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ABSTRACT 
 

Fractal image compression is a method to compress images, which significantly reduces the storage to keep data of the images, 

using partial iterated function systems. In this work, we generalize the classical fractal image compression method to the graph-

directed case. 
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1. INTRODUCTION 

 

Fractal geometry is an exciting subject of mathematics that has many applications to real life. One of 

them is the so-called fractal image compression which we deal with in this article. The method of fractal 

image compression is based on iterated function systems which are introduced by the pioneering work 

of Hutchinson in 1981, [7] (the term “iterated function systems” is suggested by Barnsley). In 80’s the 

iterated function systems were applied to model natural shapes in computer graphics. Barnsley and Sloan 

introduced an excellent technique the so-called “fractal image compression” to compress images, their 

compression ratio was 1/10000 ([1],[2],[3]). First, they divided the image that they wanted to compress 

into parts that are self-similar and do not intersect with each other. For each part, using the Collage 

Theorem, they found an associated iterated function system whose attractor is close to that part of the 

image. The idea behind the algorithm is to keep the data of the associated IFSs instead of the data of the 

image itself, which reduces the amount of storage needed. In the decoding process, each part uses the 

chaos game procedure to the associated IFS. By combining the attractors of these associated IFSs one 

obtains an image close to the original image. However, their algorithm requires someone manual 

intervention at least in dividing the image into parts and the encoding algorithm takes lots of time. 

Jacquin introduced a new algorithm for image compression, which is fully automated in 1989 (see [8] 

for more details). His algorithm, based on recurrent IFS, has disadvantages on the quality of 

decompressed image and the time needed for compression. There are some works to handle these 

problems in the last decades such as Fisher’s work, mainly based on Jacquin’s method, so called HV-

partitioning [6]. Higher quality image in a shorter time can be obtained via this new method. After years, 

Fisher and his coworkers improve new techniques such as quadtree technique, triangular technique, etc. 

to improve the quality of compression and manage the time problem. 

In this work, we generalize the notion of fractal image compression to the graph-directed case. So, we 

first give a small brief for iterated function systems (IFS) and graph-directed IFS, which can be 

considered as a generalization of classical IFSs. 
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1.1. Iterated Function Systems 

Let (𝑋, 𝑑) be a complete metric space and {𝑤𝑖: 𝑋 → 𝑋 | 𝑖 = 1,2, … , 𝑛} be a family of contractions with 

contractivity factors 0 < 𝑟𝑖 < 1. The system {𝑋; 𝑤1, 𝑤2, … , 𝑤𝑛} is called an iterated function system. 

For a given IFS {𝑋; 𝑤1, 𝑤2, … , 𝑤𝑛}, one can define a map  

𝑊: ℋ(𝑋) → ℋ(𝑋), 𝑊(𝐴) = ⋃

𝑛

𝑖=1

𝑤𝑖(𝐴) 

where ℋ(𝑋) is the set of non-empty compact subsets of 𝑋 which is also complete metric space with the 

Hausdorff metric. Then 𝑊 is a contraction on ℋ(𝑋) and thus, by the Banach fixed point theorem, there 

exists a unique non-empty compact set 𝐴 ⊂ 𝑋 such that 𝑊(𝐴) = 𝐴. The fixed point 𝐴 of 𝑊 is called 

the attractor of the IFS. 

An attractor of an IFS can be considered as a metric space, a finite union of scaled copies of itself. One 

can consider several metric spaces each of which is a finite union of scaled copies of themselves. Such 

metric spaces are called graph-directed fractals which we now summarize shortly. 

Let {(𝑋𝛼 , 𝑑𝛼) | 𝛼 = 1, . . . , 𝑁} be a finite collection of complete metric spaces. Let  

𝑤𝑘
𝛼,𝛽

: 𝑋𝛽 → 𝑋𝛼 

be contractions with contractivity ratios 0 < 𝑟𝑘
𝛼,𝛽

< 1 (𝛼, 𝛽 = 1, … , 𝑁 and 𝑘 = 1,2, … , 𝐾𝛼,𝛽). The 

system {𝑋𝛼; 𝑤𝑘
𝛼,𝛽

} is called a graph-directed iterated function system (GIFS) (see [10] for more details). 

