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Abstract
In this paper, inference and prediction problems are studied under progressively Type-II
censored data. When the latent lifetime follows the Unit-Generalized Rayleigh distri-
bution, maximum likelihood estimators of the unknown parameters are established, and
corresponding existence and uniqueness are also provided. Besides, the approximate con-
fidence intervals are constructed based on asymptotic approximation theory. For compari-
son, another alternative generalized point and interval estimates are constructed based on
proposed pivotal quantities. Further, point and interval predictions for the censored sam-
ples are established by using conventional classical and generalized inferential approaches.
Finally, extensive simulation studies are carried out to investigate the performance of dif-
ferent methods, and one real-life example is presented to illustrate the applicability of the
obtained results.
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1. Introduction
Nowdays, modern products are always exceedingly durable and feature a long lifetime

in their lifecycle. Therefore, sometimes it is difficult to collect complete failure data due to
practical constraints like time and cost. Under such situation, the observations appeared
frequently as censored data. To be specific, censoring means that there is a part of failure
times observed in life testing and other data collection procedures. In practice, Type-I
censoring and Type-II censoring are conventional most used censoring schemes (CSs). The
Type-I CS allows the test to stop at a predetermined time, whereas the Type-II CS enables
that the test stops when the pre-fixed number of failures is obtained. However, both of
these CSs do not allow experimenters to withdraw any alive units during the test. In order
to give a more general testing way, the progressive censoring scheme is further introduced
in practice including progressive Type-I CS and progressive Type-II CS as its special cases,
which appears more flexible and allows experimenters to remove survival units at different
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stages of the test. For progressive Type-II CS (PCS-II), it can be described as follows.
Suppose a total of n units is put into a life test, and m(6 n) and (r1, r2, . . . , rm) are the pre-
fixed number of failures and CS, respectively. When the first failure occurs, r1 live units
are randomly removed from the remaining n − 1 units. When the second failure occurs,
r2 live units are randomly withdrawn from the remaining n − 1 − (r1 + 1) units. Following
similar procedure, when mth failure occurs, all remaining survival n − 1 −

∑m−1
i=1 (ri + 1)

units are removed and the test stops. Therefore, a progressively Type-II censored sample
of size m can be obtained as {T1:m:n, T2:m:n, . . . , Tm:m:n} with CS (r1, r2, . . . , rm). It is
seen clearly that the PCS-II is a more general testing approach than conventional CSs, and
commonly used complete and Type-II censoring are its special cases. Progressive censoring
has attracted wide attention in both theoretical studies and practical applications and has
been discussed by many authors. See, for example, some works of [1, 9, 13, 14]. For more
details, one may refer to the monographs by [2, 3].

Lifetime models with bounded support are very useful in data analysis. Especially,
when the support lies in (0, 1), the associated models are called unit lifetime distribution
in literature. Besides conventional beta and Kumaraswamy distributions, another type of
unit distributions are proposed by using variable transformation (e.g. [4,15,16]). Recently,
a Unit-Generalized Rayleigh (UGR) distribution is proposed by [11]. Let random variable
X follows the UGR distribution, then its cumulative distribution function (CDF) and
probability density function (PDF) are presented as

F (x; θ, λ) = 1 −
[
1 − e−λ(log x)2]θ

, 0 < x < 1 (1.1)

and

f(x; θ, λ) = 2θλ

(1
x

)(
log 1

x

)
e−λ(log x)2 [1 − e−λ(log x)2]θ−1

, 0 < x < 1 (1.2)

where λ > 0 and θ > 0 are scale and shape parameters, respectively. Correspondingly,
associated survival function (SF) and hazard function (HF) are given by

S(x; θ, λ) =
[
1 − e−λ(log x)2]θ and H(x; θ, λ) =

2θλ
(

1
x

) (
log 1

x

)
eλ(log x)2 − 1

, 0 < x < 1. (1.3)

Hereafter, the UGR distribution with parameters θ and λ is denoted as UGR(θ, λ).
This distribution is not only a continuous probability distribution with double-bounded
support, but also has a variety of shapes under different choices of parameters θ and
λ, which can be used to model various characteristics of practical lifetime data. For
illustrations, some plots of the PDF, SF and HF are presented in Figure 1 showing great
flexibility. Although the commonly used lifetime distributions feature infinite supports like
(0, ∞) and (−∞, ∞), in various practical areas such as engineering, reliability, survival
analysis, medicine, etc, the lifetime of products cannot reach to infinite. Under this
situation, it is more reasonable to use a distribution with bounded support for statistical
inference, where a bounded model may provide high weights for observations and provide
a better fit in data analysis. Besides, the UGR distribution has an invertible closed form
CDF, which makes it suitable for computation-intensive activities like the Kumaraswamy
distribution. Thus, the UGR distribution discussed in this paper may have its potential
theoretical and applicable applicability.

Motivated by such previous reasons and due to the practical applications of the UGR
distribution, this paper discusses estimation of the unknown parameters when data are
progressively Type-II censored. The maximum likelihood estimates (MLEs) are estab-
lished, and corresponding approximate confidence intervals (ACIs) are also constructed
based on asymptotic approximation theory. For comparison, another general estimation
approach based on pivotal quantities is also proposed as a supplement. The numerical
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Figure 1. The plots of PDF, SF and HF

results indicate that our proposed general point and interval estimates for both model
parameters and prediction issues are superior to traditional results.

The rest of the paper is organized as follows. Conventional likelihood based estimates
are discussed in Section 2. Section 3 proposes another pivotal quantity based generalized
point and interval estimates. The prediction issues for progressively censored samples are
also presented in Section 4 under both likelihood and the proposed general inference ap-
proaches, respectively. In Section 5, simulation studies and a real-life analysis are provided
for illustration. Finally, some concluding remarks are given in Section 6.

2. Likelihood based estimation
In this section, the MLEs of the unknown parameters are established, and the corre-

sponding ACIs are also constructed based on asymptotic approximation theory.

