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Abstract

In this paper, we apply the homotopy perturbation method (HPM), modi�ed homotopy perturbation method
(MHPM), variational iteration method (VIM), Adomian decomposition method (ADM), and modi�ed Ado-
mian decomposition method (MADM) to solve nonlinear mixed Volterra-Fredholm integral equations and its
system. We investigate the approximate solution of this equation and its system via proposed methods. The
validity and e�ciency of these methods are demonstrated through various numerical examples that illustrate
the e�ciency, accuracy, and simplicity of the proposed methods. Moreover, the convergence and uniqueness
of the solution of the suggested methods are con�rmed and compared with the exact solutions.
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1. Introduction

In general, many physical problems are constituted as di�erential, integral and integro-di�erential equa-
tions. Recently a lot of numerical methods have been used by researchers to discover the analytical and
approximation solution of these equations. Many mathematicians have focused on developing more e�ective
and advanced methods for an integral equation, and integro-di�erential equations such as the combined
Adomian decomposition method (ADM) with modi�ed Laplace transform for solving the nonlinear Volterra-
Fredholm integro-di�erential equations (NVFIDEs) [13]. The system of Fredholm integral equations (FIEs)
of the second kind with the symmetric kernel was solved [22] by using some numerical methods. Many other
authors have studied nonlinear equation solutions using various methods, e.g., the solution of FIEs via the
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ADM with its modi�cation is obtained in [4], the solution of NVFIEs is found by Taylor series and hybrid of
block-pulse functions in [20, 12]. The system of FIEs of the second kind was solved by ADM and MADM,
see [5]. ADM was applied in [7] to �nd the solution of linear system Volterra equations. The authors in [11]
used modi�ed ADM for solving the fuzzy NVFIEs. whereas, the authors in [19] compared the projection
method with ADM to �nd the solution of the system of integral equations. In [23], the e�cient algorithms
have been used to solve Abel-type singular integral equations. Two-dimensional NVFIDEs were solved via
iterative methods, see [8].

In [21], the authors employed the solution of two-dimensional NVFIEs based on the variational iteration
method (VIM), the modi�ed homotopy perturbation method (MHPM) and VIM were applied to solve the
nonlinear mixed VFIE, for more details see [10, 28]. The solution of the nonlinear system of mixed VFIEs was
obtained by VIM in [24]. An existence result for fractional integro-di�erential equations on Banach space has
been studied in [25]. Singular fractional di�erential equations with ψ-Caputo operator and modi�ed Picard's
iterative method are presented in [26]. NVFIE with a generalized singular kernel and nonlinear mixed integral
equations with singular Volterra kernel have been discussed in [16, 17]. Monotone iterative sequences for
nonlinear integro-di�erential equations of second order are used in [3]. Finding numerical solutions to integro-
di�erential equations based on Legendre multi-wavelets collocation using the new method have been studied
in [18]. Some new uniqueness results of solutions to nonlinear fractional integro-di�erential equations have
been emplemented in [1]. Legendre multi-wavelets collocation method for the numerical solution of linear
and nonlinear integral equations are presented in [6]. Nonlocal problems for fractional integro-di�erential
equation in Banach space were studied in [2].
According to the above discussions, in this paper, we apply di�erent methods as MHPM, MADM, and VIM
for solving the nonlinear mixed Volterra-Fredholm integral equation (NMVFIE) that is

y(κ, t) = f(κ, t) +
∫ t

a

∫
Ω
F (κ, t, ξ, τ, y(ξ, τ))dξdτ, (κ, t) ∈ Ω× [0, T ], (1)

where y(κ, t) is an unknown function, f(κ, t) and F (κ, t, ξ, τ, y(ξ, τ)) are analytic functions onD = Ω×[0, T ],
Ω is a closed subset of Rn, n = 1, 2, 3, and R is the real number set.

The main motive for this paper is to develop the applications of the proposed methods in nonlinear
problems with their system because these methods are the most convenient for solving such types of equations,
especially the NMVFIEs. Consequently, we apply MHPM, VIM and MADM for solving the equation (1)
and HPM, VIM, and ADM for solving the equation (1) and the system given in (28). Numerical examples
are provided to �nd the exact and approximate solutions. Moreover, we use the absolute error table and
comparisons with current approaches to show the accuracy and e�ectiveness of these methods. Finaly, we
prove the convergence of the solution and the uniqueness of our proposed methods.
The rest of the article will be organized as follows: in section 2 we introduce the solution of nonlinear mixed
Volterra-Fredholm integral equations using the proposed methods and their applications. The systems of the
proposed methods are presented in section 3. We prove the uniqueness and existence of the solution of Eq.
(1) in Section 4. In section 5, we demonstrate that the proposed methods are accurate, e�cient, and readily
implemented through numerical examples. Section 6 concludes this article with a brief conclusion.

