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ABSTRACT In the human glucose-insulin regulatory system, diverse metabolic issues can arise, including
diabetes type I and type II, hyperinsulinemia, hypoglycemia, etc. Therefore, the analysis and characterization
of such a biological system is a must. It is well known that mathematical models are an excellent option to study
and predict natural phenomena to some extent. In this way, fractional-order theory provides generalizations
for derivatives and integrals to arbitrary orders giving us a framework to add memory properties and an
additional dimension to the mathematical models to approximate real-world phenomena with higher accuracy.
In this work, we study the glucose and insulin governing mechanisms using a fractional-order version of a
mathematical model. Applying the fractional-order Caputo derivative, we can investigate different concentration
rates among insulin, glucose, and healthy beta cells. Additionally, the model incorporates two time-lags to
represent the elapsed time of two processes, i.e., the delay in secrete insulin for a blood glucose increment and
the lag to get a glucose reduction caused by raised insulin level. Analytical results of the equilibrium points and
their corresponding stability are given. Numerical results, including phase portraits and bifurcation diagrams,
reveal that the fractional-order increases the chaotic regions, leading to potential metabolic problems. Vice
versa, the system seems to work correctly when the behavior evolves to periodic windows.
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INTRODUCTION

One of the most known metabolic issues is called diabetes mellitus,
in which the blood sugar control mechanism is disrupted. As a
result, insulin, the main control factor is not released at proper
times, or the body cells are unaware of its presence (ADA 2020;
Shabestari et al. 2018; Lozano 2006; Emerging Risk Factors Collabo-
ration et al. 2010). Various pathological processes are involved in
the development of diabetes mellitus, although the vast majority
of cases can be included in two categories. In the first one, type
1 diabetes mellitus, where the cause is an absolute deficiency in
insulin secretion, often with evidence of autoimmune destruction
of pancreatic cells. The second and most typical case is type 2
diabetes mellitus, which is provoked by two factors: insulin re-
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sistance (generally associated with obesity), and an inadequate
compensatory secretory response (Lozano 2006; R.Rosalba et al.
2018; Shabestari et al. 2018; ADA 2020; Bertram and Pernarowski
1998). Other disorders include hyperglycemia which is character-
ized by high blood sugar levels. In contrast, hypoglycemia, also
known as low blood glucose or sugar, occurs when the level of
glucose in the blood falls below normal. Hypoglycemia can be a
side effect of insulin and other types of diabetes medicines that
help the body produce more insulin.

Those metabolic disorders are a world problem according to
World Health Organization (WHO). For instance, Mexico is the
sixth country with diabetic patients and the seventh in obesity
(Statista 2019) in the world, therefore, the prevalence of diabetes
due to a previous diagnosis has increased with a positive annual
trend of 2.7%. In 2016, the prevalence of diabetes was 9.4% higher
than in 2012 and at least in Mexico until 2016 there were just
over 6.4 million people diagnosed with diabetes, about 60,000
more than in 2012. 48.1% of people with diabetes also have a
previous diagnosis of hypertension. This prevalence increases to
50.4%, if they live in urban areas, and to 60%, if they are 60 years
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old or older. 50.4% of people with diabetes also have a previous
medical diagnosis of high cholesterol, which increases to 52.6% if
they live in rural areas, and 55.5% if they are between 40 and 59
years old. 40.4% of people with diabetes also have obesity; this
prevalence increases by 49.7% if they are between 40 and 59 years
old (R.Rosalba et al. 2018; Statista 2019).

As can be noted, people with obesity and hypertension, who are
prone to suffer metabolic disorders related to the proper regulation
of insulin and glucose, are rapidly increasing each year (Shabestari
et al. 2018; ADA 2020). Thus, many scientific areas are facing this
problem from diverse points of view. It is well known that mathe-
matical models are a proved option to understand the nonlinear
dynamics of biological systems to some extent. The goal is to get a
more realistic model that covers all potential scenarios of the metabolic
disorders in the glucose-insulin system. In this manner, we may pre-
dict with a better approximation the health issues associated with
insulin levels and how it affects glucose metabolism. Additionally,
novel medical treatments could be carried on for better control of
diabetes mellitus. Some pioneering works on this subject are those
described by (Bajaj et al. 1987; Sarika et al. 2008; Lenbury et al. 2001;
Chuedoung et al. 2009).