2.1. Maximum likelihood estimate
Suppose {T1:m:n, T2:m:n, . . . , Tm:m:n} is a progressively Type-II censored samples with

CS (r1, r2, . . . , rm) from the UGR distribution with parameters θ and λ, then the log-
likelihood function of λ and θ can be expressed as (e.g. [2])

l(θ, λ) ∝m(log 2 + log θ + log λ) − λ
m∑

i=1
(log ti)2

+
m∑

i=1

{
log 1

ti
+ log

(
log 1

ti

)
+ (θri + θ − 1) log

[
1 − e−λ(log ti)2]}

. (2.1)

where {t1, t2, . . . , tm} is the observation of {T1:m:n, T2:m:n, . . . , Tm:m:n}.
Since it is complex to directly solve the MLEs of two unknown parameters through

the likelihood equation ∂l(θ,λ)
∂θ = ∂l(θ,λ)

∂λ = 0, the profile likelihood approach is utilized to
find the MLEs. Under this procedure, the estimates that maximize the profile likelihood
function are equal to the MLEs obtained from the full likelihood function. For more details,
one can refer to [5] for a review. In the following, two helpful theorems are proposed to
obtain the MLEs.

Theorem 2.1. Suppose T1:m:n, T2:m:n, . . . , Tm:m:n are order statistics from UGR(θ, λ) un-
der progressive Type-II censoring with CS (r1, r2, . . . , rm). For given λ > 0 and m > 0,
the MLE of θ exists, which can be written as

θ̃(λ) = −m∑m
i=1(ri + 1) log

[
1 − e−λ(log ti)2] . (2.2)

Proof. See Appendix A. �
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Substituting θ̃(λ) for θ in (2.1), the profile log-likelihood for λ (without the additive
constant) can be obtained as

l(λ) = m log λ − m log
{

−
m∑

i=1
(ri + 1) log

[
1 − e−λ(log ti)2]} (2.3)

−
m∑

i=1

{
λ(log ti)2 + log

[
1 − e−λ(log ti)2]}

.

Theorem 2.2. For m > 0, the MLE λ̂ of λ uniquely exists, which can be obtained from
equation p(λ) = 0 with

p(λ) = −
m
∑m

i=1(ri + 1) (log ti)2

eλ(log ti)2 −1∑m
i=1(ri + 1) log

[
1 − e−λ(log ti)2] + m

λ
−

m∑
i=1

[
(log ti)2 + (log ti)2

eλ(log ti)2 − 1

]
. (2.4)

Proof. See Appendix B. �

Generally, the closed form of MLE λ̂ cannot be obtained from equation (2.4), then
one can use some numerical approaches such as the Newton-Raphson method, fixed point
iteration to obtain its estimate. Since the solution of (2.4) with respect to λ uniquely exists,
it is reasonable to use common bisection method to find the root. Once λ̂ is obtained, the
MLE of θ can be obtained from Theorem 2.1 as

θ̂ = θ̃(λ̂) = −m∑m
i=1(ri + 1) log

[
1 − e−λ̂(log ti)2

]
2.2. Approximate confidence interval estimation

Since the MLEs of parameters θ and λ cannot be obtained in closed form, it is difficult
to get their exact distribution as well as corresponding exact confidence intervals. In this
subsection, ACIs for θ and λ are constructed based on the Fisher information matrix and
asymptotic approximation theory.

The Fisher information matrix of unknown parameters η = (θ, λ) is given by

I(η) = [Iij ]2×2 =
(

−∂2l(θ,λ)
∂θ2 −∂2l(θ,λ)

∂θ∂λ

−∂2l(θ,λ)
∂λ∂θ −∂2l(θ,λ)

∂λ2

)
with

I11 = −∂2l(θ,λ)
∂θ2 = m

θ2 ,

I22 = −∂2l(θ,λ)
∂λ2 = m

λ2 +
∑m

i=1(θri + θ − 1) (log ti)4eλ(log ti)2[
eλ(log ti)2 −1

]2 ,

I12 = I21 = −∂2l(θ,λ)
∂λ∂θ = −

∑m
i=1(ri + 1) (log ti)2

eλ(log ti)2 −1
.

Under some mild regularity conditions (see [17]), the asymptotic distribution of the
MLE η̂ is given by

η̂ − η
d−→ N(0, I−1(η̂))

where ’ d−→’ denotes convergence in distribution and I−1(η̂) is the inverse of the observed
Fisher information matrix I(η) with

I−1(η̂) =
(

V ar(θ̂) Cov(θ̂, λ̂)
Cov(λ̂, θ̂) V ar(λ̂)

)
.

Hence, for arbitrary 0 < γ < 1, the 100(1 − γ)% ACIs of the parameters θ and λ can be
constructed as (

θ̂ − zγ/2

√
V ar(θ̂), θ̂ + zγ/2

√
V ar(θ̂)

)
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and (
λ̂ − zγ/2

√
V ar(λ̂), λ̂ + zγ/2

√
V ar(λ̂)

)
respectively, where zγ is the upper γ-th quantile of the standard normal distribution.

Remark 2.3. Denote Rx = S(x; θ, λ). For a unit whose lifetime follows UGR(θ, λ), once
the MLEs of θ and λ are obtained, the corresponding MLE for Rx can be expressed as

R̂x =
[
1 − e−λ̂(log x)2]θ̂

, 0 < x < 1.

Then the reliability of this unit can be calculated at a given time x. Furthermore,
the delta method (see, e.g. [22]) can be utilized to find the asymptotic normal dis-
tribution of Rx as Rx−R̂x√

V̂ ar(R̂x)

d−→ N(0, 1) where V̂ ar(R̂x) = (∇R̂x)T I−1(η̂)(∇R̂x) and

(∇R̂x)T =
(

∂R̂x
∂θ , ∂R̂x

∂λ

)T
∣∣∣∣
η=η̂

. Therefore, 100(1 − γ)% ACI for Rx can be established as

(
R̂x − zγ/2

√
V̂ ar(R̂x), R̂x + zγ/2

√
V̂ ar(R̂x)

)

3. Pivotal quantities based estimation
In practical data analysis, small and median sample size sometimes may yield poor

performance for MLEs. Under such situation, another pivotal quantity based generalized
estimators are constructed for supplement and comparison.

First of all, a very helpful result is provided as follows.

