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Abstract
In this paper, a local minimum result for differentiable functionals is exploited in order to
prove that a perturbed Dirichlet boundary value problem including a Lipschitz continu-
ous non-linear term admits at least one non-trivial weak solution under an asymptotical
behaviour of the nonlinear datum at zero. Some special cases and a concrete example of
an application is then presented.
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1. Introduction
In this paper, we consider a bifurcation result for the following parametric Dirichlet

boundary value problem on a bounded interval [a, b] in R{
−u′′ + u h(x, u′) =

[
λf(x, u) + g(u)

]
h(x, u′) in (a, b),

u(a) = u(b) = 0,
(1.1)

where λ is a positive parameter, f : [a, b] × R → R is an L1-Carathéodory function,
g : R → R is a Lipschitz continuous function with the Lipschitz constant L > 0, i.e.,

|g(t1) − g(t2)| ≤ L|t1 − t2|,
for every t1, t2 ∈ R, with g(0) = 0, and h : [a, b]×R → [0, +∞) is a bounded and continuous
function with m := inf(x,t)∈[a,b]×R h(x, t) > 0.

Due to the applications of Dirichlet boundary value problems in various fields of applied
sciences such as control systems, economics, mechanical engineering, and biological or
artificial neural networks, these problems have been extensively studied.

In this context, several existence and multiplicity results for solutions to second order
ordinary differential nonlinear equations, with the nonlinearity dependent on the derivative
and Dirichlet conditions at the ends, have been investigated using variational methods.
For an overview on this subject, we cite the papers [1–5,7–14,16] and references therin.
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The pioneering work in this direction is the paper of Averna and Bonanno [7], where
using a three-critical-points theorem [6], the existence of at least three classical solutions
for the following quasilinear two-point boundary-value problem has been obtained{

−(|u′|p−2u′)′ = λf(t, u)h(u′) in (a, b),
u(a) = u(b) = 0,

where p > 1, λ is a positive parameter, h : R → R is a bounded and continuous function
such that inf h > 0, and f : [a, b] × R → R is a continuous function.

We also refer the reader to the paper [2] in which, by means of Ricceri’s Variational
Principle, the existence of infinitely many weak solutions for the following Dirichlet doubly
eigenvalue boundary value problem{

−u′′ + u h(x, u′) =
[
λf(x, u) + µg(x, u) + p(u)

]
h(x, u′) in (a, b),

u(a) = u(b) = 0,

where λ is a positive parameter, µ is a non-negative parameter, f, g : [a, b] × R → R
are L1-Carathéodory functions, p : R → R is a Lipschitz continuous function such that
p(0) = 0, and h : [a, b] × R → [0, +∞) is a bounded and continuous function, are ensured.

Further, we point out that Heidarkhani et al. in [11, Theorem 3.1], using the same
variational setting, established the existence of at least one non-trivial classical solution
for the quasilinear system{

−(pi − 1)|u′
i(x)|pi−2u′′

i (x) = λFui(x, u1, . . . , un)hi(x, u′
i) x ∈ (a, b),

ui(a) = ui(b) = 0, for 1 ≤ i ≤ n,

where pi > 1 for 1 ≤ i ≤ n, λ > 0, hi : [a, b] × R → [0, +∞) is a bounded and continuous
function with mi := inf(x,t)∈[a,b]×R hi(x, t) > 0 for 1 ≤ i ≤ n, F : [a, b] × Rn → R is
measurable with respect to x, for every (t1, . . . , tn) ∈ Rn, continuously differentiable in
(t1, . . . , tn), for almost every x ∈ [a, b], and Fti(x, 0, . . . , 0) = 0 for all x ∈ [a, b] and for
1 ≤ i ≤ n.

In the present paper, motivated by the above works and using a general critical point
theorem (see Theorem 2.1 below), we study the existence of at least one non-trivial weak
solution for problem (1.1) for small values of the parameter λ and requiring an additional
asymptotical behaviour of the potential at zero if f(x, 0) ≡ 0.

A special case of our main result reads as follows.

Theorem 1.1. Let f : R → R be a non-negative continuous function. If f(0) = 0, assume
also that

lim
t→0+

f(t)
t

= +∞.