As first attempt to improve the precision of the models, many
published works have included time-delays (Al-Hussein et al. 2020;
Shabestari et al. 2018; Sarika et al. 2008; Palumbo et al. 2007; Chue-
doung et al. 2009; Rajagopal et al. 2018). For instance, (Shabestari
et al. 2018) analyzed the impact of different time lags in the behavior
of insulin level that needs some time instants for having presence
in plasma; and the lapsed time for an adequate glucose stimula-
tion. In Ref. (Al-Hussein et al. 2020), they added an extra term
to represent the insulin decline due to glucose interchange. The
impact of the partial time lags in an electrically coupled Izhikevich
neuron model was examined by (Shafiei et al. (2019)). There, it was
shown that if the probability of partial time delays increases may
imply the emergence of complex dynamical behaviors. A graphi-
cal representation of the time-delay effect for equations given by
Ẋ = F(t, X(t), X(t − τ)) is shown in Fig. 1.

Figure 1 Implication of time-dependent delay in the solution
of Delay Differential Equations (DDEs) (Lakshmanan and
Senthilkumar 2010).

We observe that the solution is approximated mapping a initial
function onto other subsequent functions in time intervals τ.

Moreover, the fractional calculus is recognized as one suitable
option to increase the accuracy of the biological mathematical
models because it permits the inclusion of arbitrary orders for the
derivative operators in the differential equations of the underlying
system (Ionescu et al. 2017; Rihan 2013; Teka et al. 2018; Assadi
et al. 2017). Therefore, the biological system can have an extra
degree of freedom, i.e., a real parameter given by the fractional
order, to represent distinct behaviors. Additionally, the fractional-
order provides a memory effect into the time evolution of the
system, since its future solutions will depend on all past times
and not only from recent events. A graphical representation of the
memory could be given in a numerical fashion. Fig. 2 presents
the fading memory in fractional-order systems as a function of

binomial coefficients c(q)j . To compute the solution wk, is necessary
the whole vector of previous solutions, i.e., wk−1, wk−2 , . . . , w0.
However, those previous solutions are weighted by the binomial
coefficients. It means that the initial condition is always affected
by a lower value than the former solutions. Because of that, we
mention that past events contribute lesser than recent events to the
current state.

Figure 2 Numerical point of view of the fading memory of

fractional-order systems according binomial coefficients c(q)0 = 1,

and c(q)j =
(

1 − 1+q
j

)
c(q)j−1 with q = 0.5.

As a result, various works focusing on examining time lags
for describing biological systems defined by fractional derivatives
have been lately published. (Chinnathambi et al. 2021; Rihan et al.
2021; Singh and Pandey 2021; Yao and Tang 2021). Regarding
fractional-order glucose-insulin models, (Zambrano-Serrano et al.
2018) analyzed the synchronized behavior between two β-cells-
based fractional-order models under various cases of bursting
signals. (Munoz-Pacheco et al. 2020) studied the estimation of
metabolic disorders such as diabetes mellitus, hypoglycemia, and
hyperinsulinemia using arbitrary order derivatives represented by
a singular kernel.
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In this framework, the fractional calculus-based models are
essential to accurately capture the biological behaviors, includ-
ing diabetes’s related problems, and necessary to understanding
this open topic. This work reports a time-delay chaotic glucose-
insulin system with fractional differential equations. Our model
incorporates Caputo derivatives to investigate the implications of
the power-law memory kernel with the glucose-insulin interplay.
Additionally, a pair of time delays define the lag between glu-
cose detection and insulin secretion. Using the fractional calculus
theory, we demonstrate the equilibrium points’ stability and de-
termine the fractional-order value where the system may present
chaotic oscillations. We also derive numerical observations such as
phase portraits and bifurcation diagrams to compare the integer
and fractional-order models. The obtained results are consistent
with the theoretical deductions and agree with previous findings
in the area.

The paper outline is as follows. Section II introduces the pro-
posed biological model along with its system parameters. Section
III demonstrates the stability of the model for both equilibrium
points and fractional-order. Section IV gives the results of the nu-
merical simulations, and finally, Section V presents the conclusion.

