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Abstract

In this paper, a local minimum result for differentiable functionals is exploited in order to
prove that a perturbed Dirichlet boundary value problem including a Lipschitz continu-
ous non-linear term admits at least one non-trivial weak solution under an asymptotical
behaviour of the nonlinear datum at zero. Some special cases and a concrete example of
an application is then presented.
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1. Introduction

In this paper, we consider a bifurcation result for the following parametric Dirichlet
boundary value problem on a bounded interval [a,b] in R

—u" +uh(z,u) = [Nf(z,u) + g(u)|h(z,u) in (a,b),
{ u(a) = u(b) = 0, (1.1)

where \ is a positive parameter, f : [a,b] x R — R is an L!-Carathéodory function,
g : R — R is a Lipschitz continuous function with the Lipschitz constant L > 0, i.e.,

lg(t1) — g(t2)| < Llt1 — t2],

for every t1,to € R, with g(0) = 0, and h : [a,b] xR — [0, 400) is a bounded and continuous
function with m := inf, y)cfqp)xr A(, 1) > 0.

Due to the applications of Dirichlet boundary value problems in various fields of applied
sciences such as control systems, economics, mechanical engineering, and biological or
artificial neural networks, these problems have been extensively studied.

In this context, several existence and multiplicity results for solutions to second order
ordinary differential nonlinear equations, with the nonlinearity dependent on the derivative
and Dirichlet conditions at the ends, have been investigated using variational methods.
For an overview on this subject, we cite the papers [1-5,7-14,16] and references therin.
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The pioneering work in this direction is the paper of Averna and Bonanno [7], where
using a three-critical-points theorem [6], the existence of at least three classical solutions
for the following quasilinear two-point boundary-value problem has been obtained

{ —([u/P72) = Af(t,w)h(w’)  in (a,b),
u(a) = u(b) =0,

where p > 1, X is a positive parameter, h : R — R is a bounded and continuous function
such that inf h > 0, and f : [a,b] x R — R is a continuous function.

We also refer the reader to the paper [2] in which, by means of Ricceri’s Variational
Principle, the existence of infinitely many weak solutions for the following Dirichlet doubly
eigenvalue boundary value problem

{ —u" +uh(z,u) = [Nf(z,u) + pg(x,u) + p(u)| h(z,u) in (a,b),
u(a) = u(b) =0,

where A is a positive parameter, u is a non-negative parameter, f,g : [a,b] x R — R
are L'-Carathéodory functions, p : R — R is a Lipschitz continuous function such that
p(0) =0, and h : [a,b] x R — [0, 4+00) is a bounded and continuous function, are ensured.

Further, we point out that Heidarkhani et al. in [11, Theorem 3.1], using the same
variational setting, established the existence of at least one non-trivial classical solution
for the quasilinear system

—(pi — V|ul(z)[Pi~2ull (x) = AFy, (z,u1, . . ., un)hi(w, ul) x € (a,b),
u;(a) = u;(b) =0, for 1 <i<mn,

where p; > 1for 1 <i<mn, A\>0, h; : [a,b] x R — [0,400) is a bounded and continuous
function with m; := mf(xt)e[ab]th (:L‘ t) >0 fo 1<i<mn, F:lab xR" - R is

measurable with respect to z, for every (¢1,...,t,) € R™, continuously differentiable in
(t1,...,tn), for almost every = € [a,b], and Fti(az,O, ,0) = 0 for all z € [a,b] and for
1 <i<n.

In the present paper, motivated by the above works and using a general critical point
theorem (see Theorem 2.1 below), we study the existence of at least one non-trivial weak
solution for problem (1.1) for small values of the parameter A and requiring an additional
asymptotical behaviour of the potential at zero if f(z,0) = 0.

A special case of our main result reads as follows.