Assume further that 1 ≤ L < 5. Then, for each parameter

λ ∈
]
0,

5 − L

2

(
sup
c>0

c2∫ c
0 f(t)dt

)[
,

the following problem {
−u′′ + u = λf(u) + g(u) in (0, 1),
u(0) = u(1) = 0,

admits at least one non-trivial and non-negative classical solution uλ. Moreover, we have

lim
λ→0+

∫ 1

0
|u′

λ(x)|2dx = 0,

and the real function

λ 7→ 1
2

∫ 1

0

(
|uλ(x)|2 + |u′

λ(x)|2
)

dx −
∫ 1

0

(∫ uλ(x)

0
(λf(t) + g(t)) dt

)
dx,
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is negative and strictly decreasing in the interval]
0,

5 − L

2

(
sup
c>0

c2∫ c
0 f(t)dt

)[
.

The plan of the paper is as follows. In Section 2 we introduce our notations and a
suitable abstract setting (see Theorem 2.1). In Section 3 our main result (see Theorem
3.1) is presented, while Section 4 is devoted to some comments on the results of the paper.
Finally, a concrete example of an application is exhibited in Example 4.5.

2. Preliminaries
First we here recall for the reader’s convenience the following version of Ricceri’s vari-

ational principle [15, Theorem 2.1] which is our main tool to prove the results.

Theorem 2.1. Let X be a reflexive real Banach space, and let Φ, Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is strongly continuous, sequentially weakly
lower semicontinuous and coercive in X, and Ψ is sequentially weakly upper semicontinu-
ous in X. Let Iλ be the functional defined as Iλ := Φ − λΨ, λ ∈ R, and for any r > inf

X
Φ,

let φ be the function defined as

φ(r) := inf
u∈Φ−1((−∞,r))

sup
v∈Φ−1((−∞,r))

Ψ(v) − Ψ(u)

r − Φ(u)
.

Then, for any r > inf
X

Φ and any λ ∈ (0, 1/φ(r)), the restriction of the functional Iλ

to Φ−1((−∞, r)) admits a global minimum, which is a critical point (precisely a local
minimum) of Iλ in X.

Now, assume that the functions f, g and h hold in the conditions given in the following
of problem (1.1). Corresponding to f, g and h we introduce the functions F : [a, b] ×R →
R, G : R → R and H : [a, b] × R → [0, +∞), respectively, as follows

F (x, t) :=
∫ t

0
f(x, ξ)dξ, G(t) := −

∫ t

0
g(ξ)dξ,

and
H(x, t) :=

∫ t

0

(∫ τ

0

1
h(x, δ)

dδ

)
dτ,

for all x ∈ [a, b] and t ∈ R.
In the continuation of this paper, we let X be the Sobolev space W 1,2

0 ([a, b]) equipped
with the norm

‖u‖ :=
(∫ b

a
|u′(x)|2dx

)1/2

.

We say that a function u ∈ X is a weak solution of problem (1.1) if∫ b

a

(∫ u′(x)

0

1
h(x, τ)

dτ

)
v′(x)dx +

∫ b

a
u(x)v(x)dx − λ

∫ b

a
f(x, u(x))v(x)dx

−
∫ b

a
g(u(x))v(x)dx = 0,

for all v ∈ X.
If f is a continuous function, then by standard regularity results, weak solutions of

problem (1.1) are classical solutions, i.e., they belong to C2([a, b]).
We recall the following inequality of Sobolev type (see, for instance, the paper [17])

max
x∈[a,b]

|u(x)| ≤ (b − a)1/2

2
‖u‖, ∀u ∈ X. (2.1)
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In the following, let M := sup(x,t)∈[a,b]×R h(x, t) and suppose that the Lipschitz constant
L > 0 of the function g satisfies the following condition:

(A0) L ≥ 1 and M(L − 1)(b − a)2 < 4.
Now, put

α1 := 4 + m(1 + L)(b − a)2

8m
,

α2 := 4 + M(1 − L)(b − a)2

2M
.