FRACTIONAL-ORDER GLUCOSE-INSULIN METABOLIC
SYSTEM WITH TIME LAGS

This section presents the proposed fractional-order glucose-insulin
metabolic regulatory system with time delay inspired by the work
reported in (Shabestari et al. 2018). They introduced an integer-
order model with time lags to describe the primary control of
insulin secretion, and glucose metabolism by the pancreatic beta
cells in a feedback operation.

The model can represent the following phases. Typically, dur-
ing meal consumption, the level of glucose increases considerably.
Then, those levels are detected by the regulatory system, which pro-
motes the generation and liberation of insulin by beta-cells. Next,
the glucose concentration minimizes by the action of high levels
of insulin, provoking that the human body burns and preserves
nutrients. The second phase explains how insulin production re-
duces as a function of the average glucose level, for instance, when
the organism does not receive any meal for a long time interval.
As a result, the regulatory system changes from absorption to the
post-absorption stage. One can see that this simple oscillatory
process with negative feedback sustains a proper glucose level
for the whole body, including organs and tissues. The reported
integer-order model by (Shabestari et al. 2018) is:

dx
dt

= r1y(t − τg)z(t − τg)− r2x + c1z(t − τg),

dy
dt

=
R3N

z
− R4x(t − τi) + C2,

dz
dt

= R5(y − ŷ)(T − z) + R6z(T − z)− R7z,

(1)

where x(t), y(t), z(t), and ŷ represent the insulin level, glucose
level, beta-cells number and the glucose metabolism considering
its basal state, respectively. According to clinical experiments by
(Palumbo et al. 2007), the delay for the insulin production, as a
result of blood glucose level rising, could be set τg = 0.56. The
delay between augmented insulin level and glucose reduction is
τi = 0.05 as suggested (Prager et al. 1986).

■ Table 1 System parameters for fractional-order glucose-
insulin metabolic regulatory system.

Parameter Value Parameter Value Parameter Value

r1 0.472 r2 0.25 R3 0.82

R4 0.6 R5 0.3 R6 0.3

R7 0.2 ŷ 1.42 N 1.27

T 1.5 c1 0.1 C2 0.8

Indeed, certain metabolic disorders, such as hyperglycemia
(extremely high glucose) and hypoglycemia (low glucose), are
associated with inaccurate time delay values. r1y(t − τg)z(t − τg)
explains the increments both insulin and glucose as a function
of the time delay τg; r2x means the speed of insulin reduction
unassociated with glucose; c1z(t − τg) s the insulin raising rate
as a function of the beta-cells, which does not depend on any
other element. Additionally, the average number of beta-cells is
represented as N; while the glucose decreasing cadence when the
insulin is secreted with τi is given by R4x(t − τi). T is the entire
population of beta-cells; R5(y− ŷ)(T − z) denotes the increment of
dividing beta-cells against the non-dividing ones that are induced
by the interaction between glucose and the starving stage. R6z(T −
z) means raise of z because of synergy relating to dividing and
nondividing beta-cells, whereas R7z is its diminution. (Prager et al.
1986; Chuedoung et al. 2009; Shabestari et al. 2018).

The behavior of the integer-order glucose-insulin system (1),
with delays τg = 0.56 τi = 0.05, initial conditions [x(0), y(0), z(0)]
= [6.03, 1.79, 0.82], and parameters in Table 1 is shown in Fig. 3. We
observe that the system behaves periodically, presumably having a
healthy behavior, i.e., the interaction between glucose and insulin
is correct.

Fractional-order model derivation
Motivated by the memory characteristics of the arbitrary-order
derivatives, we derive herein a fractional-order version of the
glucose-insulin system (1). By using the Caputo derivative, we
obtain

C
t0

Dq
t x(t) = r1y(t − τg)z(t − τg)− r2x + c1z(t − τg),

C
t0

Dq
t y(t) =

R3N
z

− R4x(t − τi) + C2,

C
t0

Dq
t z(t) = R5(y − ŷ)(T − z) + R6z(T − z)− R7z.