Theorem 3.1. Suppose T1:m:n, T2,m,n, . . . , Tm:m:n are order statistics from UGR(θ, λ) un-
der progressive Type-II censoring with CS (r1, r2, . . . , rm). Then pivotal quantities

S1(λ) = 2
m−1∑
i=1

log


1 +

−
[
n −

∑i
j=1(rj + 1)

]
+
∑m

j=i+1(rj + 1)
log
[

1−e−λ(log(Tj:m:n))2
]

log
[
1−e−λ(log(Ti:m:n))2]

[
n −

∑i
j=1(rj + 1)

]
+
∑i

j=1(rj + 1)
log
[

1−e−λ(log(Tj:m:n)2)
]

log
[
1−e−λ(log(Ti:m:n)2)

]


(3.1)

and

S2(θ, λ) = −2θ
m∑

j=1
(rj + 1) log

[
1 − e−λ(log(Tj:m:n))2] (3.2)

follow chi-square distributions with 2m − 2 and 2m degrees of freedom, respectively. Fur-
thermore, S1(λ) and S2(θ, λ) are statistically independent.

Proof. See Appendix C. �

In order to construct generalized estimators for the unknown parameters, another useful
result is given in the following lemma.

Lemma 3.2. Let G(λ) =
log
[

1−e−λ(log a)2
]

log[1−e−λ(log b)2 ] , 0 < b < a < 1. Then function G(λ) increases
in λ with limλ→0+ G(λ) = 1 and limλ→+∞ G(λ) = +∞.

Proof. See Appendix D. �

Based on the lemma 3.2, one has the following result by direct computation.

Corollary 3.3. Pivotal quantity S1(λ) increases in λ with range (0, +∞).
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From Theorem 3.1 and Corollary 3.3, for a given S1 ∼ χ2(2m−2), equation S1(λ) = S1
has an unique solution with respect to λ, and the solution is denoted as h(S1; T ) which
could be regarded as the generalized estimate of parameter λ from the perspective of in-
verse moment estimation, where T = {T1:m:n, T2,m,n, . . . , Tm:m:n} being the progressively
Type-II censored samples. Furthermore, it is noted from Theorem 3.1 that S2(θ, λ) de-
creases in λ with range (0, +∞), then one has

θ = S2

−2
∑m

j=1(rj + 1) log
[
1 − e−λ(log(Tj:m:n))2

] with S2 ∼ χ2(2m). (3.3)

According to the substitution method of [21], a generalized pivotal quantity Q for θ can
be established by substituting h(S1; T ) for λ in (3.3) as follows

Q = S2
H [h(S1; t)]

with H(λ) = −2
m∑

j=1
(rj + 1) log

[
1 − e−λ(log(Tj:m:n))2]

where t denotes the observation of T . Therefore, an algorithm is proposed to construct
the generalized estimates of λ and θ as follows.
Algorithm 1. Generalized estimation for λ and θ.
Step 1 Generate N realizations from χ2(2m − 2) as S11, S12, . . . , S1N .
Step 2 Compute λl = h(S1l; t), l = 1, 2, . . . , N , then the generalized point estimate (GPE)
for λ can be expressed as λ́ = 1

N

∑N
l=1 λl.

Step 3 Generate N samples from χ2(2m) as S21, S22, . . . , S2N .
Step 4 Compute

θl = S2l

−2
∑m

j=1(rj + 1) log
[
1 − e−λl[log(tj)]2

] , l = 1, 2, . . . , N,

then the associated GPE for θ can be calculated by θ́ = 1
N

∑N
l=1 θl.

Step 5 Arrange all estimates of θ and λ in an ascending order as θ[1], θ[2], . . . , θ[N ] and
λ[1], λ[2], . . . , λ[N ], respectively. For arbitrary 0 < γ < 1, a 100(1−γ)% confidence intervals
of θ and λ can be established as(

θ[j], θ[j+N−[Nγ+1]]
)

, j = 1, 2, . . . , [Nγ]

and (
λ[j], λ[j+N−[Nγ+1]]

)
, j = 1, 2, . . . , [Nγ],

where [t] denotes the greatest integer less than or equal to t. Therefore, the 100(1 − γ)%
generalized confidence intervals (GCIs) of θ and λ can be constructed as the j⋆th one
satisfying

θ[j⋆+N−[Nγ+1]] − θ[j⋆] =
[Nγ ]
min
j=1

(
θ[j+N−[Nγ+1]] − θ[j]

)
and

λ[j⋆+N−[Nγ+1]] − λ[j⋆] =
[Nγ ]
min
j=1

(
λ[j+N−[Nγ+1]] − λ[j]

)
respectively.

Remark 3.4. For a unit whose lifetime follows UGR(θ, λ), the estimation of its reliability
can be also obtained based on this generalized method. For a given time x, substituting
θl and λl, l = 1, . . . , N for θ and λ in SF specifically presented in expression (1.3), all
estimates for reliability Rx can be calculated as Rx1, . . . , RxN . Therefore, the GPE for
Rx can be computed by Ŕx = 1

N

∑N
l=1 Rxl. Arrange all estimates for Rx in an ascending

order as Rx[1], . . . , Rx[N ], then its 100(1 − γ)% GCI can be constructed as(
Rx[j⋆], Rx[j⋆+N−[Nγ+1]]

)
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when j⋆th one satisfying Rx[j⋆+N−[Nγ+1]] − Rx[j⋆] =
[Nγ ]
min
j=1

(
Rx[j+N−[Nγ+1]] − Rx[j]

)
.

4. Prediction
Besides parameter estimation, lifetime prediction is also widely concerned in both the-

oretical studies and practical applications. Many authors have studied the problem of
prediction. See, for instance, [7, 8, 10, 12, 18]. It is observed that

∑m
i=1 ri units are ran-

domly removed in progressive Type-II censoring, and the failure time of these units cannot
be observed. In this section, We interest in predicting the lifetimes of the random removal
units.

Let Yij , i = 1, . . . , m, j = 1, . . . , ri be the jth order statistic of ri units removed at ith
failure, the prediction for Yij , i = 1, . . . , m, j = 1, . . . , ri will be established by likelihood
and the pivotal quantities based generalized approaches. Recall that T1:m:n < T2:m:n <
· · · < Tm:m:n are the order statistics from UGR(θ, λ) under progressive Type-II censoring
test with CS (r1, r2, . . . , rm). Due to the Markovian property of progressively Type-II
censored order statistics, from [6], then the conditional density function of the jth order
statistic out of ri removed units can be written as

f(yij |ti) = j

(
ri

j

)
f(yij) [F (yij) − F (ti)]j−1 [1 − F (yij)]ri−j [1 − F (ti)]−ri , yij > ti.