2. Description of the methods

In this section, we brie�y highlighted the key points of each proposed method for solving NMVFIE, where
details can be found in [4, 11, 13, 10, 9, 28, 8].

2.1. Homotopy perturbation method (HPM)

Consider the general form, integral equation Ly = 0 where L is an integral operator. De�ne a convex
homotopy H(v, p) as:

(1− p)F (v) + pL(v) = H(v, p) = 0, p ∈ [0, 1], (2)
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where F (v) is a functional operator with a solution v that could be easily established.
Now, we know that

F (v) = H(v, 0) = 0, H(v, 1) = L(v) = 0, (3)

where the procedure of changing p from 0 to 1 is just that of changing v from v0 to y. This is called
dis�gurement in topology; F (v) and L(v) are called homotopies.
The embedding parameter p could be used as a small parameter, depending on a HPM. The solution of (2)
as a power series in p can be written as:

v = y0 + py1 + p2y2 + . . . (4)

the approximation solution of Ly = 0 when p→ 1 is de�ned by

y = lim
p→1

v = y0 + y1 + y2 + . . . (5)

In most cases, the series (5) is converging. On the other hand, the convergence rate is determined by the
nonlinear operator L, see [15].

2.2. Modi�ed homotopy perturbation method (MHPM)

Based on an HPM, we are constructing the form of homotopy for Eq. (1) as follows:

H(v, p) = v(κ, t, p)f(κ, t)p
∫ t

0

∫
Ω
F (κ, t, ξ, τ, v(ξ, τ, p))dξdτ = 0. (6)

We expand v(κ, t, p) by using the HPM to the form:

v(κ, t, p) = y0(κ, t) + py1(κ, t) + p2y2 + . . . . (7)

The approximation solution is

y(κ, t) = lim
p→1

v(κ, t, p) = y0(κ, t) + y1(κ, t) + y2(κ, t) + . . . . (8)

Putting (7) into (6) gives

p0 : y0(κ, t) = f(κ, t) (9)

pi+1 : yi+1(κ, t) =
∫ t

0

∫
Ω
Hi(κ, t, ξ, τ, y0(ξ, τ), y1(ξ, τ), . . . , yi+1(ξ, τ))dξdτ,

i = 0, 1, 2, . . .

and

Hi(κ, t, ξ, τ, y0, y1, . . . , yi) =
1

i

di

dpi
F

(
κ, t, ξ, τ,

∞∑
k=0

pkyk

)∣∣∣∣
p=0

(10)

=
1

i

di

dpi
F

(
κ, t, ξ, τ,

i∑
k=0

pkyk

)∣∣∣∣
p=0

.

The solution obtained by using (8) provides the best approximation for some strongly nonlinear problems
only at a local interval. To resolve this problem, we modify the HPM as the following:

Partition the interval [0, T ] to N subintervals [tj , tj+1], j = 0, 1, 2, . . . , N − 1, with t0 = 0, tN = T.
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On the interval [t0, t1], let

y1,0(κ, t) = f(κ, t), t0 ≤ t ≤ t1,κ ∈ Ω

y1,j+1(κ, t) =
1

j!

∫ t

t0

∫
Ω

dj

dpj
F

(
κ, t, ξ, τ,

j∑
k=0

pky1,k(ξ, τ)

)∣∣∣∣
p=0

dξdτ, (11)

where j = 0, 1, 2, . . . , (n − 1). As a result, we get the n-term approximation y1,n(κ, t) =
∑n

k=0(κ, t)y1,k
on [t, t1].

On the interval [t1, t2], let

y2,0(κ, t) = f(κ, t) +
∫ t1

t0

∫
Ω
F (κ, t, ξ, τ, y1,n(ξ, τ))dξdτ, t1 ≤ t ≤ t2,κ ∈ Ω

y2,j+1(κ, t) =
1

j!

∫ t

t1

∫
Ω

dj

dpj
F

(
κ, t, ξ, τ,

j∑
k=0

pky2,k(ξ, τ)

)∣∣∣∣
p=0

dξdτ, (12)

where j = 0, 1, 2, . . . , (n− 1). As a result, we get the n-term approximation y2,n(κ, t) on [t1, t2].
In the same way, on the interval [ti−1, ti], i = 3, 4, . . . , N , let

yi,0(κ, t) = f(κ, t) +
i−1∑
k=1

∫ tk

tk−1

∫
Ω
F (κ, t, ξ, τ, yk,n(ξ, τ))dξdτ, ti−1 ≤ t ≤ ti,κ ∈ Ω

yi,j+1(κ, t) =
1

j!