(2)

where q represents the fractional-order and C
t0

Dq
t (·) is defined

by

Definition 1 Consider f : [0,+∞] → R as a function with order
n − 1 ≤ q < n, thus, it can be denoted by the fractional-order derivative
in the Caputo sense as

C
t0

Dq
t g(t) = ∆

∫ t

t0

g(n)(τ)
(t − τ)q+1−n dτ, t > 0, (3)

where ∆ is the Gamma function of 1
Γ(n−q) and n − 1 ≤ q < n.

12 | Munoz-Pacheco et al. CHAOS Theory and Applications



(a)

(b)

Figure 3 (a) Time evolution and (b) phase portrait of the integer-
order glucose-insulin system (1) under τi = 0.05 and τg = 0.56.
[x, y, z] represent the glucose, insulin, and beta-cells, respectively.

According to (Diethelm 2010), the Caputo and Riemann-
Liouville (RL) derivatives are equivalent for initial value prob-
lems (IVP) with similar initial conditions. Moreover, the Caputo
derivative interpretation (3) generalizes formally the integer-order
derivative using Laplace transformation. Finally, it is well known
that Caputo derivative can be the left inverse of the fractional
integral given by RL.

Theorem 1 Diethelm (2010) For n ≥ 0 and g being a continuous
function, then

C
t0

DqRL
t Jqg(x) = g(x), (4)

but not its right inverse:

Theorem 2 Diethelm (2010) Being n ≥ 0, m = ⌈n⌉ with g ∈
Θm[a1, a2]. Thus

RL JqC
t0

Dq
t g(x) = g(x)−

m−1

∑
k=0

Dkg(a1)

k!
(x − a1)

k, (5)

where RL Jq means the RL integral. We choose the Caputo
derivative because the IVP in the fractional-order domain can
be stated analogously to the integer-order case, which gives us a

physical interpretation of the fractional derivative (Petráŝ 2011).
Additionally, we can represent the memory characteristics of the
power-law kernel in the dynamical evolution of biological systems
(Munoz-Pacheco et al. 2020).

STABILITY ANALYSIS

Equilibrium points
As the first step, we should analyze the stability of the equilib-
rium points under the related theory of delay-time systems (Lak-
shmanan and Senthilkumar 2010; Lazarević 2011; Naifar et al.
2019). By selecting f (x, y, z) = 0 and system parameters of Ta-
ble 1 for the fractional-order glucose-insulin system (2), we obtain
the following equilibrium points, E1 = (−1.97, 1.77,−0.53) and
E2 = (3.19, 1.59, 0.94). By computing the Jacobian matrix, we can
study the local asymptotic stability at each one of the equilibrium
points. Thus, we have

JE =


J11 J12 J13

J21 0 J23

0 J32 J33

 . (6)

|JE − λI| = 0, (7)

where JE = J0 + e−λτ Jτg ,τi . J0 is the Jacobian matrix of system
(2) without delay (τ = 0), whereas Jτg ,τi is the Jacobian matrix
under the delays τg and τi, respectively. I indicates an identity
matrix whereas λ the corresponding eigenvalues.

Using the parameters in Table 1, we obtain

J11 = − 1
4 , J12 = 59z∗e−λτg

125 , J13 = e−λτg
(

59y∗
125 + 1

10

)
,

J21 = − 3e−λτi
5 , J23 = − 5207

5000z∗2 ,

J32 = 9
20 − 3z∗

10 , J33 = 169
250 − 3z∗

5 − 3y∗
10 .

Evaluating E∗ = (x∗, y∗, z∗) in Jacobian matrix (6), the pseudo-
characteristic equations for E1 and E2 are, respectively.

λ3 − 0.2096λ2 − 0.4099e−λτ + 2.176λ

+0.1488λe−λτ + 0.5728 = 0.
(8)

λ3 + 0.6131λ2 − 0.1826e−λτ + 0.2917λ

−0.2652λe−λτ + 0.05022 = 0.
(9)

with τ = τg + τi. We observe that both equilibrium points are
saddle points as shown in Table 2. E1 is index-2 since has one real
negative eigenvalue and a complex conjugate pair with a positive
real part. On the other hand, E2 is index-1 because has three real
eigenvalues with two negative and one positive (Sprott 2015). It is
worthy to note that the stability of equilibrium points depends on
the time lags.
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■ Table 2 Stability type of the equilibrium points for the pro-
posed fractional-order time-delay glucose-insulin system with
τg = 0.56 and τi = 2.55.