We introduce the energy functional Iλ(u) : X → R associated with (1.1),
Iλ(u) := Φ(u) − λΨ(u), ∀u ∈ X,

where
Φ(u) :=

∫ b

a
H(x, u′(x))dx + 1

2

∫ b

a
|u(x)|2dx +

∫ b

a
G(u(x))dx,

and
Ψ(u) :=

∫ b

a
F (x, u(x))dx,

for every u ∈ X. By standard arguments, one has that Φ is continuously Gâteaux differ-
entiable and sequentially weakly lower semicontinuous and its Gâteaux derivative is the
functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) =
∫ b

a

(∫ u′(x)

0

1
h(x, τ)

dτ

)
v′(x)dx +

∫ b

a
u(x)v(x)dx −

∫ b

a
g(u(x))v(x)dx,

for every v ∈ X. Since g is Lipschitz continuous and satisfies g(0) = 0, while h is bounded
away from zero, we have from (2.1) that

Φ(u) ≥ α2
4

‖u‖2, (2.2)

for all u ∈ X, and so Φ is coercive.
On the other hand, the fact that X is compactly embedded into C0([a, b]) implies

that the functional Ψ is well defined, continuously Gâteaux differentiable and sequentially
weakly (upper) continuous, whose Gâteaux derivative is given by

Ψ′(u)(v) =
∫ b

a
f(x, u(x))v(x)dx,

for every v ∈ X; for more details, see the proof of [2, Theorem 3.1].
Note that the weak solutions of (1.1) are exactly the critical points of Iλ.

3. The main result
In this section, we prove our existence result that reads as follows.

Theorem 3.1. Let f : [a, b] × R → R be an L1-Carathéodory function. In addition, if
f(x, 0) ≡ 0, assume that there are a non-empty open set D ⊆ (a, b) and a set B ⊆ D of
positive Lebesgue measure such that

lim sup
t→0+

ess infx∈BF (x, t)
t2 = +∞, (3.1)

and
lim inf
t→0+

ess infx∈DF (x, t)
t2 > −∞. (3.2)

Then, for every

λ ∈ Λ :=
]
0,

α2
b − a

(
sup
c>0

c2∫ b
a max|t|≤c F (x, t)dx

)[
,
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problem (1.1) admits at least one non-trivial weak solution uλ ∈ X. Moreover, we have

lim
λ→0+

‖uλ‖ = 0,

and the real function λ 7→ Iλ(uλ) is negative and strictly decreasing in the open interval
Λ.

Proof. Our goal is to apply Theorem 2.1 to problem (1.1). For this, let Φ, Ψ and Iλ are
the functionals introduced in Section 2. As seen before, the functionals Φ and Ψ satisfy
the regularity assumptions requested in Theorem 2.1. Now, we try to prove the existence
of critical points for the functional Iλ in X. Consider λ as given in the theorem. Hence,
there exists c̄ > 0 such that

(b − a)λ
α2

<
c̄2∫ b

a max|t|≤c̄ F (x, t)dx
.

Set
r := α2

b − a
c̄2.

Then, for all u ∈ X with Φ(u) < r, according to inequalities (2.1) and (2.2), we have
‖u‖∞ ≤ c̄. Hence, one has

Ψ(u) =
∫ b

a
F (x, u(x)) dx ≤

∫ b

a
max
|t|≤c̄

F (x, t) dx,

for every u ∈ X such that Φ(u) < r. Then,

sup
Φ(u)<r

Ψ(u) ≤
∫ b

a
max
|t|≤c̄

F (x, t) dx.

Taking into account the above calculations and the definition of φ(r), since 0 ∈ Φ−1((−∞, r))
and Φ(0) = Ψ(0) = 0, we have

φ(r) = inf
u∈Φ−1((−∞,r))

sup
v∈Φ−1((−∞,r))

Ψ(v) − Ψ(u)

r − Φ(u)

≤
sup

v∈Φ−1((−∞,r))
Ψ(v)

r

≤ (b − a)
α2

∫ b
a max|t|≤c̄ F (x, t) dx

c̄2 <
1
λ

.

Hence, set

λ⋆ := α2
(b − a)

c̄2∫ b
a max|t|≤c̄ F (x, t) dx

∈ (0, +∞].