∫ t

ti−1

∫
Ω

dj

dpj
F

(
κ, t, ξ, τ,

j∑
k=0

pkyi,k(ξ, τ)

)∣∣∣∣
p=0

dξdτ, (13)

where j = 0, 1, 2, . . . , n−1. As a result, we obtain the n-term approximation yi,n(κ, t) on [ti−1, ti]. Therefore,
the approximation solution of (1) can be obtained according to (11), (12) and (13) on the interval [0, T ].

2.3. Variational iteration method (VIM)

We have another type of the NMVFIE that is given as

y(κ) = f(κ) + λ1

∫ κ

0
K1(κ, t)F (y, t)dt+ λ2

∫ 1

0
K2(κ, t)G(y, t)dt, 0 ≤ κ, t ≤ 1, (14)

where K1(κ, t), K2(κ, t) are the kernels and the function f(κ) on the interval 0 ≤ κ, t ≤ 1 which are
supposed to be in L2(R).
Now, we are solving (1) and (14) approximately by VIM. Consider the general nonlinear formula as:

L(y, t) +N(y, t) = g(t), (15)

where g(t) is a known analytical function, L and N are a linear and nonlinear operator respectively.
The VIM is constructing an iterative sequence called functional correction as follows:

yn+1(t) = yn(t) +

∫ t

0
λ(L(yn, ξ) +N(ỹn, ξ)− g(ξ))dξ, (16)

where λ is the general multiplier of Lagrange, that could be identi�ed optimally by the variational theory,
(ỹn, ξ) is de�ned as the restricted variation, i.e. δỹn = 0, and n indicates the nth iteration.
Consider nonlinear mixed integral equations are given in Eqs. (1) and (14) as a solution with Ω = [0, 1].
For Eq. (1), �rstly we take a partial derivative with respect to t as follows
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∂y

∂t
− ∂f

∂t
−
∫ 1

0
F (κ, t, ξ, τ, y(ξ, τ))dξ −

∫ t

0

∫ 1

0

∂F

∂t
dξdt = 0.

Consider

−
∫ 1

0
F (κ, t, ξ, τ, y(ξ, τ))dξ −

∫ t

0

∫ 1

0

∂F

∂t
dξdt = 0.

Using the VIM in the trend t of a restricted variation. Then we get the following iteration sequence

yn+1(κ, t) = yn(κ, t) +
∫ t

0
λ
[∂yn
∂τ

(κ, τ)
∂f

∂τ
(κ, τ)

−
∫ 1

0
F (κ, τ, ξ, τ)y(ξ, τ)dξ −

∫ τ

0

∫ 1

0

∂F

∂τ
dξdt

]
dτ. (17)

For the independent variable yn, we take the variation and observe that δyn = 0, it follows that

δyn+1 = δyn + λδyn |τ=t −
∫ t

0
λ

′
δyndτ = 0.

Applying stationary conditions as the following:

1 + λ(τ) |τ=t= 0, λ
′
(τ) |τ=t= 0.

As a result, the Lagrange multiplier can be identi�ed as λ = −1. Thus, we �nd the iteration formula as
follows:

yn+1(κ, t) = yn(κ, t)−
∫ t

0

[∂yn
∂τ

(κ, τ)
∂f

∂τ
(κ, τ)

−
∫ 1

0
F (κ, τ, ξ, τ, y(ξ, τ))dξ −

∫ τ

0

∫ 1

0

∂F

∂τ
dξdt

]
dτ.

Now, for Eq.(14), put z(κ) is a function such that z
′
(κ) = t(κ), and noting the continuity of t(κ).

Therefore, we get

z
′
(κ) = f(κ) + λ1

∫ κ

0
k1(κ, t)F (z

′
, t)dt+ λ2

∫ 1

0
k2(κ, t)G(z

′
, t)dt.

Consider

λ1

∫ κ

0
k1(κ, t)F (z

′
, t)dt+ λ2

∫ 1

0
k2(κ, t)G(z

′
, t)dt,

we have an iteration sequence as a bound variation

z(n+ 1) = z(n) +

∫ κ

0
λ
[
z
′
n(ξ)− λ1

∫ ξ

0
k1(ξ, t)F (z

′
(n), t)dt

−λ2
∫ ξ

0
k2(ξ, t)G(z

′
(n), t)dt− f(ξ)

]
dξ.

For the independent variable zn, we take the variation and observing that δzn(0) = 0, it follows that

δzn+1 = δzn + λ(ξ)δzn |ξ=κ −
∫ κ

0
λ

′
(ξ)δzndξ = 0.
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By applying stationary conditions, we have

1 + λ(ξ) |ξ=κ= 0, λ
′
(ξ) |ξ=κ= 0.

