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Abstract
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1. Introduction

The theory of convex analysis plays an important role in almost all branches of mathematics, physics,
dynamic systems theory, optimization, and so forth. Convex function theory is an important part of the
general topic of convexity with a long history and full of application value.

De�nition 1. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn.

i) A set Ω ⊂ Rn is said to be convex if x,y ∈ Ω and 0 ≤ α ≤ 1 implies

αx+ (1− α)y = (αx1 + (1− α)y1, αx2 + (1− α)y2, . . . , αxn + (1− α)yn) ∈ Ω.

Email addresses: shihuannan2014@qq.com, sfthuannan@buu.edu.cn (Huan-Nan Shi), ldwangpei@buu.edu.cn (Pei
Wang), sftzhangjian@buu.edu.cn (Jian Zhang), wsdu@mail.nknu.edu.tw (Wei-Shih Du)

Received August 24, 2021; Accepted: September 26, 2021; Online: September 29, 2021



H.-N. Shi, P. Wang, J. Zhang, W.-S. Du, Results in Nonlinear Anal. 4 (2021), 235�243. 236

ii) Let Ω ⊂ Rn be convex set. A function φ: Ω → R is said to be a convex function on Ω if

φ(αx+ (1− α)y) ≤ αφ(x) + (1− α)φ(y) (1)

holds for all x,y ∈ Ω and for all α ∈ [0, 1]. If the strict inequality in (1) holds whenever x ̸= y and
α ∈ [0, 1], then φ is said to be strictly convex. If −φ is convex, then φ is said to be concave; if −φ
is strictly convex, then φ is said to be strictly concave.

There have been a number of literature on convex functions of one variable. But the literature on convex
functions of several variables is relatively scarce. A primary problem is the judgment of convex functions.

The following proposition is a well-known criteria for the judgment of convex functions of one variable.

Proposition 1. Let I ⊂ R be an open convex set (that is, an interval) and let g : I → R be twice

di�erentiable. Then

1) a function g is convex on I if and only if g′′(t) ≥ 0 for all t ∈ I;

2) if g′′(t) > 0 on I for all t ∈ I, then g is strictly convex on I.

As for the judgment criteria of convex functions of several variables, we have the following theorems.

Theorem 1 ([4, p. 644, B.3.d] and [10, p. 38, Proposition 4.3]). Let Ω ⊂ Rn be an open convex set and let

φ : Ω → R be twice di�erentiable. Then φ is convex on Ω if and only if the Hessian matrix

H(x) =

(
∂2φ(x)

∂xi∂xj

)
1≤i,j≤n

is nonnegative de�nite on Ω. If H(x) is positive de�nite on Ω, then φ is strictly convex on Ω.

In [12], Wu and Zhu proved the following judgment theorem for convex functions of several variables.

Theorem 2 ([12, p. 80, Theorem 1.3.1]). Let φ be a continuously di�erentiable function on the convex set

Ω ⊂ Rn. Then φ is a convex function on Ω if and only if

φ(x) ≥ φ(y) + [∇φ(y)]T (x− y), x,y ∈ Ω,

where ∇φ(y) =
( ∂φ
∂y1

, ∂φ
∂y2

, . . . , ∂φ
∂yn

)
.

The following judgment theorem allows us to convert the convexity of functions of several variables into
the convexity of functions of one variable to judge. We translate and recite its proof from [10] as follows.

Theorem 3 ([10, p. 38, Proposition 4.4]). Let Ω ⊂ Rn be an open convex set and φ : Ω → R. For x,y ∈ Ω,
let g(t) = φ(tx+ (1− t)y) on (0, 1). Then

(a) the function φ is convex on Ω if and only if g is convex on (0, 1) for all x,y ∈ Ω;

(b) the function φ is strictly convex on Ω if and only if g is strictly convex on (0, 1) for all x,y ∈ Ω and

x ̸= y.

Proof. Let x,y ∈ Ω and r, s, α ∈ (0, 1). If the function φ is convex on Ω, then

g(αr + (1− α)s) = φ((αr + (1− α)s)x+ (1− αr − (1− α)s)y)

= φ(α(rx+ (1− r)y) + (1− α)(sx+ (1− s)y))

≤ αφ(rx+ (1− r)y) + (1− α)φ(sx+ (1− s)y)

= αg(r) + (1− α)g(s).
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Hence, the function g is convex on (0, 1).
For any x̃, ỹ ∈ Ω, since Ω is an open convex set, for a su�ciently small ε, we have

x =
x̃− ε(x̃+ ỹ)

1− 2ε
∈ Ω and y =

ỹ − ε(x̃+ ỹ)

1− 2ε
∈ Ω.