Theorem 1.1. Let f : R — R be a non-negative continuous function. If f(0) =0, assume
also that

Assume further that 1 < L < 5. Then, for each parameter
5—L c?
A€ |0, —— |sup =],
] 2 <c>€ Ik f(t)dt> l

{ — 4w = Af(u) +g(w) in (0,1),

the following problem

u(0) =u(l) =0,

admits at least one non-trivial and non-negative classical solution uy. Moreover, we have

1
lim / [u) (z)|*dx = 0,

A—01 Jo

and the real function

do b [ (@l ¢ @) e [ ( [ 00+ g0 dt) d.
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s negative and strictly decreasing in the interval

Jo- "5 (oo 7o) |
T2\ S fmdt )|

The plan of the paper is as follows. In Section 2 we introduce our notations and a
suitable abstract setting (see Theorem 2.1). In Section 3 our main result (see Theorem
3.1) is presented, while Section 4 is devoted to some comments on the results of the paper.
Finally, a concrete example of an application is exhibited in Example 4.5.

2. Preliminaries

First we here recall for the reader’s convenience the following version of Ricceri’s vari-
ational principle [15, Theorem 2.1] which is our main tool to prove the results.

Theorem 2.1. Let X be a reflexive real Banach space, and let ®,¥ : X — R be two
Gateauz differentiable functionals such that ® is strongly continuous, sequentially weakly
lower semicontinuous and coercive in X, and VU is sequentially weakly upper semicontinu-
ous in X. Let Iy be the functional defined as Iy := ® — AV, A € R, and for any r > igl(f D,
let @ be the function defined as

sup U(v) — ¥(u)

o(r) = inf ved ((zeor))
ued—1((—oo,r)) r— @(u)

Then, for any r > ig{ffb and any X € (0,1/p(r)), the restriction of the functional Iy

to ®~1((—o0,7)) admits a global minimum, which is a critical point (precisely a local
minimum) of Iy in X.

Now, assume that the functions f, g and h hold in the conditions given in the following
of problem (1.1). Corresponding to f, g and h we introduce the functions F' : [a,b] x R —
R, G:R = Rand H : [a,b] x R — [0, +00), respectively, as follows

Fat)i= [ S €)de, 6t = [ gl

H(z,t):= /Ot (/OT h(:i,(?) dé)dT,

for all € [a,b] and t € R.
In the continuation of this paper, we let X be the Sobolev space WO1 ’2([a, b]) equipped

with the norm
, 1/2
Jul := ( / |u’<m>12dx> .

We say that a function v € X is a weak solution of problem (1.1) if

/ab (/OUI(x) h(:Ul,T) dT) V' (x)dz + /ab u(z)v(x)dx — )\/ab f(x,u(x))v(z)ds
- [ stut@e@a =o,

and

for all v € X.

If f is a continuous function, then by standard regularity results, weak solutions of
problem (1.1) are classical solutions, i.e., they belong to C?([a,b]).

We recall the following inequality of Sobolev type (see, for instance, the paper [17])

max_|u(z)| < M

X. 2.1
ma fu(2)| < Sl Vue 2.1)
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In the following, let M := sup(, ;)ca,5xr 7(%,t) and suppose that the Lipschitz constant
L > 0 of the function g satisfies the following condition:

(Ag) L>1and M(L—1)(b—a)? < 4.

Now, put
4+m(1+L)(b—a)?
o = )
8m
A+ M(1—L)(b—a)?
a2 oM ‘

We introduce the energy functional I)(u) : X — R associated with (1.1),
Iy(u) = ®(u) — AU(u), Vu e X,
where
b 1 b b
B(u) = / H (0 () dar + 5/ lu(x)|?dz +/ Glu(z))dz,
and ,
U(u) = / F(x,u(x))dz,

for every u € X. By standard arguments, one has that ® is continuously Gateaux differ-
entiable and sequentially weakly lower semicontinuous and its Gateaux derivative is the
functional ®'(u) € X*, given by

&' (u)(v) = /ab (/OU/(JD) h(l’l,T) dT) v (z)dz + /ab u(z)v(x)de — /abg(u(a:))v(x)da:,

for every v € X. Since g is Lipschitz continuous and satisfies g(0) = 0, while A is bounded
away from zero, we have from (2.1) that

(u) > = lul?, (22)

for all w € X, and so ® is coercive.