(4.1)
From (1.1) and (1.2), the predicition distribution can be expressed as

f(yij |ti) =2θλj

(
ri

j

)( 1
yij

)
log

(
1

yij

)
e−λ(log yij)2 [1 − e−λ(log yij)2]θ−1

×
[
1 − e−λ(log ti)2]−θri

{[
1 − e−λ(log ti)2]θ −

[
1 − e−λ(log yij)2]θ}j−1

×
[
1 − e−λ(log yij)2]θ(ri−j)

, yij > ti. (4.2)

Before proceeding, a very helpful result is proposed to establish the likelihood and
pivotal quantities based prediction.

Theorem 4.1. Let Ti:m:n, i = 1, . . . , m be the order statistics from UGR(θ, λ) under
progressive Type-II censoring with CS (r1, r2, . . . , rm) and Yij be the jth order statistic of
ri removed units at ith failure. Then one has that variable

Zij =

[
1 − e−λ(log(Yij))2]θ

[
1 − e−λ(log(Ti:m:n))2

]θ , i = 1, . . . , m, j = 1, . . . , ri (4.3)

follows Beta(ri − j + 1, j) distribution.

Proof. See Appendix E. �
• likelihood based prediction

Denote bα is the upper α-th quantile of Beta(ri − j + 1, j) with 0 < α < 1,
let Zij = b0.5 and substituting MLEs λ̂ and θ̂ for unknown parameters λ and θ
respectively, then the likelihood based point prediction estimation (LPPE) ŷij of
Yij can be expressed as

ŷij = exp
{

−
√

− 1
λ̂

log
[
1 − b

1/θ̂
0.5

[
1 − e−λ̂(log ti)2

]]}
. (4.4)

Further, since Zij follows Beta distribution Beta(ri − j + 1, j), then one has

p
(
b1−α/2 < Zij < bα/2

)
= 1 − α.
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By direct transformation and replacing λ and θ by their MLEs λ̂ and θ̂ respectively,
then the 100(1 − γ)% likelihood based prediction interval (LPI) of Yij can be also
constructed as

exp
{

−
√

− 1
λ̂

log
[
1 − b

1/θ̂
γ/2

[
1 − e−λ̂(log ti)2

]]}
,

exp
{

−
√

− 1
λ̂

log
[
1 − b

1/θ̂
1−γ/2

[
1 − e−λ̂(log ti)2

]]}


• pivotal quantities based prediction
According to Theorem 4.1 and using the substitution method of [21], the point

and interval prediction can be constructed for Yij , i = 1, . . . , m, j = 1, . . . , ri in
following Algorithm 2 based on previous proposed pivotal quantities.
Algorithm 2. Generalized predictions for Yij .
Step 1 Using Steps 1-4 of algorithm 1, generate N parameters θ and λ as θ1, θ2, . . . , θN

and λ1, λ2, . . . , λN .
Step 2 Compute the predicitons for Yij , i = 1, . . . , m, j = 1, . . . , ri by

y
(l)
ij = e

−
√

− 1
λl

log
[
1−(b0.5)1/θl

[
1−e−λl(log ti)2]]

, l = 1, 2, . . . , N.

Step 3 The generalized point prediction estimation (GPPE) of Yij can be com-
puted by ýij = 1

N

∑N
l=1 y

(l)
ij .

Step 4 Arrange all predictors of Yij in an ascending order as y
[1]
ij , y

[2]
ij , . . . , y

[N ]
ij .

For arbitrary 0 < γ < 1, a 100(1 − γ)% prediction interval for Yij can be obtained
as (

y
[k]
ij , y

[k+N−[Nγ+1]]
ij

)
, k = 1, 2, . . . , [Nγ],

where [t] denotes the greatest integer less than or equal to t. Therefore, the
100(1 − γ)% generalized prediction interval (GPI) for Yij can be constructed as
k∗th prediction interval satisfying

y
[k∗+N−[Nγ+1]]
ij − y

[k∗]
ij =

[Nγ ]
min
k=1

(
y

[k+N−[Nγ+1]]
ij − y

[k]
ij

)
.

5. Numerical illustration
5.1. Simulation studies

In this section, the performance of proposed estimates is investigated through extensive
Monte-Carlo simulations. For comparison, average bias (ABs) and mean square errors
(MSEs) are used to evaluate the results of point estimates. Besides, the performance of
interval estimates is evaluated by average lengths (ALs) and converage probabilities (CPs).
In this simulation, the algorithm suggested by [3] is used to generate progressively Type-II
censored data. For different sample size, three kinds of CSs are adopted as follows.
CS-1: r1 = r2 = · · · = rm−1 = 0 and rm = n − m;
CS-2: r1 = n − m and r2 = r3 = · · · = rm = 0;

CS-3:
{

r1 = r2 = · · · = rn−m = 1, rn−m+1 = · · · = rm = 0, for n ≤ 2m

r1 = r2 = · · · = rm−1 = 1, rm = n − 2m + 1, for n > 2m

In order to calculate the MLE of λ, the bisection method is utilized to find the estimates,
where the existence and uniqueness is guaranteed by Theorem 2.2. For quantities based
generalized estimation, it is seen from Theorem 3.1 and Corollary 3.3 that S1(λ) increases
in λ and S2(θ, λ) decreases with respect to θ in the full range (0, 1), then pivotal quantities
based estimates can be also obtained by using bisection method. Based on different
choices of parameters and sample sizes, the simulation is conducted based on 10000 times
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replications, and the evaluation criterion quantities are reported in Tables 1-4, where the
confidence level is 0.95.