For simplicity, set 𝑁 = 2. Define the operator 𝑊 as 

𝑊:  ℋ(𝑋1) × ℋ(𝑋2) → ℋ(𝑋1) × ℋ(𝑋2) 

𝑊(𝑈, 𝑉) = (⋃

𝐾1,1

𝑘=1

𝑤𝑘
1,1(𝑈) ∪ ⋃

𝐾1,2

𝑘=1

𝑤𝑘
1,2(𝑉), ⋃

𝐾2,1

𝑘=1

𝑤𝑘
2,1(𝑈) ∪ ⋃

𝐾2,2

𝑘=1

𝑤𝑘
2,2(𝑉)). 

This map is also a contraction on the complete metric space ℋ(𝑋1) × ℋ(𝑋2) (concerning the maximum 

Hausdorff metric) and thus there exists a pair of subsets 𝐴1 ⊆ 𝑋1 and 𝐴2 ⊆ 𝑋2 such that 𝑊(𝐴1, 𝐴2) =

(𝐴1, 𝐴2) ([5]). These subsets are called attractors of the system {𝑋𝛼; 𝑤𝑘
𝛼,𝛽

} and can be expressed as 

follows:  

𝐴1 = ⋃

𝐾1,1

𝑘=1

𝑤𝑘
1,1(𝐴1) ∪ ⋃

𝐾1,2

𝑘=1

𝑤𝑘
1,2(𝐴2) 

𝐴2 = ⋃

𝐾2,1

𝑘=1

𝑤𝑘
2,1(𝐴1) ∪ ⋃

𝐾2,2

𝑘=1

𝑤𝑘
2,2(𝐴2) 
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Figure 1. An example of graph-directed fractals ([4]) 

 

In the next subsection we give a small brief of the fractal image compression method: 

1.2. Mathematical Background of Classical Fractal Image Compression 
 

In this section, we overview the fractal image compression (FIC) method and explain the mathematical 

basis of FIC. 

We can regard a grayscale image on the unit square 𝐼2 = [0,1] × [0,1] as the graph of a measurable, 

bounded function 𝑓: 𝐼2 → [0,1]. Then the space of all images 𝐼2 will be the space of graphs of bounded 

measurable functions on the unit square  

ℳ: = {𝑔𝑟𝑎𝑓(𝑓) | 𝑓: 𝐼2 → [0,1]} 

where we measure the distance between two given images 𝑔𝑟𝑎𝑓(𝑓) and 𝑔𝑟𝑎𝑓(𝑔) by the supremum 

distance between the functions 𝑓 and 𝑔, that is  

𝑑∞(𝑔𝑟𝑎𝑓(𝑓), 𝑔𝑟𝑎𝑓(𝑔)) = 𝑠𝑢𝑝{|𝑓(𝑥) − 𝑔(𝑥)| 𝑥 ∈ 𝐼2}.   

The metric space (ℳ, 𝑑∞) is a complete metric space. 

Remark 1.1. For simplicity, we will denote a function and its graph by the same notation when it does 

not cause confusion.  

Let 𝑓 be an image on 𝐼2. The real problem is to find a contractive map 𝑊: ℳ → ℳ such that  

𝑊(𝑓) = 𝑓. This condition which is hard to satisfy, can be softened in the following way: Instead of 

finding 𝑊 satisfying 𝑊(𝑓) = 𝑓, one may seek a contraction map whose fixed point is close enough to 

the original image 𝑓.  More precisely, the conditions are 

i. (Contractivity of 𝑊) 𝑑∞(𝑊(𝑔1), 𝑊(𝑔2)) ≤ 𝑟 𝑑∞(𝑔1, 𝑔2) for some 0 < 𝑟 < 1, 

for all 𝑔1, 𝑔2 ∈ ℳ,  

ii. (Closeness to 𝑓) 𝑑∞(𝑓, 𝑊(𝑓)) is as small as possible for the original image 𝑓. 