Let r = 1 − ε and s = ε. Then r, s ∈ (0, 1), x̃ = rx + (1 − r)y, and ỹ = sx + (1 − s)y. Since g(t) =
φ(tx+ (1− t)y) is convex on (0, 1), for α ∈ (0, 1), we have

φ(αx̃+ (1− α)ỹ = φ(αr + (1− α)s)x+ (1− αr − (1− α)s)y)

= g(αr + (1− α)s) ≤ αg(r) + (1− α)g(s) = αφ(x̃) + (1− α)φ(ỹ).

Hence, the function φ is convex on Ω.
Following a similar argument as in the proof above and taking x ̸= y and r ̸= s, one can verify the

�strictly convex� case.

In general literature, Theorem 1 is usually applied to judge the convexity of functions of several variables.
Such applications often increase the di�culty and complexity of proofs. Using Theorem 3 as a judgement
criteria is sometimes more concise. In this paper, we will give some important examples to demonstrate the
conciseness.

2. Applications of Theorem 3

In this section, we use the notation Rn
+ = {x = (x1, x2, . . . , xn) ∈ Rn : xi > 0, i = 1, . . . , n}.

Theorem 4 ([15, pp. 1177�1179, Section 6, Theorem 6.1]). Let a = (a1, a2, . . . , an), x = (x1, x2, . . . , xn) ∈
Rn
+, and

∑n
i=1 xi = 1. Then the function l(a) =

∏n
i=1 a

xi
i is concave in a ∈ Rn

+.

Sketch of the proof of Theorem 6.1 in [15]. Directly computing shows that the Hessian matrix of l(a) is

H =


x1(x1−1)l(a)

a21

x1x2l(a)
a1a2

· · · x1xnl(a)
a1an

x1x2l(a)
a1a2

x2(x2−1)l(a)
a22

· · · x2xnl(a)
a1an

...
...

. . .
...

x1xnl(a)
a1an

x2xnl(a)
a2an

· · · xn(xn−1)l(a)
a2n

 . (2)

Then, for 1 ≤ i ≤ n, the i-th leading principal minor determinant of the matrix (2) is

li(a)
i∏

j=1

(
xi
aj

)2

∣∣∣∣∣∣∣∣∣
1− 1

x1
1 · · · 1

1 1− 1
x2

· · · 1
...

...
. . .

...
1 1 · · · 1− 1

xi

∣∣∣∣∣∣∣∣∣ = (−1)ili(a)(1− x1 − x2 − · · · − xi)
i∏

j=1

xj
a2j
.

The signs of these determinants are determined by (−1)i. From the discriminant method of the semi-negative
de�nite matrix (see [11], pp. 8�9), it follows that the Hessian matrix in (2) is nonnegative de�nite. As a
result, from Theorem 1, we conclude that the function l(a) is concave in a ∈ Rn

+.

Alternative proof of Theorem 6.1 in [15] by Theorem 3. For a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Rn
+,

and t ∈ [0, 1], let

φ(t) = f(ta+ (1− t)b) =

n∏
i=1

[tai + (1− t)bi]
xi .
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Then

φ′(t) = φ(t)

n∑
i=1

xipi

and

φ′′(t) = φ′(t)
n∑

i=1

xipi − φ(t)
n∑

i=1

xip
2
i = φ(t)

[(
n∑

i=1

xipi

)2

−
n∑

i=1

xip
2
i

]
,

where

pi =
ai − bi

tai + (1− t)bi
, 1 ≤ i ≤ n.

By virtue of monotonicity of the weighted power mean, we acquire

n∑
i=1

xipi ≤

(
n∑

i=1

xip
2
i

)1/2

.

Therefore, we see that φ′′(t) ≤ 0. According to Theorem 3, we obtain that the functionf(a) = l(a) is concave
on Rn

+. The proof of Theorem 4 is complete.