Table 1. ABs and MSEs (within bracket) for parameters with (θ, λ) = (1.5, 1)

n m CS θ̂ λ̂ θ́ λ́

20 10 CS-1 1.3116[4.7772] 0.3451[0.2146] 1.2639[4.4195] 0.2912[0.1464]
CS-2 0.7894[1.6935] 0.2873[0.1448] 0.7515[1.5875] 0.2694[0.1353]
CS-3 1.1007[3.3891] 0.3197[0.1865] 1.0296[3.1545] 0.2691[0.1251]

15 CS-1 0.6735[0.9247] 0.2701[0.1379] 0.6153[0.7645] 0.2536[0.1074]
CS-2 0.5427[0.5676] 0.2534[0.1100] 0.5100[0.5308] 0.2422[0.0969]
CS-3 0.5634[0.6399] 0.2482[0.1113] 0.5173[0.5548] 0.2303[0.0916]

30 15 CS-1 0.7243[1.0252] 0.2461[0.1030] 0.7133[0.9740] 0.2243[0.0797]
CS-2 0.5216[0.5275] 0.2301[0.0881] 0.5105[0.5265] 0.2204[0.0833]
CS-3 0.6575[0.8319] 0.2329[0.0932] 0.6284[0.7378] 0.2135[0.0747]

20 CS-1 0.5533[0.6234] 0.2195[0.0849] 0.5472[0.5897] 0.2132[0.0750]
CS-2 0.4709[0.4751] 0.2124[0.0785] 0.4660[0.4470] 0.2047[0.0722]
CS-3 0.5129[0.5309] 0.2124[0.0788] 0.4922[0.4863] 0.2028[0.0716]

50 20 CS-1 0.6728[0.8795] 0.2049[0.0675] 0.6616[0.8445] 0.1873[0.0563]
CS-2 0.4702[0.4471] 0.1965[0.0656] 0.4367[0.3880] 0.1825[0.0560]
CS-3 0.6235[0.7699] 0.1978[0.0653] 0.5583[0.6091] 0.1738[0.0485]

30 CS-1 0.4756[0.4753] 0.1817[0.0567] 0.4557[0.4050] 0.1682[0.0442]
CS-2 0.3672[0.2803] 0.1697[0.0516] 0.3659[0.2598] 0.1581[0.0414]
CS-3 0.4165[0.3550] 0.1699[0.0472] 0.3735[0.2765] 0.1595[0.0421]

Table 2. ALs and CPs (within bracket) for parameters with (θ, λ) = (1.5, 1)

n m CS θ̂ λ̂ θ́ λ́

20 10 CS-1 7.3037[0.9630] 1.6127[0.9730] 5.9958[0.9520] 1.4918[0.9590]
CS-2 3.7869[0.9640] 1.3708[0.9720] 3.4165[0.9610] 1.3180[0.9580]
CS-3 5.5947[0.9650] 1.4485[0.9610] 4.7050[0.9350] 1.3537[0.9450]

15 CS-1 3.4360[0.9720] 1.3090[0.9640] 2.9821[0.9610] 1.2229[0.9530]
CS-2 2.7160[0.9730] 1.2199[0.9650] 2.4510[0.9670] 1.1587[0.9420]
CS-3 2.7858[0.9690] 1.1933[0.9610] 2.5078[0.9620] 1.1349[0.9460]

30 15 CS-1 4.1261[0.9580] 1.2474[0.9740] 3.5609[0.9510] 1.1599[0.9370]
CS-2 2.6011[0.9650] 1.1056[0.9650] 2.4224[0.9570] 1.0689[0.9580]
CS-3 3.3554[0.9570] 1.1208[0.9640] 3.0275[0.9460] 1.0691[0.9440]

20 CS-1 2.8817[0.9620] 1.0889[0.9650] 2.6196[0.9570] 1.0392[0.9560]
CS-2 2.2307[0.9580] 1.0121[0.9610] 2.1059[0.9510] 0.9859[0.9450]
CS-3 2.4017[0.9610] 0.9755[0.9580] 2.2033[0.9560] 0.9404[0.9360]

50 20 CS-1 3.7160[0.9550] 1.0450[0.9740] 3.2780[0.9430] 0.9872[0.9530]
CS-2 2.1750[0.9670] 0.9277[0.9550] 2.0105[0.9450] 0.8803[0.9460]
CS-3 3.2722[0.9610] 0.9823[0.9730] 2.8800[0.9630] 0.9342[0.9570]

30 CS-1 2.3387[0.9640] 0.8658[0.9620] 2.1405[0.9460] 0.8277[0.9540]
CS-2 1.6940[0.9630] 0.8153[0.9540] 1.6439[0.9410] 0.7808[0.9480]
CS-3 1.8756[0.9520] 0.7682[0.9510] 1.7383[0.9420] 0.7435[0.9390]

From Tables 1 and 3, it can be observed for point estimates that
(1) For fixed n and CS, MSEs and ABs of both likelihood and pivotal quantities based

estimates decrease with the increase of m.
(2) Under the fixed combinations of m, n, the performance of estimates from CS-2

and CS-3 is better than the results from CS-1 in general.
(3) Under fixed n, m and CS, the MSEs and ABs of the GPEs are smaller than those

of MLEs.
In addition, it can be noted from Tables 2 and 4 for interval estimates that

(1) For fixed n and CS, the ALs of both ACIs and GCIs decrease with the increase of
m.
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Table 3. ABs and MSEs (within bracket) for parameters with (θ, λ) = (0.8, 1)

n m CS θ̂ λ̂ θ́ λ́

20 10 CS-1 0.6826[1.7701] 0.4344[0.3861] 0.6344[1.5217] 0.3689[0.2794]
CS-2 0.4159[0.5793] 0.3595[0.2689] 0.3833[0.4869] 0.3506[0.2555]
CS-3 0.5797[1.1327] 0.4012[0.3166] 0.5127[1.0443] 0.3281[0.2214]

15 CS-1 0.3311[0.3164] 0.3423[0.2281] 0.3154[0.3373] 0.3094[0.1879]
CS-2 0.2828[0.2219] 0.3178[0.2116] 0.2700[0.1765] 0.3059[0.1694]
CS-3 0.2760[0.1845] 0.2955[0.1655] 0.2528[0.1528] 0.2743[0.1499]