Using the triangular inequality repeatedly and the contractivity of 𝑊 one can obtain 

𝑑∞(𝑓, 𝑊𝑛(𝑓0)) ≤
1

1 − 𝑟
𝑑∞(𝑓, 𝑊(𝑓)) + 𝑟𝑛𝑑∞(𝑓, 𝑓0) (1.1) 

for an arbitrary initial image 𝑓0. If one can find a map 𝑊 satisfying the conditions i and ii, by the 

inequality (1.1) one can get an upper bound for the distance 𝑑∞(𝑓, 𝑊𝑛(𝑓0)) for an arbitrary initial image 
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𝑓0. When the number of iterations increased, since 𝑟 < 1, the second term on the right hand side of the 

inequality (1.1) gets smaller, thus the upper bound decreases. Although the distance 𝑑∞(𝑓, 𝑊(𝑓)) 

desired as small as possible, if 𝑟 is close to 1, the first term can be large and the resulting compression 

may not be good enough. If the value of 𝑟 is much less than 1 good compression ratios can be achieved. 

Now we summarize the encoding process of fractal image compression and sketch how to find a 

contraction map 𝑊 satisfying the above conditions i and ii. 

First, we take a partition of 𝐼2 into so-called range blocks 𝑅1, 𝑅2, … , 𝑅𝑛 such that 𝑅𝑖 ∩ 𝑅𝑗 = ∅ for 𝑖 ≠ 𝑗 

and ∪𝑖=1
𝑛 𝑅𝑖 = 𝐼2. These subsets are usually taken as squares of equal size (say 𝑝 × 𝑝 pixels). 

Then, for each 𝑅𝑖 it should be find a domain 𝐷𝑖 (which is usually be taken as squares of the size 2𝑝 × 2𝑝 

pixels) and a map 𝑤𝑖: 𝐷𝑖 × 𝐼 → 𝑅𝑖 × 𝐼 in the form 

𝑤𝑖(𝑥, 𝑦, 𝑧) = (
𝑎𝑖   𝑏𝑖 0
𝑐𝑖 𝑑𝑖 0
0 0 𝑠𝑖

) ⋅ (
𝑥
𝑦
𝑧

) + (

𝑒𝑖

𝑓𝑖

𝑜𝑖

) 

(1.2) 

= (𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑒𝑖 , 𝑐𝑖𝑥 + 𝑑𝑖𝑦 + 𝑓𝑖, 𝑠𝑖𝑧 + 𝑜𝑖) 

such that the distance between (𝑅𝑖 × 𝐼) ∩ 𝑔𝑟𝑎𝑓(𝑓) and 𝑤𝑖((𝐷𝑖 × 𝐼) ∩ 𝑔𝑟𝑎𝑓(𝑓)) is small enough. The 

map 𝑤𝑖 has a spatial part (the first two components) and an image part (the third component) which are 

independent from each other. In the image part 𝑠𝑖 and 𝑜𝑖 determine contrast and brightness of the map 

respectively. Once we find a domain 𝐷𝑖 for a range 𝑅𝑖, the coefficients of the spatial parts are described, 

so, it is enough to store simply the locations of 𝑅𝑖 and 𝐷𝑖 instead of storing 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 , 𝑒𝑖, 𝑓𝑖 

separately. Using the least square method, one can find 𝑠𝑖 and 𝑜𝑖 which minimizes 

𝑅 = ∑ 𝑖=1
𝑁 (𝑠𝑖𝑝𝑖 + 𝑜𝑖 − 𝑞𝑖)2 where 𝑝𝑖 and 𝑞𝑖 are the pixel values of the original image 𝑓 over the squares 

𝐷𝑖 and 𝑅𝑖 respectively and 𝑁 is the number of pixels of the range 𝑅𝑖. For detailed information and 

formulas for 𝑠𝑖 and 𝑜𝑖 see [6], [9]. 

