1)); ADTvi_1=0.5*lfvi_1*(iU(ii-1)-Uv(ii-2)); 

rpi=(Up(ii+1)-Up(ii))/(Up(ii)-Up(ii-1)); lfpi=max(0,TVD(rpi)); 

ADTpi=0.5*lfpi*(Up(ii)-Up(ii-1)); rpi_1=(Up(ii)-Up(ii-1))/(Up(ii-1)-Up(ii-2)); 

lfpi_1=max(0,TVD(rpi_1)); ADTpi_1=0.5*lfpi_1*(Up(ii-1)-Up(ii-2)); 

fiU(ii)=K*(UIn-2*Uv(ii)+iU(ii-1)+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(Uv(ii)+ADTvi-iU(ii-

1)-ADTvi_1)+(1-Q)*(Up(ii)+ADTpi-Up(ii-1)-ADTpi_1))-Uv(ii)+Up(ii); 

B(ii,ii-1)=(fiU(ii)-f(ii))/dU; 

%for center 

rvi=(UIn-iU(ii))/(iU(ii)-Uv(ii-1)); lfvi=max(0,TVD(rvi)); 

ADTvi=0.5*lfvi*(iU(ii)-Uv(ii-1)); rvi_1=(iU(ii)-Uv(ii-1))/(Uv(ii-1)-Uv(ii-2)); 

lfvi_1=max(0,TVD(rvi_1)); ADTvi_1=0.5*lfvi_1*(Uv(ii-1)-Uv(ii-2)); 

rpi=(Up(ii+1)-Up(ii))/(Up(ii)-Up(ii-1)); lfpi=max(0,TVD(rpi)); 

ADTpi=0.5*lfpi*(Up(ii)-Up(ii-1)); rpi_1=(Up(ii)-Up(ii-1))/(Up(ii-1)-Up(ii-2)); 

lfpi_1=max(0,TVD(rpi_1)); ADTpi_1=0.5*lfpi_1*(Up(ii-1)-Up(ii-2)); 

fiU(ii)=K*(UIn-2*iU(ii)+Uv(ii-1)+Up(ii+1)-2*Up(ii)+Up(ii-1))-L*(Q*(iU(ii)+ADTvi-Uv(ii-

1)-ADTvi_1)+(1-Q)*(Up(ii)+ADTpi-Up(ii-1)-ADTpi_1))-iU(ii)+Up(ii); 

B(ii,ii+1)=(fiU(ii)-f(ii))/dU; 

elseif ii==I 

%for west 

fiU(ii)=K*(UIn-2*UIn+iU(ii-1)+Up(ii)-2*Up(ii)+Up(ii-1))-L*(Q*(UIn-iU(ii-1))+(1-

Q)*(Up(ii)-Up(ii-1)))-UIn+Up(ii); 

B(ii,ii-1)=(fiU(ii)-f(ii))/dU; 

end 

end 

B(:,1)=[]; B(:,end)=[];%End of the Determination of A and B Matrices 

v=sparse(B)\sparse(A); vX=Uv(2:end-1)'-v; Uv=[U0n vX' UIn]; 

vUv=max(abs(v)); it=it+1; 

end %End of NR iteration 

Un=Uv; Up=Un;%End of the implicit solution 

end%End of the numerical solution 

%Analytical Solution 

i=1; Ua(1:I)=NaN; 

for x=X 

if D==0 

Ua(i)=1-heaviside(x-vf*dt*n); %Analytical Solution with Method of Characteristics 

else 

Ua(i)=0.5*erfc((x-

vf*dt*n)/(2*(D*dt*n)^0.5))+0.5*exp(vf*x/D)*erfc((x+vf*dt*n)/(2*(D*dt*n)^0.5)); 

end 



i=i+1; 

end 

%Plot Solution 

set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]); 

plot(X/I/dx,Un,'gv-','markerfacecolor','g'); 

hold on 

plot(X/I/dx,Ua,'k-','linewidth',2); 

xlabel('Dimensionless Distance','fontsize',12) 

ylabel('Concentration','fontsize',12) 

legend('Numerical Solution','Analytical Solution') 

hold off 

pause(0.001) 

end 

toc 

Supplementary material 3. Google Drive link. 

In order to reach Matlab files, please use following Google Drive link: 

https://drive.google.com/drive/folders/1JCkZqNRVqzAFGR8M3wqQMsGMDtqKuamx?usp=sharing 

https://drive.google.com/drive/folders/1JCkZqNRVqzAFGR8M3wqQMsGMDtqKuamx?usp=sharing