Remark 1. After carefully comparing the above two proofs, we think that the second proof of Theorem 4 by
using Theorem 3 is technically simpler.

Theorem 5. Let a = (a1, a2, . . . , an), x = (x1, x2, . . . , xn) ∈ Rn
+, and

∑n
i=1 xi = 1. Then the weighted

harmonic mean of n variables

h(a) = f(a1, a2, . . . , an) =

(
n∑

i=1

xi
ai

)−1

is a convex function in a on Rn
+.

Proof. For a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Rn
+, and t ∈ [0, 1], let

ϕ(t) = h(ta+ (1− t)b) =

[
n∑

i=1

xi
tai + (1− t)bi

]−1

.

Then

ϕ′(t) = −

[
n∑

i=1

xi
tai + (1− t)bi

]−2[ n∑
i=1

−xi(ai − bi)

(tai + (1− t)bi)2

]
and

ϕ′′(t)

[
n∑

i=1

xi
tai + (1− t)bi

]2
= 2

[
n∑

i=1

xi
tai + (1− t)bi

]−1[ n∑
i=1

−xi(ai − bi)

(tai + (1− t)bi)2

]2
−

n∑
i=1

2xi(ai − bi)
2

(tai + (1− t)bi)3
.

To prove ϕ′′(t) ≤ 0, we only need to prove[
n∑

i=1

−xi(ai − bi)

(tai + (1− t)bi)2

]2
≤

[
n∑

i=1

xi
tai + (1− t)bi

][
n∑

i=1

xi(ai − bi)
2

(tai + (1− t)bi)3

]
,

this is, [
n∑

i=1

xi(ai − bi)

(tai + (1− t)bi)2

]2
≤

n∑
i=1

[ √
xi√

tai + (1− t)bi

]2 n∑
i=1

[ √
xi (ai − bi)

(tai + (1− t)bi)3/2

]2
.

From the Cauchy inequality, we see that this inequality holds. The proof of of Theorem 5 is complete.
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Theorem 6. Let a = (a1, a2, . . . , an), x = (x1, x2, . . . , xn) ∈ Rn
+, and

∑n
i=1 xi = 1. Then the function

g(a) = f(a1, a2, . . . , an) = ln

(
n∑

i=1

xiai

)

is concave on Rn
+.

Proof. For a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Rn
+, and t ∈ [0, 1], let

r(t) = g(ta+ (1− t)b) = ln

[
n∑

i=1

(tai + (1− t)bi)xi

]
.

Then

r′(t) =

∑n
i=1(ai − bi)xi∑n

i=1[tai + (1− t)bi]xi

and

r′′(t) = −
[∑n

i=1(ai − bi)xi
]2(∑n

i=1[tai + (1− t)bi]xi
)2 ≤ 0.

By Theorem 3, we see that g(a) is a concave function on Rn
+. The proof of Theorem 6 is complete.

Proposition 2 ([12, p. 83]). Let f : Rn → R be de�ned by

f(x) = f(x1, . . . , xn) = x21 + x22 + · · ·+ x2n + x1x2 + · · ·+ x1xn + x2x3 + · · ·+ x2xn + · · ·+ xn−1xn.

Then f is a convex function on Rn.

Proof. We write

f(x) = x1

n∑
i=1

xi + x2

n∑
i=2

xi + · · ·+ xn−1

n∑
i=n−1

xi + xn

n∑
i=n

xi =
n∑

j=1

(
xj

n∑
i=j

xi

)
.

For a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, and t ∈ [0, 1], let

r(t) = g(ta+ (1− t)b) =

n∑
j=1

[(
taj + (1− t)bj

) n∑
i=j

(tai + (1− t)bi)

]
.

Then

r′(t) =

n∑
j=1

[
(aj − bj)

n∑
i=j

(tai + (1− t)bi) +
(
taj + (1− t)bj

) n∑
i=j

(ai − bi)

]
and

r′′(t) = 2

n∑
j=1

[
(aj − bj)

n∑
i=j

(ai − bi)

]
= 2

n∑
j=1

(
yj

n∑
i=j

yi

)
=

(
n∑

j=1

yj

)2

+

n∑
j=1

y2j ≥ 0,

where yj = aj − bj . Applying Theorem 3 reveals that f(x) is a convex function on Rn.