Equilibrium points Eigenvalues Stability

E1 = (−1.97, 1.77,−0.53)
λ1 = −0.044,

λ2,3 = 0.230 ± 1.449i,
index-2 saddle point

E2 = (3.19, 1.59, 0.94)

λ1 = 1.697,

λ2 = −0.782

λ3 = −1.528

index-1 saddle point

Now, the next step is focusing on the positive equilibrium point
E2 to examine its repercussions in the system dynamics since it is
associated profoundly with the discrete-time lags. For time delay
τ, we may denote the characteristic equation as

η1(λ) + η2(λ)e−λτ = 0, (10)

that is the linearized case, i.e. evaluated at E∗ = (x∗, y∗, z∗),
with

η1(λ) = λ3 + η1,1λ2 + η1,2λ + η1,3,

η2(λ) = η2,1λ2 + η2,2λ + η2,3,
(11)

Without any loss of generality, the characteristic eq. (10) when
the positive equilibrium point E2 is not affected by the time delays
(τg = 0 and τi = 0), becomes

λ3 + (η1,1 + η2,1)λ
2 + (η1,2 + η2,2)λ + (η1,3 + η2,3) = 0, (12)

Using Routh-Hurwitz criterion, the roots of (6) have non-
positive real parts, that is, E∗ is asymptotically stable for P1 =
η1,1 + η2,1 > 0, P2 = η1,3 + η2,3 > 0, and P3 = (η1,1 + η2,1)(η1,2 +
η2,2)− (η1,3 + η2,3) > 0. Due to P1 = 0.6131, P2 = −0.132, and
P3 = 0.148, E2 is unstable when τ = 0.

Minimum fractional-order
As well known, the stability region for fractional-order systems
extends beyond the left-half plane in the complex plane to the
positive one also (Petráŝ 2011), as shown in Fig. 4.

Let us consider the standard form of a nonlinear dynamical
system in the fractional-order domain as

C
t0

Dq
t x = Ax + Bu, (13)

where x ∈ Rn, u ∈ Rm,, A ∈ Rn×n, and B ∈ Rn×m; and
C
t0

Dq
t x = [Ct0

Dq
t x1, . . . ,Ct0

Dq
t xn]T denotes Caputo derivative while

q is the fractional-order. For the autonomous scenario, system (13)
can be expressed by C

t0
Dq

t x = Ax, being x(0) = x0and 0 < q < 1.
In this manner, its stability conditions are analyzed by the next
postulates (Petráŝ 2011; Munoz-Pacheco et al. 2020):

Figure 4 Stability region of fractional order linear time invariant
systems with order 0 < q < 1.

• A system in the form of C
t0

Dq
t x = Ax is considered asymptoti-

cally stable as long as the whole set of eigenvalues, λ, satisfies
| arg(λ)| > qπ

2 , which indicates the evolution x(t) converges
to 0 as t−q.

• A system in the form of C
t0

Dq
t x = Ax is considered stable as

long as the whole set of eigenvalues, λ, satisfies | arg(λ)| > qπ
2

whereas the critical eigenvalues fulfills with | arg(λ)| = qπ
2

having a geometric multiplicity of one.

Therefore, for a certain fractional-order q, system C
t0

Dq
t x = Ax +

Bu, is unstable when at least one of their eigenvalues at equilibrium
point E∗, yields (Petráŝ 2011)

q >
2
π

arctan
|Im(λ)|
|Re(λ)| . (14)

For the fractional-order delay-time glucose-insulin system (2),
the small value of the fractional-order where the system becomes
unstable is q ≥ 0.9 under the eigenvalues from equilibrium point
E2. This result suggest that chaos behavior, which may be related
to an metabolic disorder of the glucose-insulin biological system,
can be observed at interval 0.9 ≤ q ≤ 1.

Lemma 1 An index-2 saddle point is an equilibrium point that pre-
serves the next conditions for their eigenvalues. It must have a negative
real eigenvalue λ1 < 0, and a pair of complex eigenvalues that satis-
fies |arg(λ2)| = |arg(λ3)| < qπ/2. Viceversa, when λ1 > 0 and
|arg(λ2)| = |arg(λ3)| > qπ/2, we have an index-1 saddle point.