So, thanks to Theorem 2.1, for every λ ∈ (0, λ⋆) ⊆ (0, 1/φ(r)), the functional Iλ has at
least one critical point (local minima) uλ ∈ Φ−1((−∞, r)).

Now, we establish that for each fixed λ ∈ (0, λ⋆) the solution uλ found above is not the
trivial function and the map

(0, λ⋆) 3 λ 7→ Iλ(uλ),
is negative. If f(x, 0) 6= 0 for some x ∈ (a, b), then it follows that uλ 6≡ 0X , since the trivial
function does not solve problem (1.1). We consider the case when f(x, 0) ≡ 0. First, we
show that

lim sup
‖u‖→0+

Ψ(u)
Φ(u)

= +∞. (3.3)
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Due to the hypotheses (3.1) and (3.2), we can fix a sequence {tn} ⊂ R+ converging to zero
and two constant σ, and κ (with σ > 0) such that

lim
n→∞

ess infx∈BF (x, tn)
t2
n

= +∞,

and
ess infx∈DF (x, t) ≥ κ t2,

for every t ∈ [0, σ].
Now, fix a set C ⊂ B of positive measure and a function v ∈ X such that:

i) v(x) ∈ [0, 1], for every x ∈ [a, b];
ii) v(x) = 1, for every x ∈ C;
iii) v(x) = 0, for every x ∈ (a, b) \ D.

Hence, fix N > 0 and consider a real positive number η with

N <
η meas(C) + κ

∫
D\C(v(x))2 dx

α1‖v‖2 ,

where meas(C) denotes the Lebesgue measure of the set C. Then, there is ν ∈ N such
that tn < σ and

ess infx∈BF (x, tn) ≥ η t2
n,

for every n > ν.
Now, for every n > ν, according to the properties of the function v (0 ≤ tnv(x) < σ for

n sufficiently large), we have

Ψ(tnv)
Φ(tnv)

=
∫

C F (x, tn) dx +
∫

D\C F (x, tnv(x)) dx

Φ(tnv)

≥
η meas(C) + κ

∫
D\C

(v(x))2 dx

α1‖v‖2 > N.

Since N could be arbitrarily large, it follows that

lim
n→∞

Ψ(tnv)
Φ(tnv)

= +∞,

so, the relation (3.3) follows.
Let wn := tnv for any n ∈ N. We have

‖wn‖ = |tn|‖v‖ → 0,

as n → +∞, so that for n large enough,

‖wn‖ <

√
α2

α1(b − a)
c̄.

According to the above inequality and taking into account the relation Φ(wn) ≤ α1‖wn‖2,
one has

wn ∈ Φ−1((−∞, r)), (3.4)
provided n is large enough. Also, by (3.3) and the fact that λ > 0,

Iλ(wn) = Φ(wn) − λΨ(wn) < 0, (3.5)

for n sufficiently large.
Since uλ is a global minimum of the restriction of Iλ to Φ−1((−∞, r)), by (3.4) and

(3.5) we deduce that
Iλ(uλ) ≤ Iλ(wn) < 0 = Iλ(0), (3.6)
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so, uλ 6≡ 0X . Therefore, uλ is a non-trivial solution of problem (1.1). Moreover, from (3.6)
we get that the map

(0, λ⋆) 3 λ 7→ Iλ(uλ), (3.7)
is negative.

Now, we claim that lim
λ→0+

‖uλ‖ = 0.

Because Φ is coercive and for every λ ∈ (0, λ⋆), one has uλ ∈ Φ−1((−∞, r)), so there
exists a positive constant L such that ‖uλ‖ ≤ L, for every λ ∈ (0, λ⋆). Then, we have∣∣∣∣∣

∫ b

a
f(x, uλ(x))uλ(x) dx

∣∣∣∣∣ ≤ (b − a)3/2L

2
sup

|s|≤
√

b−a
2 L

|f(x, s)|, (3.8)

for every λ ∈ (0, λ⋆).
Since uλ is a critical point of Iλ , then I ′

λ(uλ)(v) = 0, for any v ∈ X and every λ ∈ (0, λ⋆).
Specially, I ′

λ(uλ)(uλ) = 0, that is

Φ′(uλ)(uλ) = λ

∫ b

a
f(x, uλ(x))uλ(x) dx, (3.9)

for every λ ∈ (0, λ⋆). According to the inequality (2.1) we will have

Φ′(uλ)(uλ) =
∫ b

a

(∫ u′
λ(x)