Remark 2. In [12, p. 83], making use of Theorem 2, Wu and Zhu discussed Proposition 2 as follows. For
x,y ∈ Ω, it is valid that

f(x) ≥ f(y) + [∇f(y)]T (x− y) ⇐⇒
x21 + x22 + · · ·+ x2n + x1x2 + · · ·+ x1xn + x2x3 + · · ·+ x2xn + · · ·+ xn−1xn

≥ y21 + y22 + · · ·+ y2n + y1y2 + · · ·+ y1yn + y2y3 + · · ·+ y2yn + · · ·+ yn−1yn
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+


2y1 + y2 + · · ·+ yn
2y2 + y3 + · · ·+ yn

...
2yn + yn−1


T

(x1 − y1, x2 − y2, . . . , xn − yn)
T ⇐⇒

x21 + x22 + · · ·+ x2n + x1x2 + · · ·+ x1xn + x2x3 + · · ·+ x2xn + · · ·+ xn−1xn

≥ −y21 − y22 − · · · − y2n + 2x1y1 + x1y2 + · · ·+ x1yn + 2x2y2 + x2y3 + · · ·+ x2yn + · · ·+ 2xnyn + xnyn−1.

Wu and Zhu claimed that, if taking x1 = −1, y1 = 0, x2 = 0, y2 = 0, . . . , xn−1 = 0, yn−1 = 0, xn = 3,
and yn = 2, then the above inequalities do not hold, and then f is a non-convex function. In fact, the above
inequality does hold. Hence, it is wrong to assert that f is a non-convex function in [12, p. 83].

Proposition 3 ([1, p. 39]). The function

q(x, y) =
1

(x+ y)2

is convex on R2.

Proof. For (x1, x2), (y1, y2) ∈ R2 and t ∈ [0, 1], let

ψ(t) = q(tx1 + (1− t)y1, tx2 + (1− t)y2) =
1

[tx1 + (1− t)y1 + tx2 + (1− t)y2]2
.

Then

ψ′′(t) =
6[(x1 + x2)− (y1 + y2)]

2

[t(x1 + x2) + (1− t)(y1 + y2)]4
≥ 0.

Employing Theorem 3 reveals that q(x, y) is a convex function on R2. The required proof is complete.

Remark 3. In [1, p. 39], with the help of Theorem 1, Chen considered the convexity of q(x, y) only in the
square region D = {(x, y) ∈ R2 : 1 ≤ x ≤ 2, 1 ≤ y ≤ 2}. In fact, as showed by Proposition 3, the function
q(x, y) is convex on the whole plane R2.

3. Convexity of arithmetic mean of integral form

In this section, we discuss the convexity of the arithmetic mean of integral form.

Theorem 7 ([3, p. 854, Theorem 1]). Let I be an interval with nonempty interior on R and f be a continuous

function on I. Then

F (x, y) =


1

y − x

∫ y

x
f(s) d s, x, y ∈ I, x ̸= y

f(x), x = y

(3)

is Schur-convex (or Schur-concave, respectively) on I × I if and only if f is convex (or concave, respectively)

on I.

By virtue of Theorem 1, Zhang and Chu proved in [14, p. 1063, Theorem] the following proposition.

Proposition 4. Under the condition of Theorem 7, if f is a convex function, then the function F (x, y)
in (3) is a convex function.

Wulbert [13, Lemma 2.4] gave an alternative proof of Proposition 4.
Applying Theorem 3, we now provide a new proof of Proposition 4.
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Proof. In order to apply Theorem 3, we need to show that the one-variable function

g(t) = F (tα+ (1− t)β) = F
(
tx1 + (1− t)x2, ty1 + (1− t)y2

)
is convex on (0, 1), where α = (x1, y1) and β = (x2, y2) ∈ Ω.

If letting z1 = ty1 + (1− t)y2 and z2 = tx1 + (1− t)x2, then

g(t) = F (z1, z2) =


1

z1 − z2

∫ z1

z2

f(s) d s, z1 ̸= z2;

f(z1), z1 = z2.