From Lemma 1, we confirm that equilibrium points E1 and E2
are index-2 and index-1 saddle points respectively. In next sec-
tion, we explore the effect of the fractional-order in the dynamical
behavior of time-delay glucose-insulin system (2).

14 | Munoz-Pacheco et al. CHAOS Theory and Applications



(a)

(b)

Figure 5 (a) Time evolution and (b) phase portrait of the frac-
tional order time-delay glucose-insulin system (2) with q = 0.95,
τi = 2.55, and τg = 0.56. [x, y, z] represent the glucose, insulin,
and beta-cells, respectively. 50% of iterations were discard to
avoid transient effects.

NUMERICAL RESULTS AND DISCUSSION

To compute the solutions of system (2), we apply the numerical
algorithm proposed by (Petráŝ 2011) which claims that the general
numerical solution of the fractional differential equation

aDq
t w(t) = f (w(t), t),

can be expressed as

w(tk) = f (w(tk−1), tk−1)) hq −
k

∑
j=1

c(q)j w(tk−j), (15)

with k = 1, 2, . . . , n, n =
Tf
h , h the time step, and c(q)j are bino-

mial coefficients given by c(q)0 = 1, and c(q)j =
(

1 − 1+q
j

)
c(q)j−1.

This approach is based on the fact that for a wide class of
functions, the three definitions, Caputo, Riemann-Liouville and
Grünwald-Letnikov, are equivalent. In this manner, the numerical
solution of fraction-order time-delay glucose-insulin system (2)
applying algorithm (15) can be obtained with

xk =
(
r1yk−1−m1 zk−1−m1 − r2xk−1 + c1zk−1−m1

)
hq −

k

∑
j=1

c(q)j xk−j,

yk =

(
R3 N
zk−1

− R4xk−1−m2 + C2

)
hq −

k

∑
j=1

c(q)j yk−j,

zk = (R5(yk−1 − ŷ)(T − zk−1) + R6zk−1(T − zk−1)− R7zk−1) hq

−
k

∑
j=1

c(q)j zk−j,

(16)
where m1 =

τg
h and m2 = τi

h ∈ Z+. With h = 0.01, q = 0.95,
initial conditions [x(t), y(t), z(t)] = [6.03, 1.79, 0.82] for −τg ≤
t ≤ 0, and parameters in Table 1, the fractional-order time-delay
glucose-insulin system (2) leads to a chaos behavior as given in Fig.
5. The revealed results agree well with the literature in the area
(Baghdadi et al. 2015; Al-Hussein et al. 2020; Kroll 1999; Aram et al.
2017), where a chaotic behavior in the biological system is stated
as indication of a probable health issue (metabolic dysfunction).

Due to the importance of analyzing the glucose-insulin system
under several conditions (Chuedoung et al. 2009), we compute
the bifurcation diagrams for two cases. First, we discover the
relation between the fractional-order and dynamical behaviors of
the glucose-insulin regulatory system.

To do that, we have chosen τg = 0.56, and τi = 2.55 because
they coincide with those lags seen in tests carried out on healthy
human beings, where there is usually 1 or 2 minutes delay for
insulin to be secreted. Additionally, the delay increases up to 10
minutes in children with malnutrition (Bertram and Pernarowski
1998; Forrest and Payne Robinson 1925).

Figure 6 Bifurcation diagram for q with τg = 0.56 y τi = 2.55.

The bifurcation diagram for the fractional-order q = 0.95 is
illustrated in Fig. 6. Herein, r defines glucose-insulin behavior as
r =

√
x(tk)2 + y(tk)2 (Muñoz-Pacheco 2019; Munoz-Pacheco et al.

2020). We also follow the suggestions given in (Jafari et al. 2021)
for getting a correct bifurcation diagram.

The extra parameter q permits us to gain insights into the
glucose-insulin regulatory system because the memory effects can
be taken into account in the process of secreted insulin in response
to glucose concentrations. Figure 6 shows the bifurcation diagram
for the case 0.93 ≤ q ≤ 1. One can observe a chaotic behavior as
was predicted by Eq. 14 and Lemma 1. It is worthy to note that not
only the chaotic behavior is observed for integer-order q = 1 but
also for fractional-orders. This result suggest that the regulation of
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the glucose trough insulin is highly complex when a power-law
kernel is considered to describe the long memory effects. For a
fractional-order q < 0.93, the glucose-insulin system evolves to
regular oscillations, which could be associated to a healthy state.
A similar periodic behavior has been observed for typical results
in the human metabolic system (Tasaka et al. 1994; Li et al. 2006).