30 15 CS-1 0.4486[0.7316] 0.3252[0.2125] 0.4457[0.7289] 0.2859[0.1576]
CS-2 0.2912[0.2132] 0.2754[0.1519] 0.2644[0.1675] 0.2610[0.1227]
CS-3 0.3569[0.3508] 0.2899[0.1617] 0.3446[0.3454] 0.2634[0.1296]

20 CS-1 0.2817[0.2091] 0.2720[0.1398] 0.2721[0.1747] 0.2531[0.1115]
CS-2 0.2352[0.1140] 0.2637[0.1348] 0.2039[0.0822] 0.2514[0.1109]
CS-3 0.2392[0.1176] 0.2456[0.1077] 0.2153[0.0965] 0.2345[0.0968]

50 20 CS-1 0.3972[0.5156] 0.2585[0.1223] 0.3694[0.4114] 0.2373[0.1009]
CS-2 0.2183[0.1079] 0.2303[0.0979] 0.2027[0.0825] 0.2271[0.0913]
CS-3 0.3366[0.3147] 0.2406[0.1074] 0.3242[0.3272] 0.2258[0.0920]

30 CS-1 0.2123[0.0947] 0.2080[0.0768] 0.2094[0.0953] 0.1981[0.0660]
CS-2 0.1647[0.0519] 0.2005[0.0705] 0.1581[0.0457] 0.1919[0.0656]
CS-3 0.1977[0.0828] 0.1904[0.0671] 0.1836[0.0743] 0.1903[0.0630]

Table 4. ALs and CPs (within bracket) for parameters with (θ, λ) = (0.8, 1)

n m CS θ̂ λ̂ θ́ λ́

20 10 CS-1 3.3261[0.9650] 1.8580[0.9530] 2.7861[0.9590] 1.7204[0.9460]
CS-2 1.8200[0.9680] 1.6282[0.9570] 1.6327[0.9470] 1.5726[0.9430]
CS-3 2.5863[0.9620] 1.6924[0.9570] 2.1711[0.9540] 1.5444[0.9460]

15 CS-1 1.5453[0.9750] 1.5209[0.9590] 1.4032[0.9470] 1.4203[0.9300]
CS-2 1.3014[0.9730] 1.4741[0.9590] 1.1922[0.9450] 1.4066[0.9500]
CS-3 1.2839[0.9710] 1.4141[0.9570] 1.1827[0.9480] 1.3544[0.9550]

30 15 CS-1 2.1060[0.9720] 1.4411[0.9540] 1.9090[0.9660] 1.3420[0.9450]
CS-2 1.2817[0.9690] 1.3005[0.9540] 1.1697[0.9470] 1.2633[0.9530]
CS-3 1.6455[0.9780] 1.3123[0.9570] 1.5019[0.9500] 1.2481[0.9540]

20 CS-1 1.3132[0.9560] 1.2412[0.9440] 1.1950[0.9330] 1.1834[0.9370]
CS-2 1.0485[0.9630] 1.2091[0.9500] 0.9624[0.9550] 1.1632[0.9440]
CS-3 1.0976[0.9680] 1.1557[0.9580] 1.0029[0.9480] 1.1056[0.9410]

50 20 CS-1 1.8349[0.9660] 1.1673[0.9500] 1.6266[0.9570] 1.1095[0.9480]
CS-2 1.0122[0.9680] 1.0723[0.9440] 0.9455[0.9470] 1.0390[0.9360]
CS-3 1.5487[0.9750] 1.1032[0.9480] 1.4134[0.9510] 1.0478[0.9440]

30 CS-1 1.0087[0.9680] 0.9809[0.9610] 0.9549[0.9440] 0.9295[0.9360]
CS-2 0.7930[0.9690] 0.9521[0.9470] 0.7482[0.9450] 0.9260[0.9430]
CS-3 0.8936[0.9690] 0.8935[0.9460] 0.8348[0.9590] 0.8761[0.9430]

(2) In the most of cases, the ALs of interval estimates obtained from CS-2 and CS-3
perform better than those from CS-1 under the fixed combinations of m and n.

(3) Under fixed n, m and CS, the ALs of GCIs are smaller than those of ACIs in
most cases. Besides, compared to the ACIs, the CPs of the GCIs appear slightly
smaller, one possible explanation for this phenomenon is that comparing with ACIs
the GCI of different parameters provides a balance between criteria AL and CP.
But in general, the CPs of different intevals are all close to the nominal significance
level.

5.2. Illustrated example
In this illustration, a set of real-life data from [23] about the lifetime of 21 light bulbs

from a constant-stress test is used. By dividing its limitation observation 130.47, the
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transformed data are given as follows.

0.0267 0.0371 0.0661 0.0683 0.0715 0.1469 0.1505 0.1564 0.2084 0.2164 0.3115
0.3216 0.3770 0.3948 0.4273 0.5487 0.5752 0.7065 0.7843 0.7898 0.9225

It is necessary to check whether the UGR distribution can fit the data. Based on the 21
observations above, the MLEs of θ and λ are estimated as θ̂ = 0.5596 and λ̂ = 0.2101,
and the Kolmogorov-Smirnov distance is 0.1009 with the associated p-value 0.9685, which
implies that the UGR distribution can fit these data properly. Besides, in order to more
intuitively show the fitting effect of the UGR distribution on above data, probability-
probability (P-P) and Quantile-Quantile (Q-Q) plots in Figure 2 are presented. It is also
seen in visual that the UGR distribution could be used as a proper model.

Based on original lifetime of the bulb data, a group of progressively Type-II censored
sample with n = 21, m = 16, r1 = 5 and ri = 0, i = 2, . . . , 16 are generated as follows.

0.0267 0.0371 0.0661 0.0715 0.1469 0.1564 0.2164 0.3115
0.3216 0.3770 0.3948 0.4273 0.5487 0.7065 0.7843 0.9225

where in this dataset, the removed observations at first failure are 0.0683, 0.1505, 0.2084,
0.5752 and 0.7898 successively. The point and interval estimates of the unknown param-
eters and Rx (x = 0.1, 0.2, 0.3, 0.4, 0.5) are presented in Tables 5 and 6, respectively. It
is noted that the MLEs and GPEs are very close to each other, and that the lengths of
GCIs are all smaller than those of ACIs. Moreover, the profile log-likelihood function l(λ)
of the parameter λ is presented in Figure 2, which also show in visual that the MLE λ̂
uniquely exists.