On the other hand, the fact that X is compactly embedded into C°([a,b]) implies
that the functional ¥ is well defined, continuously Gateaux differentiable and sequentially
weakly (upper) continuous, whose Géateaux derivative is given by

b
W%M@ZAf@M@MMM,

for every v € X; for more details, see the proof of [2, Theorem 3.1].
Note that the weak solutions of (1.1) are exactly the critical points of I}.

3. The main result

In this section, we prove our existence result that reads as follows.

Theorem 3.1. Let f : [a,b] x R — R be an L'-Carathéodory function. In addition, if
f(z,0) = 0, assume that there are a non-empty open set D C (a,b) and a set B C D of
positive Lebesgue measure such that

essinf,cpF(z,t)

lim ?)Ep 2 = +o00, (3.1)
t—
and .
i t
litrg(i){rlf es I I;D (z,1) > —00. (3.2)

Then, for every

a9 02
AeEA:=|0,—— |sup 5 ,
b—a \c>0 [7 max|y <. F'(z,t)dx
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problem (1.1) admits at least one non-trivial weak solution uy € X. Moreover, we have
lim [juy|| =0
Jimn s = 0,

and the real function \ — Iy(uy) is negative and strictly decreasing in the open interval
A.

Proof. Our goal is to apply Theorem 2.1 to problem (1.1). For this, let ®, ¥ and I, are
the functionals introduced in Section 2. As seen before, the functionals ® and ¥ satisfy
the regularity assumptions requested in Theorem 2.1. Now, we try to prove the existence
of critical points for the functional Iy in X. Consider A as given in the theorem. Hence,
there exists ¢ > 0 such that

(b—a)A c?

< 5 .
a2 f(l maX‘ﬂSE F(x, t)dx

Set
Q2 =2
=
Then, for all v € X with ®(u) < r, according to inequalities (2.1) and (2.2), we have
|u|lco < ¢. Hence, one has

b b
U(u) = _/a F(z,u(z))dr < [ max F(x,t)dx,

a [tI<e

for every u € X such that ®(u) < r. Then,

b
sup V(u) < [ max F(z,t)dz.
(u)<r a [tI<c

Taking into account the above calculations and the definition of ¢(r), since 0 € ®~1((—o0, 7))
and ®(0) = ¥(0) = 0, we have

sup U(v) — U(u)
veEDP~1((—00,r))

= inf
SO(T) uei’_ll&—oo,r)) r— @(u)
sup U(v)
< ve®1((—o0,r))
T
(b—a) ff max|y| <z F(z,t)dx 1
< — < —.
o9 c A
Hence, set
~2
A= 2 ¢ € (0, 4+00].

(b - a’) fal? ma‘XMSE F(x, t) dx
So, thanks to Theorem 2.1, for every A € (0,A*) C (0,1/¢(r)), the functional I has at
least one critical point (local minima) uy € ®~!((—o0,7)).
Now, we establish that for each fixed A € (0, \*) the solution u) found above is not the
trivial function and the map
(0, )\*) SA— I,\(U)\),
is negative. If f(x,0) # 0 for some x € (a,b), then it follows that uy # Oy, since the trivial

function does not solve problem (1.1). We consider the case when f(z,0) = 0. First, we
show that

v
lim sup (u)

ok d(w) ~ (33)
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Due to the hypotheses (3.1) and (3.2), we can fix a sequence {t,,} C R* converging to zero
and two constant o, and x (with ¢ > 0) such that
inf,cpF(x,t
i S infeen (x,tn) — 100,

n—00 t%

and
essinfuepF(x,t) > K12,
for every t € [0, 0].
Now, fix a set C' C B of positive measure and a function v € X such that:
i) v(z) € [0, 1], for every x € [a, b];
ii) v(z) = 1, for every x € C;
iii) v(z) =0, for every = € (a,b) \ D.
Hence, fix N > 0 and consider a real positive number 7 with
nmeas(C) + K fD\C(v(x))2 dx

ai|[v]|?

