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Abstract

In this study, we derive Gershgorin discs of elliptic complex matrices in the elliptic plane.
Also, we investigate the location of the zeros of an elliptic complex-valued polynomial with
the help of Gershgorin discs of elliptic complex matrices. To prove the authenticity of our
results and to distinguish them from existing ones, some illustrative examples are also given.
Elliptic complex numbers are a generalized form of complex and so real numbers. Thus, the
obtained results extend, generalize and complement some known Gershgorin discs results
from the literature.

1. Introduction

The Gershgorin set that is composed of a union of discs, is a region that is inclusive of eigenvalues of matrices. This result is stated in the
following theorem, where the deleted row sum R′i of a complex matrix A with elements ai j is defined as;

R′i =
n

∑
j=1, j 6=i

∣∣ai j
∣∣.

Theorem 1.1. (Gershgorin’s Theorem) All the eigenvalues of the n×n complex matrix A are located in the union of the discs n

n⋃
i=1

Γ
R
i = Γ

R

where

Γ
R
i =

{
z ∈C : |z−aii| ≤ R′i

}
.

The Gershgorin set in matrix theory has important applications in modeling human faces, size reduction and data compression, signal and
image processing-restoration, computational mathematics, some fields of pure and applied mathematics and so on [1]−[10]. With the rapid
development of these fields, more and more researchers are interested in the Gershgorin set and have obtained many valuable results. For the
Gershgorin set, they mainly consider real, complex and real quaternion matrices.

On the other hand, elliptic complex numbers are defined as

z = x+uy

where x, y ∈ R and u2 = p < 0 ∈ R. Since many physical systems have elliptical behaviors, elliptic complex number systems have many
applications in science and technology, [11]−[18]. Thus, it is getting more and more necessary for us to further study the theoretical
properties and numerical computations of elliptic complex numbers and their matrices.

In this study, we introduce concepts of the Gershgorin sets of the elliptic complex matrices and investigate the location of the zeros of an
elliptic complex-valued polynomial with the help of this theory. To prove the authenticity of our results and to distinguish them from existing
ones, some illustrative examples are also given. Elliptic numbers are a generalized form of complex and so real numbers. Thus, the obtained
results extend, generalize and complement some known Gershgorin set results from the literature.
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2. Algebraic Properties of Elliptic Complex Numbers

The set of elliptic complex numbers is denoted by

Cp =
{

z = x+uy : x,y ∈ R, u2 = p < 0
}
.

For a elliptic complex number z = x+uy ∈Cp, the real number Re(z) = x is called the real part of z and Im(z) = y is called the imaginary
part of z.
The conjugate and norm of elliptic complex number z = x+uy are defined as

z = x−uy and ‖z‖p =
√

zz =
√

x2− py2,

respectively.
Addition, multiplication and scalar multiplication of the elliptic complex numbers z1 = x1 +uy1, z2 = x2 +uy2 ∈Cp are defined by

z1 + z2 = (x1 +uy1)+(x2 +uy2) = x1 + x2 +u(y1 + y2) ,

z1z2 = (x1 +uy1)(x2 +uy2) = (x1x2 + py1y2)+u(x1y2 + x2y1) ,

λ z1 = λ (x1 +uy1) = λx1 +uλy1, λ ∈ R,

respectively, [19].

Theorem 2.1. Cp is 2D vector space over a field R according to addition and scalar multiplication, [20].

Also, each elliptic complex number can be represented in a single form in an elliptic plane. In the elliptic plane, the distance between of the
elliptic complex numbers z1 = (x1,y1) and z2 = (x2,y2) is defined as

‖z1− z2‖p =

√
(x1− x2)

2− p(y1− y2)
2,

[19].
Unit circles are defined by requiring ‖z‖p =

√
x2− py2 = 1 as in Figure 2.1 In special case p =−1, the elliptic plane corresponds to the

Euclidean plane.
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Figure 2.1: Unit circles in C−0.5,C−1,C−5.

Definition 2.2. Let z = x+uy ∈Cp be given. Cp is algebraically isomorphic to complex numbers

C =
{

x+ iy | x, y ∈ R and i2 =−1
}

through the bijective map

αp : Cp→C
z = x+uy→ αp (z) = x+ i

√
|p|y,

[19].

The fundamental theorem of algebra for complex-valued polynomials: Let us consider the polynomial f with real coefficient and degree
N > 0. So, thanks to the polynomial f , two algebraic curves are defined by

Re( f (z)) = 0 and Im( f (z)) = 0.

Each of these two algebraic curves consists of different continuous branches and these curves intersect the circle ‖z‖= r at 2N points. In
addition, the crossing points of these two algebraic curves remain within this circle. This shows that the polynomial f has at least one real
root, [21].
Now let’s give the fundamental theorem of algebra for complex numbers that Gauss proved given above for elliptic complex-valued
polynomials.
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Theorem 2.3. A n− th degree polynomial function with elliptic complex coefficients and elliptic complex-valued

fp (z) =
n

∑
i=0

aizi = zn+an−1zn−1 + ...+a1z+a0

has exactly n zeros in the set of the elliptic complex numbers, counting repeated zeros.