Remark 1.2. Note that there correspond 2 × 2 pixels in 𝐷𝑖 for each pixel of 𝑅𝑖 and the value of 𝑝𝑖 can 

be taken as the value of one of that pixels or the average value of them. 

Finding the most suitable domain 𝐷𝑖 for a range 𝑅𝑖 is crucial part of the method and it is time-consuming. 

For each range 𝑅𝑖, it is searched all of the domains and computed the values of 𝑠 and 𝑜 for each domain 

𝐷. Then the distance between (𝑅𝑖 × 𝐼) ∩ 𝑔𝑟𝑎𝑓(𝑓) and 𝑤𝑖(𝐷 × 𝐼) ∩ 𝑔𝑟𝑎𝑓(𝑓)) is calculated and if this 

distance is less than the initially determined threshold value then a proper domain is found. In the case 

of that there is no domain with distance less than the threshold value, there are some methods the so-

called quadtree or HV-partitioning (see [6] for details).  

After choosing 𝐷𝑖 for each range 𝑅𝑖 one can define the operator  

𝑊: ℳ → ℳ, 𝑊(𝑓): = 𝑤1(𝑓) ∪ 𝑤2(𝑓) ∪ ⋯ ∪ 𝑤𝑛(𝑓). 

Since the ranges are in the form of a partition of 𝐼2 then the result is again an image over 𝐼2. 

Definition 1.3. Let 𝑤: ℝ3 → ℝ3, 𝑤(𝑥, 𝑦, 𝑧) = (𝑤1(𝑥, 𝑦), 𝑤2(𝑥, 𝑦), 𝑤3(𝑥, 𝑦, 𝑧)). If 𝑤 satisfies  

𝑑(𝑤(𝑥, 𝑦, 𝑧1), 𝑤(𝑥, 𝑦, 𝑧2)) ≤ 𝑟 ⋅ 𝑑((𝑥, 𝑦, 𝑧1), (𝑥, 𝑦, 𝑧2)) 

where 𝑑 is the Euclidean metric and 0 < 𝑟 < 1, then 𝑤 is called a 𝑧 −contraction.  
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Note that the first two components of a 𝑧 −contraction depend only on 𝑥, 𝑦 and thus the inequality in 

the definition equivalent to  

|𝑤3(𝑥, 𝑦, 𝑧1) − 𝑤3(𝑥, 𝑦, 𝑧2)| ≤ 𝑟 ⋅ |𝑧1 − 𝑧2|. 

Theorem 1.4. If 𝑤1, 𝑤2, … , 𝑤𝑛 are 𝑧-contractions then 𝑊 = ⋃𝑛
𝑖=1 𝑤𝑖 is a contraction on ℳ with the 

supremum metric (see [6]).  

The above theorem guarantees that there is a fixed point of 𝑊 (say 𝑓′) and this fixed point is close to 

the original image 𝑓 by the inequality (1.1). Starting from arbitrary initial image 𝑓0 iterations will 

converges to 𝑓′. 

Remark 1.5. For a color image, a pixel value can be defined by a triple (R,G,B) where R, G, B are red, 

green, and blue levels respectively, each in the range [0,1]. Then, one can apply the above procedure 

and compress a color image by considering its red, green and blue levels separately and obtain three 

different iterated function system. To decode the system and find the approximation of the original color 

image, each system's attractors are found and then combined.  

We illustrate the above procedure by the following example. 