)

where meas(C') denotes the Lebesgue measure of the set C. Then, there is ¥ € N such
that ¢, < o and
essinf,epF(x,t,) > nt2,
for every n > v.
Now, for every n > v, according to the properties of the function v (0 < t,v(x) < o for
n sufficiently large), we have

\I/<tn’l)) . fC F(.’E,tn) dw—"fD\CF(x’tnv(m)) dx
‘I’(bﬂ)) o q)(tnv)
nmeas(C) + /{/ (v(x))? dz
> H ]ﬁéc > N.
a1||v

Since N could be arbitrarily large, it follows that
U (tyv)
im = 400,
n—00 (I)(tny)

so, the relation (3.3) follows.
Let w,, := t,v for any n € N. We have

[wn | = [tn]llv]] = 0,
as n — 400, so that for n large enough,

hwll <\ 2
w —— ¢
" a1(b—a)
According to the above inequality and taking into account the relation ®(w,,) < a1||w,|?,
one has

Wn, € (I)_l((—OOﬂ")), (34)
provided n is large enough. Also, by (3.3) and the fact that A > 0,
I(wy) = ®(wy) — A¥(wy,) <0, (3.5)

for n sufficiently large.
Since uy is a global minimum of the restriction of I to ®~!((—o00,7)), by (3.4) and
(3.5) we deduce that

I,\(’u)\) < I,\(wn) <0= I)\(O), (36)
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so, uy # Ox. Therefore, uy is a non-trivial solution of problem (1.1). Moreover, from (3.6)
we get that the map
(0, )\*) SA— I)\(U)\), (37)
is negative.
Now, we claim that lim |luy| = 0.
A—07F

Because @ is coercive and for every A € (0,\*), one has uy € ®~1((—o0,7)), so there
exists a positive constant L such that ||uy|| < L, for every A € (0, \*). Then, we have

<——F— sup_ |f(=,9), (3.8)

for every A € (0, \*).
Since uy is a critical point of I , then I} (uy)(v) = 0, for any v € X and every A € (0, \*).
Specially, I} (uy)(uy) = 0, that is

b
@ (un)un) = A [ (o, ur(@)un(w) do (3.9)
for every A € (0, \*). According to the inequality (2.1) we will have
b uly (z) 1 b b
P = [ ([ ar)up(@)do+ [ un(a)Pde — [ glun(e)ur(a)do
a 0 h(m7 T) a a

1
a7l + (= )l

v

a2
> - fluall* > 0.

Then, by (3.9), it follows that

. b
0= P luall? < /() un) = A [ @ un@))ur (@) d,

for any A € (0,\*). Letting A — 0T, by (3.8), we get )\lin(r]l+ |luall = 0. By the inequality
_>
(2.1), we have lim [uy]eo = 0.
A—0t

Finally, we show that the map A — I(uy) is strictly decreasing in (0, \*). For this, for
any u € X, one has
()

Iy(u) = A (A _ \Il(u)) | (3.10)

Now, let us fix 0 < A\; < Ay < A* and let uy, be the global minimum of the functional I},
restricted to @1 ((—oo,7)) for i = 1,2.

Also, let

for every i =1, 2.
Clearly, the positivity of A together with (3.7) and (3.10) show that

my, <0, for i=1,2. (3.11)

Moreover,
mi, S mx, (3.12)
since 0 < A\; < A2. Then, by (3.10)—(3.12) and by the fact that 0 < A\; < A2, we have
Iy, (uy,) = Aamy, < damy, < Aimy, = Iy, (uy,),

so that the map A — I (uy) is strictly decreasing in A € (0, A*). The arbitrariness of A < A*
shows that A — I)(uy) is strictly decreasing in (0, A*). This concludes the proof. O
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Corollary 3.2. Let f : R — R be a continuous function. Put F(§) := fog f(t)dt for all
& € R. In addition, if f(0) =0, assume also that
()

lim —= = +00
0+ t2

Ae |0 a2 su ¢
(b —a)? \osb maxy <. F(1) ) |

{ —u" +uh(z,v) = [A(u) + g(u)]h(z,u) in (a,b),
u(a) = u(b) =0,

admits at least one non-trivial classical solution in X.

Then, for every

the problem

4. Some comments

In this section, we give some remarks and a concrete example of application of our
results.