As second scenario, we study the implications of the time-delay
on the fractional-order system (2). As first step, we compute the
bifurcation diagram of the lags related to insulin (τi) and glucose
(τg) but using an integer-order, i.e. no memory. The chaotic regions
are confined to an small sections about τi = 2.5, and τg = 0.5 and
τg = 2.5 as given in Fig. (7). When memory is not considered, the
influence of delays may not be so decisive for the proper operation
of the glucose-insulin feedback mechanism.

(a)

(b)

Figure 7 Bifurcation diagram for the integer-order time-delay
glucose-insulin system (2). (a) τi with τg = 0.56 y q = 1; and (b)
τg with τi = 2.55 y q = 1.

In our last case, we now compute the bifurcation diagram of
the glucose-insulin regulatory system (2) with a fractional-order
q = 0.95, i.e., with a power-law-type memory, as displayed in Fig.
8. We found that the chaotic regions are broader than the integer-
order case.

For both delays a period-doubling cascade leads to chaotic
states about τi ≈ 2.1 and τg ≈ 0.2. Next, the chaotic behavior
is disrupted by a crisis scenario (τi ≈ 3.5 and τg ≈ 1.5), and
the system shifts to one- or two-period oscillations but only to
converge to chaos again under the same mechanism at τi ≈ 3.9
and τg ≈ 1.8.

For both delays a period-doubling cascade leads to chaotic
states about τi ≈ 2.1 and τg ≈ 0.2. Next, the chaotic behavior
is disrupted by a crisis scenario (τi ≈ 3.5 and τg ≈ 1.5), and

the system shifts to one- or two-period oscillations but only to
converge to chaos again under the same mechanism at τi ≈ 3.9
and τg ≈ 1.8. Besides, the spectrum of Lyapunov exponents for
two different values of q are computed and showed in Table 3. They
were calculated employing the approach proposed in (Sano and
Sawada 1985). These results display a positive Lyapunov exponent
implying that chaotic behavior is observed due to sensitivity to
initial conditions.

■ Table 3 Lyapunov exponents for different values of q.

Fractional-order Spectrum of Lyapunov exponents

q = 0.97 LE1 = 0.434 LE2 = 0 LE3 = −3.25

q = 0.95 LE1 = 0.368 LE2 = 0 LE3 = −2.758

From these observations, the memory of fractional-order deriva-
tives described by Caputo in eq. (2) elucidates new insights about
the glucose-insulin regulatory system since the memory and time-
delay are vital for the onset of chaos where the pancreas might not
supply an adequate quantity of insulin to regulate the glucose level.
Finally, the system exhibits a stable periodic state (i.e., without any
reasonable condition of metabolic disruptions) when the insulin
lag is lower than two minutes and fractional-order q < 0.9.

(a)

(b)

Figure 8 Bifurcation diagram for the fractional-order time-delay
glucose-insulin system (2). (a) τi with τg = 0.56 y q = 0.95; and
(b) τg with τi = 2.55 y q = 0.95.
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CONCLUSION

The dynamical analysis of a fractional-order time-delay glucose-
insulin system was performed applying the Caputo derivative.
In particular, we studied the implications between the common
disorders represented as chaotic states and a power-law memory
kernel. It was observed that the fractional-order biological system
alternates between a chaotic behavior (a health disorder) and a
disorder-free state, as a function of not only time-delay but also
fractional-order. We computed phase portraits and bifurcations
diagrams to understand that regulatory mechanism, which con-
firmed that the fractional-order operator, i.e., a memory profile,
provides improved accuracy of the underlying glucose-insulin dis-
orders. Numerical simulations were in good agreement with the
theoretical findings. Researchers from many scientific areas can
also extend this work to other biological systems, which require
considering the memory of past events in a non-Markovian ap-
proach. In future work, we will investigate a control scheme to
drive the glucose-insulin system to stable behavior.
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