Example 1.6. Consider an image of 256 × 256 pixels and divide it into non-overlapping range blocks 

of size 4 × 4 pixels. For each range block 𝑅, the procedure searches all of 249 ⋅ 249 = 62001 possible 

domain blocks of 8 × 8 pixels, compares the distance between (𝑅 × 𝐼) ∩ 𝑔𝑟𝑎𝑓(𝑓) and  

𝑤((𝐷𝑅 × 𝐼) ∩ 𝑔𝑟𝑎𝑓(𝑓)) where 𝑤 is a map defined as in (1.2) and finds a domain block 𝐷𝑅 which 

minimize this distance. The transformed images of the domain blocks via four reflections and four 

rotations (mapping the domain block into itself isometrically) are also considered at this stage, so, to 

find the domain block 𝐷𝑅 with minimal distance, the procedure needs to make 8 ⋅ 249 ⋅ 249 = 496008 

comparison. After a suitable domain block is found, the coefficients 𝑠𝑖 (for contrast) and 𝑜𝑖 (for 

brightness) are computed using least square method. 

The storage to keep data of the spatial part of the map 𝑤 is 8 + 8 + 3 bits. The first 16 bits are needed 

to keep position of the domain block and last 3 bits stores which transformation is used. Contrast and 

brightness data are stored in 7 bits and 5 bits respectively. So, the storage needed for one range block is 

31 bits. Since the number of range block is (
256

4
)

2
= 4096 the total amount of storage to keep data of 

the image is 126976 bits= 15872 bytes≈ 15,5 Kb. See Figure 2 for an application of classical fractal 

image compression of 256 × 256 pixels image. 

 

Figure 2. An application of classical fractal image compression 

  

 



Çelik et al. / Eskişehir Technical Univ. J. of Sci. and Technology B – Theo. Sci. 10 (1) – 2022 
 

6 

2. GENERALIZATIONS OF CLASSICAL FRACTAL IMAGE COMPRESSION 

 

We first generalize the notion of fractal image compression on 𝐼2 to an arbitrary set 𝑋 and then to the 

graph-directed case. 

2.1. Fractal Image Compression on an Arbitrary Set 

 

Let 𝑋 be a set, denote the function space on 𝑋 to [0,1] by 𝐹(𝑋), i.e. 𝐹(𝑋) = {𝑓|𝑓: 𝑋 → [0,1]}. This 

function space 𝐹(𝑋) is also a complete metric space with the metric 

𝑑∞(𝑓, 𝑔) = sup{|𝑓(𝑥) − 𝑔(𝑥)| ∶ 𝑥 ∈ 𝑋} 

by the completeness of the interval [0,1]. 

Consider a partition ℛ of 𝑋, i.e. a collection of sets 𝑅1, 𝑅2, … , 𝑅𝑁 such that 𝑅𝑖 ∩ 𝑅𝑗 = ∅ for 𝑖 ≠ 𝑗 and 

⋃𝑁
𝑖=1 𝑅𝑖 = 𝑋. Now we can state the following theorem: 

Theorem 2.1. Let 𝑋 be a set and ℛ = {𝑅𝑖}𝑖=1
𝑁  be a partition of 𝑋. Let 𝑤𝑖: 𝐷𝑖 → 𝑅𝑖 be a bijection where 

𝐷𝑖 ⊂ 𝑋, 𝑖 = 1,2, … , 𝑁. Define the operator  

𝑊: 𝐹(𝑋) → 𝐹(𝑋)

𝑓 ↦ 𝑊(𝑓): 𝑋 → [0,1]

             𝑥 ↦ 𝑊(𝑓)(𝑥) = 𝜑𝑖(𝑓(𝑤𝑖
−1(𝑥))), 𝑥 ∈ 𝑅𝑖

 

where 𝜑𝑖 is a contraction on [0,1] with contractivity factor 𝑟𝑖 for 𝑖 = 1,2, … , 𝑁. Then 𝑊 is a contraction 

with contractivity factor 𝑟 = max{𝑟𝑖 | 1 ≤ 𝑖 ≤ 𝑁} on the function space 𝐹(𝑋).  