Further, the results of predictions for Y1j , j = 1, 2, . . . , r1 are shown in Table 7. it is seen
that both LPPE and GPPE are similar and close to the removed observations. Meanwhile,
for prediction intervals, it is noted that GPIs perform better than LPIs in terms of the
interval lengths, and that both kinds of prediction intervals cover the associated true values
of removed data.

Table 5. Estimation for θ and λ

parameter MLE GPE ACI[Interval length] GCI[Interval length]
θ 0.5552 0.5279 (0.2331,0.8773)[0.6442] (0.1990,0.8271)[0.6281]
λ 0.2102 0.1950 (0.0629,0.3575)[0.2946] (0.0714,0.3485)[0.2771]

Table 6. Estimation for Rx, x = 0.1, 0.2, 0.3, 0.4, 0.5

Rx MLE GPE ACI[Interval length] GCI[Interval length]
R0.1 0.8020 0.7778 (0.4536,1.1503)[0.6967] (0.6317,0.9067)[0.2750]
R0.2 0.6177 0.6065 (0.2584,0.9770)[0.7186] (0.4389,0.7565)[0.3176]
R0.3 0.4761 0.4763 (0.1695,0.7827)[0.6132] (0.3077,0.6456)[0.3379]
R0.4 0.3638 0.3733 (0.1188,0.6087)[0.4899] (0.2098,0.5481)[0.3383]
R0.5 0.2723 0.2891 (0.0848,0.4598)[0.3750] (0.1402,0.4679)[0.3277]

6. Concluding remarks
In this paper, inference for progressively Type-II censored data from Unit-Generalized

Rayleigh distribution is studied, and different statistical inferential approaches are pro-
posed for parameter estimation as well as the prediction problems. The maximum likeli-
hood estimators and related approximate confidence intervals are constructed, where the
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Table 7. Prediction for Y1j , j = 1, 2, 3, 4, 5, 6

y11 LPPE GPPE LPI[Interval length] GPI[Interval length]
y12 0.0825 0.0851 (0.0290,0.3121)[0.2831] (0.0528,0.1240)[0.0712]
y13 0.1735 0.1829 (0.0497,0.4986)[0.4489] (0.1122,0.2764)[0.1642]
y14 0.2951 0.3204 (0.0901,0.6856)[0.5955] (0.1856,0.4821)[0.2965]
y15 0.4647 0.5001 (0.1569,0.8612)[0.7043] (0.3161,0.7348)[0.4187]
y16 0.7140 0.7398 (0.2788,0.9821)[0.7033] (0.5460,0.9737)[0.4277]

Figure 2. The plots of bulbs data

existence and uniqueness are also established for MLEs. Furthermore, another alterna-
tive pivotal quantities based generalized point and interval estimates are proposed for
comparison. In addition, to investigate the lifetimes of the randomly censored units, as-
sociated prediction issues are also constructed based on the likelihood and the proposed
generalized approaches. Extensive simulation studies and one real-life example are con-
ducted to evaluate the performance of our methods, and the results indicate that both
likelihood and generalized estimation work satisfactory, and that the proposed general-
ized results perform better than likelihood estimates for both parameter and prediction
estimation problems. Although the studies in this paper focus on statistical inference for
UGR distribution with progressively Type-II censored data, the results could be extended
to other kinds of failure data with proper modifications, such as records data, complete
and progressive first-failure censored data, among others.
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Appendix A. Proof of Theorem 2.1
Taking derivative of (2.1) with respect to θ and equating it to zero, one could find the

expression (2.2) directly. For fixed λ > 0, according to the inequality log θ
θ̃
6 θ

θ̃
− 1, it’s

seen that

m log θ = m log θ

θ̃
+ m log θ̃ 6 m

θ

θ̃
− m + m log θ̃.

Using above equality and the expression

m = −θ̃ (λ)
m∑

i=1
(ri + 1) log

[
1 − e−λ(log ti)2]

,

it can be easily found that

l(λ, θ) 6 m (log 2 + log λ) + m log m − m log
{

−
m∑

i=1
(ri + 1) log

[
1 − e−λ(log ti)2]}

− m − λ
m∑

i=1
(log ti)2 +

m∑
i=1

{
log

( 1
ti

)
+ log

(
log 1

ti

)
− log

[
1 − e−λ(log ti)2]}

= l
(
λ, θ̃

)
.

Equality holds if and only if θ = θ̃. Therefore, this proves the assertion.

Appendix B. Proof of Theorem 2.2

Clearly, the MLE of λ can be obtained from equation dl(λ)
dλ = p(λ) = 0. In order to show

the uniqueness and existence of MLE λ̂, it is equivalent to prove that p(λ) is a monotone
function with λ and changes from positive to negative in range λ ∈ (0, +∞).

For brevity, let ui = (log ti)2, it’s seen that ui ∈ (0, +∞) and u1 > u2 > · · · > um, then
the expression (2.4) can be rewritten as

p(λ) = −m

∑m
i=1(ri + 1) ui

eλui −1∑m
i=1(ri + 1) log(1 − e−λui)

+ m

λ
−

m∑
i=1

(
ui + ui

eλui − 1

)
.

In order to obtain the limits of function p(λ) as λ → 0+ and λ → +∞ respectively, some
necessary preparations are shown as follows, which can be proved directly.

(1) log(1 + x) < x in range x ∈ (0, +∞).
(2) ex−1

x → 1 as x → 0.
(3) ex−1−x

x2/2 → 1 as x → 0.
(4) log(1+x)

x → 1 as x → 0.
(5) For i = 1, 2, . . . , m − 1 and k = 1, 2, . . . , m, let S1 =

∑
k>i(rk + 1)eλ(u2

i −u2
k), S2 =∑

k<i(rk + 1)eλ(u2
i −u2

k) and S3 =
∑

k=i(rk + 1)eλ(u2
i −u2

k), then limλ→+∞ S1 = ∞,
limλ→+∞ S2 = 0, and limλ→+∞ S3 =

∑
k=i(rk + 1).

Based on above results (2)-(5), it is observed that

lim
λ→0+

p(λ) = +∞ and lim
λ→+∞

p(λ) = −
m−1∑
i=1

(um − ui) ≤ 0.