Proof. Let z = x+uy ∈Cp be given. Considering the Definition 2.2 we can express each elliptic complex number in terms of the complex
number. Then we can take a complex number instead of an elliptic complex number using the equation u = i

√
|p| and the equivalence

z = x+uy≡ x+ i
√
|p|y exists. Let fp (z) be the n− th order monic polynomial with the elliptic complex-valued real coefficient

fp (z) = zN + cN−1zN−1 + ...+ c1z+ c0=zN +
N−1

∑
n=0

cnzn,

where z = x+uy ∈Cp and c0,c1, ...,cN−1 ∈ R.
Considering the equation z = x+uy≡ x+ i

√
|p|y, the polynomial fp (z) becomes a monic polynomial with n− th order complex-valued real

coefficients. Therefore, according to the fundamental theorem of algebra for complex valued and complex coefficients, the polynomial f has
at least one root. Let z0 = x0+ iy0 be one root of fp (z). In this case, taking into account the equality u = i

√
|p|, the equality z0 = x0+

u√
|p|

y0

can be written and z0 becomes a root of the polynomial fp. As a result, every n− th order monic polynomial with elliptic complex-valued
and real coefficient has at least one root.

This theorem is true for all polynomials with elliptic complex coefficients. To see why this is true, suppose the theorem holds for elliptic
complex-valued polynomials with real coefficients, and let fp (z) = zN +cN−1zN−1 + ...+c1z+c0, be an elliptic complex valued polynomial
with elliptic complex coefficients. Let fp (z) = zN + cN−1zN−1 + . . .+ c0 be the polynomial whose coefficients are the elliptic conjugates of
the coefficients of f , and let gp (z) = fp (z) fp (z) = fp (z) fp (z). Then g is a polynomial with real coefficients, so by assumption it has a root
z0. This means that gp (z0) = fp (z) fp (z), so either z0 or z0 is a root of f .

Also, according to our theorem, the two curves Re
(

fp (z)
)
= 0 and Im

(
fp (z)

)
= 0 must intersect at some point in the interior of the elliptic

disc. At this intersection point, the real and imaginary parts of fp (z) are both 0, so fp (z) = 0; in other words, the intersection point is a root
of f .
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Figure 2.2: The solid red lines are the points where Re( fp (z)) = 0 and the dashed blue lines are the points where Im( fp (z)) = 0 in elliptic plane for the
elliptic complex valued polynomial fp (z) = z4−9z3 +19z2 +31z−102. In here intersection points of algebraic curves Re( fp (z)) = 0 and Im( fp (z)) = 0 in
elliptic plane are root of fp (z) . Also, the large, solid ellipse is |z|= r∗, and the smaller, dotted ellipse is |z|= r0.

The set Cm×n
p denotes all m×n type matrices with elliptic complex number entries. For A = A1+uA2, B = B1+uB2 ∈Cm×n

p ,C =C1+uC2 ∈
Cn×l

p the ordinary matrix addition, scalar multiplication and multiplication are defined by

A+B = (A1 +uA2)+(B1 +uB2) = (A1 +B1)+u(A2 +B2) ∈Cm×n
p ,

λA = λ (A1 +uA2) = λA1 +u(λA2) ∈Cm×n
p

and

AC = (A1 +uA2)(C1 +uC2) = (A1C2 + pA2C2)+u(A1C2 +A1C1) ∈Cm×l
p ,

respectively.

Theorem 2.4. [22] Let A and B be elliptic complex matrices of appropriate sizes. Then the following are satisfied:

1.
(
A−1)−1

= A,
2. (AB)−1 = B−1A−1,

3.
(
Ak)−1

=
(
A−1)k

, k ∈ Z+,

4.
(
AT )T

= A,
5. (λA)T = λAT ,
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6. (AB)T = BT AT ,

7.
(
Ak)T

=
(
AT )k

, k ∈ Z+,

8.
(
A
)
= A, (A∗)∗ = A,

9. (A+B) = A+B, (A+B)∗ = A∗+B∗,
10. (AB) = AB, (AB)∗ = B∗A∗.

Definition 2.5. Let A ∈Cn×n
p , λ ∈Cp. If there exists 0 6= x ∈Cn×1

p such that

Ax = λx

then λ is called a eigenvalues of A and x is called a eigenvector of A associate with λ . The set of eigenvalues of elliptic complex matrix A is
defined as

σp (A) =
{

λ ∈Cp : Ax = λx, ∃x 6= 0
}
.

Theorem 2.6. Elliptic complex matrix A ∈Cn×n
p has exactly n elliptic eigenvalues.

Proof. Since the characteristic polynomial fA (s) = det(A− sI) of matrix A ∈Cn×n
p will be an n− th order polynomial, from the fundamental

theorem of algebra for elliptic complex numbers, matrix A has at most n eigenvalues.

Example 2.7. Let find the eigenvalues of the elliptic complex matrix

A =

 1+u 0 1
0 u 0
1 0 1−u

 ∈C3×3
p .