Proof: Let 𝑓, 𝑔 ∈ 𝐹(𝑋) and 𝑟 = max{𝑟𝑖 | 1 ≤ 𝑖 ≤ 𝑁}. We need to show that 

𝑑∞(𝑊(𝑓), 𝑊(𝑔)) ≤ 𝑟 𝑑∞(𝑓, 𝑔). 

 𝑑∞(𝑊(𝑓), 𝑊(𝑔)) = sup{ |𝑊(𝑓)(𝑥) − 𝑊(𝑔)(𝑥)|: 𝑥 ∈ 𝑋} 

 = max
1≤𝑖≤𝑁

{sup{ |𝑊(𝑓)(𝑥) − 𝑊(𝑔)(𝑥)| ∶ 𝑥 ∈ 𝑅𝑖}} 

 = max
1≤𝑖≤𝑁

{sup{ |𝜑𝑖(𝑓(𝑤𝑖
−1(𝑥))) − 𝜑𝑖(𝑔(𝑤𝑖

−1(𝑥)))| ∶ 𝑥 ∈ 𝑅𝑖}} 

 ≤ max
1≤𝑖≤𝑁

{sup{ 𝑟𝑖  |𝑓(𝑤𝑖
−1(𝑥)) − 𝑔(𝑤𝑖

−1(𝑥))| ∶ 𝑥 ∈ 𝑅𝑖}} 

 ≤ 𝑟 max
1≤𝑖≤𝑁

{sup{ |𝑓(𝑤𝑖
−1(𝑥)) − 𝑔(𝑤𝑖

−1(𝑥))| ∶ 𝑥 ∈ 𝑅𝑖}} 

 ≤ 𝑟 {sup{|𝑓(𝑥) − 𝑔(𝑥)| ∶ 𝑥 ∈ 𝑋}  } 

 = 𝑟 𝑑∞(𝑓, 𝑔). 

which completes the proof.  

We show that 𝑊 is a contraction on the function space 𝐹(𝑋), thus by the Banach Fixed Point Theorem, 

there exists a unique 𝑓 ∈ 𝐹(𝑋) such that 𝑊(𝑓) = 𝑓. 
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2.2. Graph Directed Fractal Image Compression 
 

Let 𝑋1, 𝑋2, … , 𝑋𝑁 be arbitrary sets and 𝐹(𝑋𝑖) = {𝑓 | 𝑓: 𝑋𝑖 → [0,1]} be the function spaces for each  

𝑖 = 1,2, … , 𝑁. Since each 𝐹(𝑋𝑖) is complete then the product space 𝐹(𝑋1) × 𝐹(𝑋2) × ⋯ × 𝐹(𝑋𝑁) is 

also complete concerning the metric  

𝑑((𝑓1, … , 𝑓𝑁), (𝑓1
′, … , 𝑓𝑁

′ )) = max{𝑑∞(𝑓1, 𝑓1
′), … , 𝑑∞(𝑓𝑁, 𝑓𝑁

′ )}. 

We now state the main theorem of this paper, which enables us to compress several images 

simultaneously:  

Theorem 2.2.  Let {𝑋𝑖}𝑖=1
𝑁  be a collection of sets and ℛ𝑖 be a partition of the set 𝑋𝑖 for each 𝑖. For each 

𝑖 = 1, … , 𝑁 and 𝑅 ∈ ℛ𝑖, let 𝐷𝑅 ⊂ 𝑋𝑗(𝑅) for some 𝑗(𝑅) ∈ {1, … , 𝑁} and 𝑤𝑅: 𝐷𝑅 → 𝑅 be a bijection. 