0

1
h(x, τ)

dτ

)
u′

λ(x)dx +
∫ b

a
|uλ(x)|2dx −

∫ b

a
g(uλ(x))uλ(x)dx

≥ 1
M

‖uλ‖2 + (1 − L)‖uλ‖2
L2([a,b])

≥ α2
2

‖uλ‖2 ≥ 0.

Then, by (3.9), it follows that

0 ≤ α2
2

‖uλ‖2 ≤ Φ′(uλ)(uλ) = λ

∫ b

a
f(x, uλ(x))uλ(x) dx,

for any λ ∈ (0, λ⋆). Letting λ → 0+, by (3.8), we get lim
λ→0+

‖uλ‖ = 0. By the inequality
(2.1), we have lim

λ→0+
‖uλ‖∞ = 0.

Finally, we show that the map λ 7→ Iλ(uλ) is strictly decreasing in (0, λ⋆). For this, for
any u ∈ X, one has

Iλ(u) = λ

(Φ(u)
λ

− Ψ(u)
)

. (3.10)

Now, let us fix 0 < λ1 < λ2 < λ⋆ and let uλi
be the global minimum of the functional Iλi

restricted to Φ−1((−∞, r)
)

for i = 1, 2.
Also, let

mλi
:=
(Φ(uλi

)
λi

− Ψ(uλi
)
)

= inf
v∈Φ−1

(
(−∞,r)

) (Φ(v)
λi

− Ψ(v)
)

,

for every i = 1, 2.
Clearly, the positivity of λ together with (3.7) and (3.10) show that

mλi
< 0, for i = 1, 2. (3.11)

Moreover,
mλ2 ≤ mλ1 , (3.12)

since 0 < λ1 < λ2. Then, by (3.10)–(3.12) and by the fact that 0 < λ1 < λ2, we have
Iλ2(uλ2) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 = Iλ1(uλ1),

so that the map λ 7→ Iλ(uλ) is strictly decreasing in λ ∈ (0, λ⋆). The arbitrariness of λ < λ⋆

shows that λ 7→ Iλ(uλ) is strictly decreasing in (0, λ⋆). This concludes the proof. □
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Corollary 3.2. Let f : R → R be a continuous function. Put F (ξ) :=
∫ ξ

0 f(t)dt for all
ξ ∈ R. In addition, if f(0) = 0, assume also that

lim
t→0+

F (t)
t2 = +∞.

Then, for every

λ ∈
]
0,

α2
(b − a)2

(
sup
c>0

c2

max|t|≤c F (t)

)[
,

the problem {
−u′′ + u h(x, u′) =

[
λf(u) + g(u)

]
h(x, u′) in (a, b),

u(a) = u(b) = 0,

admits at least one non-trivial classical solution in X.

4. Some comments
In this section, we give some remarks and a concrete example of application of our

results.

Remark 4.1. If in Theorem 3.1 one has f(x, s) ≥ 0 for a.e. x ∈ [a, b] and every s < 0,
then the obtained weak solution is non-negative. Indeed, arguing by a contradiction, let
u be a critical point of Iλ and that the open set

S := {x ∈ [a, b] : u(x) < 0},

is of positive Lebesgue measure. Set v := min{0, u}. Clearly, v ∈ X and, since u is a
critical point, by (2.1) and the sign assumption on f , we have

0 = Φ′(u)(v) − λΨ′(u)(v)

=
∫ b

a

(∫ u′(x)

0

1
h(x, τ)

dτ

)
v′(x)dx +

∫ b

a
u(x)v(x)dx

−
∫ b

a
g(u(x))v(x)dx − λ

∫ b

a
f(x, u(x))v(x)dx

≥
∫

S

(∫ u′(x)

0

1
h(x, τ)

dτ

)
u′(x)dx +

∫
S

|u(x)|2dx −
∫

S
g(u(x))u(x)dx

≥ 1
M

∫
S

|u′(x)|2dx + (1 − L)
∫

S
|u(x)|2dx

≥ 4 + M(1 − L) (meas(S))2

4M
‖u‖2

S

≥ α2
2

‖u‖2
S .