Characteristic polynomial of the elliptic complex matrix A is fA (s) = det(A− sI2×2) = (s−u)(s2−2s− p). Zeros of fA are

s1 = u, s2 = 1+
√

1− p, s3 = 1−
√

1− p.

These roots are also the eigenvalues of the matrix A. The eigenvalues of the matrix A according to the values p are given in the table below.

λ1 λ2 λ3
p =−0.5 1.7071 0.2929 u
p =−1 1 1 u
p =−5 1+0.8944u 1−0.8944u u

Table 1: The eigenvalues of the matrix A according to the values p.

Theorem 2.8. Each eigenvalue of the elliptic complex matrix A ∈Cn×n
p is inside at least one of the ellipses Di (A) in the elliptic plane,

Di (A) =
{

z : ‖z−aii‖p ≤ Ri, 1≤ i≤ n
}

in here Ri = ∑
j 6=i

∥∥ai j
∥∥

p. In other words, all the eigenvalues of matrix A are in the region D(A),

D(A) =
n⋃

i=1
Di (A).

Proof. Let’s admit that λ is an eigenvalue of matrix A. In this case, there is a non-zero vector x = (x1,x2, ...,xn)
T ∈Cn×1

p such that Ax = λx.
Let’s say xk is the largest component of x, so

‖xk‖p = max
{
‖xi‖p , 1≤ i≤ n

}
> 0

is. In this case

∑
j 6=k

ak jx j = (λ −akk)

can be written from the equation ak1x1 +ak2x2 + ...+aknxn = λxk. In the last equation, the norm of both sides of the equation is taken and if
the triangle inequality is used,

‖λ −akk‖p ‖xk‖p =

∥∥∥∥∥ ∑
j 6=k

ak jx j

∥∥∥∥∥
p

≤ ∑
j 6=k

∥∥ak j
∥∥

p

∥∥x j
∥∥

p

≤

(
∑
j 6=k

∥∥ak j
∥∥

p

)
‖xk‖p
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is obtained. Here,

‖λ −akk‖p ≤ ∑
j 6=k

∥∥ak j
∥∥

p

inequality is obtained.
If it is called

Ri = ∑
j 6=i

∥∥ai j
∥∥

p = ‖ai1‖p +‖ai2‖p + ...+
∥∥∥ai(i−1)

∥∥∥
p
+
∥∥∥ai(i+1)

∥∥∥
p
+ ...+‖ain‖p (i = 1,2,3, ...,n),

it is proved that each eigenvalue of the elliptic matrix A ∈Cn×n
p is inside at least one of ellipses in the elliptic plane

Di (A) =
{

z : ‖z−aii‖p ≤ Ri, 1≤ i≤ n
}
.

Example 2.9. Let

A =


4−3u u 2 −2

u −1+u 0 0
1+u −u 5+6u 2u

1 −2u 2u −5−5u

 ∈C4×4
p .

According to the Theorem 2.8 we have

R1 = 4+
√
−p, R2 =

√
−p, R3 =

√
1− p+3

√
−p and R4 = 1+4

√
−p.

For elliptic complex matrix A there are Gershgorin disc:

D1 : (x−4)2− p(y+3)2 ≤ (4+
√
−p)2

D2 : (x+1)2− p(y−1)2 ≤ (
√
−p)2

D3 : (x−5)2− p(y−6)2 ≤
(√

1− p+3
√
−p
)2

D4 : (x+5)2− p(y+5)2 ≤ (1+4
√
−p)2.

In the elliptic plane, regions of the eigenvalues of the matrix A according to the state of p are as shown in the lower graph.
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Figure 2.3: In elliptic plane Gershgorin discs for p =−0.5, p =−1 and p =−5,respectively.

Locate Zeros of Polynomials: Eigenvalue inclusion sets can be used to locate zeros of elliptic valued polynomials by using the polynomial’s
companion matrix, whose characteristic polynomial is the given polynomial, [23]−[28]. Thus, its eigenvalues are the zeros of the polynomial.

The companion matrix of elliptic valued monic polynomial fp (z) =
n
∑

i=0
aizi = zn+an−1zn−1 + ...+a1z+a0 is

Cp ( f ) =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
...

...
...

0 0 · · · 1 −an−1

 .

Figure 2.4 shows regions of the zeros of the elliptic valued polynomial fp (z) = z4− z3 +0.2z2−0.1z+2 according to the state of p. The
zeros are indicated by the white dots.
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Figure 2.4: Regions of the zeros of the elliptic valued polynomial fp (z) for p =−0.5, p =−1 and p =−5, respectively.

3. Conclusions

In this study, we derive Gershgorin discs of elliptic complex matrices in the elliptic plane. Eigenvalues of matrices have important applica-
tions in modeling human faces, gene analysis, information retrieval and extraction, size reduction and data compression, signal and image
processing-enhancement processes. The use of elliptic matrices in these application areas will enable the previously known definitions and
theorems to be interpreted with a wider perspective, and by selecting the ideal space for the problems, great flexibility and efficiency will be
brought to existing techniques.
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