Define the operator  

𝑊: 𝐹(𝑋1) × ⋯ × 𝐹(𝑋𝑁) → 𝐹(𝑋1) × ⋯ × 𝐹(𝑋𝑁)
(𝑓1, 𝑓2, … , 𝑓𝑁) ↦ (𝑔1, 𝑔2, … , 𝑔𝑁)

 

such that  

 

𝑔𝑖:  𝑋𝑖 → [0,1]

         𝑥 ↦ 𝜑𝑅 (𝑓𝑗(𝑅) (𝑤𝑅
−1(𝑥))) , 𝑥 ∈ 𝑅 ⊂ 𝑋𝑖     

 

where 𝜑𝑅 is a contraction on [0,1] with contractivity factor 𝑠𝑅. Then 𝑊 is a contraction with 

contractivity factor 𝑟 = max1≤𝑖≤𝑁{max𝑅∈ℛ𝑖
{𝑠𝑅}}.  

Proof: Let (𝑓1, … , 𝑓𝑁) and (𝑓1′, … , 𝑓𝑁′) be two different arbitrary elements in 𝐹(𝑋1) × ⋯ × 𝐹(𝑋𝑁) and 

(𝑔1, … , 𝑔𝑁) = 𝑊(𝑓1, … , 𝑓𝑁) and (𝑔1′, … , 𝑔𝑁′) = 𝑊(𝑓1′, … , 𝑓𝑁′).  

𝑑(𝑊(𝑓1, … , 𝑓𝑁), 𝑊(𝑓1
′, … , 𝑓𝑁

′ )) = 𝑑((𝑔1, … , 𝑔𝑁), (𝑔1
′ , … , 𝑔𝑁

′ )) 

 = max{𝑑∞(𝑔1, 𝑔1
′ ), … , 𝑑∞(𝑔𝑁, 𝑔𝑁′)} 

 = max {sup
𝑥∈𝑋1

{|𝑔1(𝑥) − 𝑔1
′ (𝑥)|}, … , sup

𝑥∈𝑋𝑁

{|𝑔𝑁(𝑥) − 𝑔𝑁′(𝑥)|}} 

 = max {max
𝑅∈ℛ1

{sup
𝑥∈𝑅

{|𝑔1(𝑥) − 𝑔1′(𝑥)|}} , … , max
𝑅∈ℛ𝑁

{sup
𝑥∈𝑅

{|𝑔𝑁(𝑥) − 𝑔𝑁′(𝑥)|}}} 

 = max
1≤𝑖≤𝑁

{max
𝑅∈ℛ𝑖

{sup
𝑥∈𝑅

{|𝜑𝑅(𝑓𝑗(𝑅)(𝑤𝑅
−1))(𝑥) − 𝜑𝑅(𝑓′𝑗(𝑅)(𝑤𝑅

−1))(𝑥)|}}} 

 ≤ max
1≤𝑖≤𝑁

{max
𝑅∈ℛ𝑖

{sup
𝑥∈𝑅

{𝑠𝑅 ⋅ |𝑓𝑗(𝑅)(𝑤𝑅
−1)(𝑥) − 𝑓′𝑗(𝑅)(𝑤𝑅

−1)(𝑥)|}}} 

 ≤ max
1≤𝑖≤𝑁

{max
𝑅∈ℛ𝑖

{𝑠𝑅 ⋅ sup
𝑦∈𝑋𝑗(𝑅)

{|𝑓𝑗(𝑅)(𝑦) − 𝑓′𝑗(𝑅)(𝑦)|}}} 
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 ≤ max
1≤𝑖≤𝑁

{max
𝑅∈ℛ𝑖

{𝑠𝑅} ⋅ max
𝑅∈ℛ𝑖

{𝑑∞(𝑓𝑗(𝑅), 𝑓′𝑗(𝑅))}} 

 ≤ max
1≤𝑖≤𝑁

{max
𝑅∈ℛ𝑖

{𝑠𝑅}} ⋅ 𝑑((𝑓1, … , 𝑓𝑁), (𝑓1′, … , 𝑓𝑁′)) 

 ≤ 𝑟 ⋅ 𝑑((𝑓1, … , 𝑓𝑁), (𝑓1′, … , 𝑓𝑁′)) 

which completes the proof.  