Hence, since u|S ∈ W 1,2
0 (S), one has u ≡ 0 on S, which is a contradiction. So, our claim

is proved.

Remark 4.2. We note that Theorem 3.1 is a bifurcation result, because λ = 0 is a
bifurcation point for problem (1.1), in the sense that the pair (0, 0) belongs to the closure
of the set {

(uλ, λ) ∈ X × (0, +∞) : uλ is a non-trivial weak solution of (1.1)
}
,

in X × R. Indeed, by Theorem 3.1 we have that
‖uλ‖ → 0 as λ → 0+.

Hence, there exists two sequences {uj} in X and {λj} in R+ (here, uj := uλj
) such that

λj → 0+ and ‖uj‖ → 0,
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as j → +∞.
Further, we want to point out that for any λ1, λ2 ∈ Λ, with λ1 6= λ2, the solutions uλ1

and uλ2 , given by Theorem 3.1 are different, since the map
Λ 3 λ 7→ Iλ(uλ),

is strictly decreasing.

Remark 4.3. Let the hypotheses of Corollary 3.2 be satisfied. Assume also that f is
non-negative, and

sup
c>0

c2

F (c)
>

(b − a)2

α2
.

Then, the problem{
−u′′ + u h(x, u′) =

[
f(u) + g(u)

]
h(x, u′) in (a, b),

u(a) = u(b) = 0,

admits at least one non-trivial and non-negative classical solution in X.

Remark 4.4. Theorem 1.1 in the Introduction immediately follows from Corollary 3.2
and Remark 4.1, setting h(x, t) ≡ 1 for all (x, t) ∈ [0, 1] × R.

Example 4.5. Consider the following parametric problem{
−u′′ = λeu in (0, 1),
u(0) = u(1) = 0.

(4.1)

Obviously, we have L = 1. Then, due to Theorem 1.1, for each parameter

λ ∈ Λ′ :=
]
0, 2 sup

c>0

c2

ec − 1

[
=]0, 1.2952[,

problem (4.1) admits at least one non-trivial and non-negative classical solution uλ. More-
over, one has that

lim
λ→0+

∫ 1

0
|u′

λ(x)|2dx = 0,

and the real function

λ 7→ 1
2

∫ 1

0
|u′

λ(x)|2dx − λ

(∫ 1

0
euλ(x)dx − 1

)
,

is negative and strictly decreasing in the interval Λ′. Since 1 ∈ Λ′, the problem{
−u′′ = eu in (0, 1),
u(0) = u(1) = 0.

(4.2)

admits at least one non-trivial and non-negative classical solution. Further, we prove that
problem (4.2) has a unique positive solution. Let −u′′ = σ. With the boundary conditions
u(0) = u(1) = 0, we have u(t) =

∫ 1
0 g(t, s)σ(s)ds, where

g(t, s) =
{

s(1 − t), 0 ≤ s ≤ t ≤ 1,
t(1 − s), 0 ≤ t < s ≤ 1.

Then, σ ≥ 0 implies u ≥ 0. Moreover, σ 6≡ 0 on any subinterval. Then, u(t) > 0 for
any t ∈ (0, 1). If u is a positive solution of problem (4.2), then u(t) =

∫ 1
0 g(t, s)eu(s)ds,

u(0) = 0 and u′(0) > 0 (Let u′(0) ≤ 0. Since u′′ < 0, then u′ is decreasing, and so u can
not be positive). Now, let there exist two solutions u1 and u2 for problem (4.2). Assume
also that u′

1(0) < u′
2(0). If u2(ξ) = u1(ξ) for some ξ ∈ (0, 1], and u2(t) > u1(t) for every

t ∈ (0, ξ), then

0 = u2(ξ) − u1(ξ) =
∫ 1

0
g(ξ, s)

[
eu2(s) − eu1(s)

]
ds > 0,

which is a contradiction. Thus, our claim is proved.
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