Remark 4.1. If in Theorem 3.1 one has f(z,s) > 0 for a.e. x € [a,b] and every s < 0,
then the obtained weak solution is non-negative. Indeed, arguing by a contradiction, let
u be a critical point of I and that the open set

S:={z € [a,b] : u(z) <0},

is of positive Lebesgue measure. Set v := min{0,u}. Clearly, v € X and, since u is a
critical point, by (2.1) and the sign assumption on f, we have

0 = ®(u)(v) — AV (u)(v)

= /ab (/Ou’(w) h(;ﬂ_) dT) V' (x)dx + /ab u(z)v(z)de

~ [ st A [ pe ut@)ens

> / (/U/(x) h(mil o dT) da:—i—/ lu(z)| dx—/sg(u(x))u(x)dx
> /\u )|?dx + (1 — L /]u )| dx

S 44 M(1 6\)4(meas(5)) lullZ

- 4

> Flul

Hence, since u|g € I/VO1 ’2(5 ), one has u = 0 on S, which is a contradiction. So, our claim
is proved.

Remark 4.2. We note that Theorem 3.1 is a bifurcation result, because A = 0 is a
bifurcation point for problem (1.1), in the sense that the pair (0,0) belongs to the closure
of the set

{(ux,\) € X x (0,400) : uy is a non-trivial weak solution of (1.1)},
in X x R. Indeed, by Theorem 3.1 we have that
lua| =0 as A— 0.
Hence, there exists two sequences {u;} in X and {\;} in R™ (here, u; := uy,) such that

A — 0" and |uj|| — 0,
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as j — +oo.
Further, we want to point out that for any A;, A2 € A, with A\; # Ag, the solutions uy,
and uy,, given by Theorem 3.1 are different, since the map

A > A= I(uy),

is strictly decreasing.

Remark 4.3. Let the hypotheses of Corollary 3.2 be satisfied. Assume also that f is
non-negative, and
c? - (b—a)?
su
=0 F(c) o)

Then, the problem
—u" +uh(z,u) = [f(u) + g(u)|h(z, ) in (a,b),
u(a) = u(b) =0,

admits at least one non-trivial and non-negative classical solution in X.

Remark 4.4. Theorem 1.1 in the Introduction immediately follows from Corollary 3.2
and Remark 4.1, setting h(z,t) =1 for all (z,t) € [0,1] x R.

Example 4.5. Consider the following parametric problem

—u” = X" in (0,1),

u(0) = u(l) =0.
Obviously, we have L = 1. Then, due to Theorem 1.1, for each parameter
2

(4.1)

>0 €° —

Ae N ::10,2 sup 1 [ =|0, 1.2952],
problem (4.1) admits at least one non-trivial and non-negative classical solution uy. More-
over, one has that

1
lim / [u) (z)|*dx = 0,
0

A—0+
and the real function

1 1 1
A f/ ) (z)|?dx — X (/ e @) dg — 1) ,
2 Jo 0

is negative and strictly decreasing in the interval A’. Since 1 € A’, the problem
—u" = e in (0,1),
u(0) = u(1) = 0.
admits at least one non-trivial and non-negative classical solution. Further, we prove that
problem (4.2) has a unique positive solution. Let —u” = o. With the boundary conditions
u(0) = u(1) = 0, we have u(t) = fol g(t,s)o(s)ds, where
[ s(1—1), 0<s<t<1,
g(t’s)_{ t1—s), 0<t<s<lL.
Then, o > 0 implies u > 0. Moreover, o # 0 on any subinterval. Then, u(t) > 0 for
any t € (0,1). If w is a positive solution of problem (4.2), then u(t) = fol g(t, s)e*®)ds,
u(0) = 0 and «/(0) > 0 (Let «/(0) < 0. Since v’ < 0, then u’ is decreasing, and so u can
not be positive). Now, let there exist two solutions u; and ug for problem (4.2). Assume
also that v} (0) < ub(0). If uz(€) = ui(€) for some & € (0,1], and us(t) > uy(t) for every
t € (0,§), then

(4.2)

1
0= () —wi(€) = [ g(€s) [ =] ds >0,

which is a contradiction. Thus, our claim is proved.
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