Theorem 2.2 allows us to compress several images in one process. In the following, we give a sketch 

how to compress using graph directed fractal image compression with 𝑁 = 2. 

Let 𝑋1 = 𝑋2 = 𝐼2 and (𝑓1, 𝑓2) ∈ 𝐹(𝐼2) × 𝐹(𝐼2). We first take partitions ℛ1 and ℛ2 for the images 𝑓1, 𝑓2 

respectively. In theoretically it is possible to take the each set of the partitions as an arbitrary set, in the 

application we take these partitions as rectangles (say squares with size 𝑝 × 𝑝 pixels). For each square 

𝑅 of the partition ℛ𝑖, 𝑖 = 1,2 we have to find a domain of size 2𝑝 × 2𝑝 pixels square 𝐷𝑅 ⊂ 𝑋𝑗(𝑅) among 

all possible squares in the images 𝑓1 and 𝑓2, and a 𝑧-contraction map 𝑤𝑅 which minimize the distance 

𝑑∞(𝑓𝑖 ∩ 𝑅, 𝑤𝑅(𝐷𝑅) ∩ 𝑓𝑗(𝑅)), for 𝑖 = 1,2. 

 

Figure 3: Searching domain block for a range block in graph-directed case 

Example 2.3. Consider two images 𝑓1, 𝑓2 of 256 × 256 pixels and divide them into non-overlapping 

range blocks of size 4 × 4 pixels. For each range block 𝑅 in 𝑓𝑖, 𝑖 = 1,2, the procedure searches all of 

2 ⋅ 249 ⋅ 249 = 124002 possible domain blocks of 8 × 8 pixels, compares the distance between 

(𝑅 × 𝐼) ∩ 𝑔𝑟𝑎𝑓(𝑓𝑖) and 𝑤((𝐷𝑅 × 𝐼) ∩ 𝑔𝑟𝑎𝑓(𝑓𝑗)), (𝑗 = 1,2), where 𝑤 is a map defined as in (1.2) and 
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finds a domain block 𝐷𝑅 in 𝑓𝑗 which minimize this distance. The transformed images of the domain 

blocks via four reflections and four rotations are also considered at this stage, so, to find the domain 

block 𝐷𝑅 with minimal distance, the procedure needs to make 2 ⋅ 8 ⋅ 249 ⋅ 249 = 992016 comparison. 

After a suitable domain block is found, the coefficients 𝑠𝑖 (for contrast) and 𝑜𝑖 (for brightness) are 

described. 

The storage to keep data of the spatial part of the map 𝑤 is 1 + 8 + 8 + 3 bits. The first bit stores the 

information in which image the domain block lies, the next 16 bits are needed to keep position of the 

domain block in that image and last 3 bits stores which transformation is used. Contrast and brightness 

data are stored in 7 bits and 5 bits respectively. So, the storage needed for one range block is 32 bits. 

Since the number of range block is 2 ⋅ (
256

4
)

2
= 8192 the total amount of storage to keep data of the 

image is 262144 bits= 32768 bytes ≈ 32 Kb. See Figure 4 for an application of graph-directed fractal 

image compression of two images with sides 256 × 256 pixels. PSNR (Peak signal-to-noise ratio) 

values of the images obtained in step 10 are calculated as (for the upper image) 19,5 dB  and (for the 

lower image) 24,33 dB respectively. 

 

Figure 4. An application of graph-directed fractal image compression 

In graph directed case it is possible to compress several pictures at the same procedure while you have 

to compress every image individually in the classical case. 

However, the storage needed is a little bit more in the graph-directed case. If there is 𝑛 images to 

compress, we need only 𝑝 −bits more for each range block (to code in which image the corresponding 

domain block lies) where 2𝑝−1 < 𝑛 ≤ 2𝑝. Also, required time to compress 𝑛 images in graph directed 

case is 𝑛 times more than the classical case. But theoretically, in the graph-directed case, the 

compression quality increases since more domain blocks are searched and a closer domain block is 

found for each range block. 
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