Therefore, function p(λ) changes from positive to negative when λ ∈ (0, ∞) implying that
the MLE λ̂ of λ exists.
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Next, Taking derivative of p(λ), one has

p′(λ) =m

[∑m
i=1(ri + 1) u2

i eλui

(eλui −1)2

] [∑m
i=1(ri + 1) log(1 − e−λui)

]
+
[∑m

i=1(ri + 1) ui

eλui −1

]2
[
∑m

i=1(ri + 1) log(1 − e−λui)]2

+
m∑

i=1

u2
i eλui

(eλui − 1)2 − m

λ2 .

For the first item of the derivative p′(λ), using Cauchy-Schwarz inequality and log(1+x) <
x, x > 0, it is seen that

m

[∑m
i=1(ri + 1) u2

i eλui

(eλui −1)2

] [∑m
i=1(ri + 1) log(1 − e−λui)

]
+
[∑m

i=1(ri + 1) ui

eλui −1

]2
[
∑m

i=1(ri + 1) log(1 − e−λui)]2

< m

[∑m
i=1(ri + 1) ui

eλui −1

]2
−
[∑m

i=1(ri + 1) u2
i eλui

(eλui −1)2

] [∑m
i=1(ri + 1)e−λui

]
[
∑m

i=1(ri + 1) log(1 − e−λui)]2
6 0.

Moreover, for the last two items of the derivative p′(λ), using the inequality zke−z <
(1 − e−z)k, k = 1, 2, z > 0, it is found that

m∑
i=1

u2
i eλui

(eλui − 1)2 − m

λ2 =
m∑

i=1

u2
i e−λui

(1 − e−λui)2 − m

λ2 <
m∑

i=1

u2
i e−λui

(λui)2e−λui
− m

λ2 = 0.

Therefore, one has that p′(λ) < 0 implying that function p(λ) decreases in λ and the MLE
of λ is unique.

Appendix C. Proof of Theorem 3.1
Since Ti:m:n, i = 1, 2, . . . , m are the first m progressively Type-II censored order statis-

tics of size n from UGR(θ, λ), then Vi:m:n = −θ log[1 − e−λ(log(Ti:m:n))2 ], i = 1, 2, . . . , m are
corresponding progressively Type-II censored samples from standard exponential distri-
bution with mean 1. According to Viveros and Balakrishnan [20], it can be seen that

W1 = nV1:m:n

W2 = [n − (r1 + 1)] (V2:m:n − V1:m:n)

W3 =
[
n −

2∑
i=1

(ri + 1)
]

(V3:m:n − V2:m:n)

. . .

Wm =
[
n −

m−1∑
i=1

(ri + 1)
]

(Vm:m:n − V(m−1):m:n)

are independent and identically distributed from standard exponential distribution. Let
Di =

∑i
j=1 Wj , i = 1, 2, . . . , m, and U(i) = Di/Dm, i = 1, 2, . . . , m − 1, it can be obtained

from [19] that U(1), U(2), . . . , U(m−1) are order statistics from the uniform (0,1) distribution
with sample size m − 1. Furthermore, U(1) < U(2) < · · · < U(m−1) are also independent
with

Di =

n −
i∑

j=1
(rj + 1)

Vi:m:n +
i∑

j=1
(rj + 1)Vj:m:n

= −θ


n −

i∑
j=1

(rj + 1)

 log
[
1 − eλ(log(Ti:m:n))2]+

i∑
j=1

(rj + 1) log
[
1 − eλ(log(Tj:m:n))2] .
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By the theory of sampling distribution, it is obtained that

S1(λ) =
m−1∑
i=1

[
−2 log U(i)

]
and S2(θ, λ) = 2

m∑
j=1

Wj

are statistically independent and have chi-square distributions with 2m−2 and 2m degrees
of freedom respectively.

Appendix D. Proof of Lemma 3.2
To prove that G(λ) increases in λ is equivalent to showing G′(λ) is always greater than

0. By taking derivative G(λ) with respect to λ, it is seen that

G′(λ) =
log
[

1−e−λ(log a)2
]

log[1−e−λ(log b)2 ]

{
(log a)2

[eλ(log a)2 −1] log[1−e−λ(log a)2 ] − (log b)2

[eλ(log b)2 −1] log[1−e−λ(log b)2 ]

}
.

Let h(t) = (log t)2 and g(t) =
[
eλ(log t)2 − 1

]
log

[
1 − e−λ(log t)2

]
, t ∈ (0, 1), G′(λ) can be

written as
G′(λ) = −G(λ)

[
h(b)
g(b)

− h(a)
g(a)

]
.

Firstly, it’s easy to find that G(λ) > 0. Moreover, according to Cauchy mean value
theorem, there exists ξ ∈ (a, b) ⊂ (0, 1) such that h(b)

g(b) − h(a)
g(a) = h′(ξ)

g′(ξ) . Due to

h′(ξ)
g′(ξ)

= 1
λ
[
eλ(log ξ)2 log

[
1 − e−λ(log ξ)2]+ 1

]
and [

eλ(log ξ)2 log
[
1 − e−λ(log ξ)2]+ 1

]
<
[
eλ(log ξ)2 ·

[
−e−λ(log ξ)2]+ 1

]
< 0,

it is noted that
h(b)
g(b)

− h(a)
g(a)

= h′(ξ)
g′(ξ)

< 0.

Therefore
G′(λ) = −G(λ)

[
h(b)
g(b)

− h(b)
g(b)

]
> 0,

then one has that G′(λ) > 0 implying that the function G(λ) increases in λ. In addition,
the limitations of G(λ) at λ = 0 and ∞ could be obtained by direct computation which is
omitted here for concision. Therefore, the assertion is completed.

Appendix E. Proof of Theorem 4.1

Let zij =

[
1−e−λ(log yij )2

]θ

[
1−e−λ(log ti)2]θ , for given Ti:m:n = ti and using distributional theory, it can

be seen that the PDF of Yi:rs can be written as

fZij (zij |ti) = j

(
ri

j

)
zri−j

ij (1 − zij)j−1, 0 < zij < 1.

Therefore, Theorem 4.1 is proved.