Consequently, it is su�cient to show that the twice derivative g′′(t) > 0.
By assumption, the case z1 = z2 holds trivially. For the case of z1 ̸= z2, letting a = y1−y2 and b = x1−x2,

then we have

g′′(t) =

2(a−b)2

z1−z2

∫ z1
z2
f(s) d s− (a− b)2[f(z1)− f(z2)]

(z1 − z2)2

+
a2[f(z2)− f(z1)− f ′(z1)(z2 − z1)] + b2[f(z1)− f(z2)− f ′(z2)(z1 − z2)]

(z1 − z2)2
.

(4)

Due to the Hermite�Hadamard integral inequality, see the paper [9], the �rst term in (4) is negative. On the
other hand, by Taylor's formula, the second term in (4) is equal to

a2f ′′(z1 + θ1(z2 − z1)) + b2f ′′(z2 + θ2(z1 − z2))

2

with θ1, θ2 ∈ (0, 1), which, due to f ′′(x) > 0, is positive. Accordingly, to show g′′(t) > 0, it is su�cient to
prove the second term is bigger than the absolute value of the �rst term in (4).

Corollary 15 in [2, p. 49] reads that, if f is a twice di�erentiable convex function on an open interval I
and [a, b] ⊂ I, then

0 ≤ f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x) dx ≤ 1

2

[(b− a)f ′(b)− (f(b)− f(a))][f(b)− f(a)− (b− a)f ′(a)]

(b− a)[f ′(b)− f ′(a)]
(5)

provided that f ′(b) ̸= f ′(a). Utilizing the inequality (5), we arrive at

[f(z1)− f(z2)]−
2

z1 − z2

∫ z1

z2

f(s) d s ≤ [f(z2)− f(z1)− f ′(z1)(z2 − z1)][f(z1)− f(z2)− f ′(z2)(z1 − z2)]

(z1 − z2)[f ′(z1)− f ′(z2)]
.

Further setting
X = f(z2)− f(z1)− f ′(z1)(z2 − z1)

and
Y = f(z1)− f(z2)− f ′(z2)(z1 − z2)

and noticing that
X + Y = (z1 − z2)[f

′(z1)− f ′(z2)],

we �gure out

[f(z1)− f(z2))]−
2

z1 − z2

∫ z1

z2

f(s) d s ≤ XY

X + Y
.

Consequently, the second term in (4) is equal to a2X+b2Y
(z1−z2)2

. From the inequality

(a− b)2
XY

X + Y
≤ a2X + b2Y,

we derive g′′(t) > 0. This �nishes the proof.
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Remark 4. In [7, Theorem 1.1] and [8, Lemma 3], Theorem 7 was generalized as follows.
For a continuous function f and a positive continuous weight on I, the weighted arithmetic mean

Q(x, y) =


∫ y
x p(t)f(t) d t∫ y

x p(t) d t
, x ̸= y

f(x), x = y

(6)

of f with the weight p is Schur-convex (or Schur-concave, respectively) on I2 if and only if the inequality∫ y
x p(t)f(t) d t∫ y

x p(t) d t
≤ p(x)f(x) + p(y)f(y)

p(x) + p(y)
(7)

holds (or reverses, respectively) for (x, y) ∈ I2.
Under the condition (7), is the function Q(x, y) de�ned in (6) convex on I2?

Remark 5. Proposition 2 in [5, p. 377] states that, if f(x) is not a constant in [a, b], is continuous in [a, b],
and satis�es m ≤ f ′(x) ≤M for a < x < b, then

mM(b− a)2 + 2(b− a)[mf(a)−Mf(b)] + [f(a)− f(b)]2

2(M −m)
≤
∫ b

a
f(x) dx

≤ −mM(b− a)2 + 2(b− a)[mf(a)−Mf(b)] + [f(a)− f(b)]2

2(M −m)
. (8)

The double inequality (8) was reformulated in [6, pp. 28�29, Theorem 5.2] as∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x) dx

∣∣∣∣ ≤ [f(b)− f(a)−m(b− a)][M(b− a)− f(b) + f(a)]

2(M −m)(b− a)
. (9)

When f(x) is a twice di�erentiable convex function on [a, b], we obtainm = f ′(a) andM = f ′(b). As a result,
the inequality (9) becomes the inequality (5) in [2, p. 49, Corollary 15]. Consequently, the inequality (5)
in [2, p. 49, Corollary 15] is a special case of [5, p. 377, Proposition 2] and [6, pp. 28�29, Theorem 5.2].
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