Thus, the general multiplier of Lagrange easily can be identi�ed as λ = −1. So, we �nd the iteration
formula as follows:

z(n+ 1) = z(n)−
∫ κ

0

[
z
′
n(ξ)− λ1

∫ ξ

0
k1(ξ, t)F (z

′
(n), t)dt

−λ2
∫ ξ

0
k2(ξ, t)G(z

′
(n), t)dt− f(ξ)

]
dξ.

2.4. Adomian decomposition method (ADM)

Consider the di�erential equation:

Ly +Ry +Ny = g(κ, t), (18)

where g(κ, t) represents the source term, L and N indicate the highest order linear derivative and the
nonlinear terms respectively, and the linear di�erential operator of order smaller than L is denoted by R. If
we apply the linear inverse operator L to both sides of Eq. (18) then we get

y = f(κ, t)− L−1(Ry(κ, t)) + L−1(Ny(κ, t)), (19)

where f(κ, t) denotes the terms obtained by integrating g(κ, t) and applying the given conditions, which
have all been presumed to be speci�ed. The ADM of the integral equation (1) introduces the series as the
following:

y(κ, t) =
∞∑
i=0

yi(κ, t), (20)

where y(κ, t) represents the solution of Eq. (1), and yi(κ, t) are the components that have been determined
recurrently.
The components y0, y1, y2, . . . , are recursively determined through using the formula

y0(κ, t) = f(κ, t) (21)

yi+1(κ, t) = −L−1(Ryi)− L−1(Nyi), i ≥ 0,

which leads us to determine the y components. After the determination of the components y0, y1, y2, . . . yn,
the solution y in the form of a series de�ned by Eq. (22) immediately follows:

y = y0 + y1 + y2 + . . . .

Observe that the ADM indicates that the function f(κ, t) as considered above denies the zeroth component
y0.

2.5. Modi�ed Adomian decomposition method (MADM)

Recently, Wazwaz in [27] developed a reliable solution of the ADM, and its e�ciency has been explicitly
supported in numerous studies. For applying this modi�cation, we divide the function f into the sum of two
parts f0 and f1 as follows:

f = f0 + f1. (22)
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Suggesting only a small variation on the components y0 and y1, the variation that we suggest is that only
the part f0 be assigned to the zeroth component y0, while the terms are given in (21) will be composited
with the part f1 to determine y1. Under these suggestions, the recursive modi�caion is formulated as the
following:

y0(κ, t) = f(κ, t) (23)

y1(κ, t) = f1(κ, t)− L−1(Ry0)− L−1(Ny0),

yi+2(κ, t) = L−1(Ryi+1)− L−1(Nyi+1), i ≥ 0.

This method determines the nonlinear function F (κ, t, ξ, τ, y(ξ, τ)) through an in�nite sequence of polyno-
mials

F (κ, t, ξ, τ, y(ξ, τ)) =
∞∑
n=0

An, (24)

where An are called the Adomian polynomials that symbolize to the nonlinear term F (κ, t, ξ, τ, y(ξ, τ)) and
which could be calculated for di�erent nonlinear operators classes.
Now, by substituting (24) and (23) into (22) we get

∞∑
n=0

yi(κ, t) = f(κ, t) +
∫ t

0

∫
Ω

( ∞∑
n=0

An

)
dξdτ. (25)

Assume that f(κ, t) is decomposed into the sum of f0 and f1 as follows:

f(κ, t) = f0(κ, t) + f1(κ, t). (26)

The components yi(κ, t), n ≤ 0 will be identi�ed in a recursive way. This can be completed through assigning
f0(κ, t) to the component y0(κ, t) while the terms are given in (26) will be composeted with the part f1(κ, t)
to the component y1(κ, t). Therefore, the MADM provides the recursive formula

y0(κ, t) = f(κ, t), (27)

y1(κ, t) = f1(κ, t) +
∫ t

0

∫
Ω
A0dξdτ,

yi+2(κ, t) =
∫ t

0

∫
Ω
Ai+1dξdτ, i ≥ 0.

Relation (27) will allow us to de�ne the components yn(κ, t), n ≥ 0 recurrently. As consequence of that, the
y(κ, t) sequence solution is easily available. Already, it has been stated that the MADM could be combined
with the noise terms phenomenon to �nd the fast convergence of the solution. Speci�cally, this phenomenon
can extend a solution that prevents complicated computing of Adomian polynomials. Generally, integrating
the noise term phenomenon with the modi�ed decomposition approach o�ers an encouraging technique for
treating di�erential and integral equations.

3. Description of the methods for solving NMSVFIEs

We will o�er a brief highlight as the prime point of every method in this section to �nd the solution
for the nonlinear mixed Volterra-Fredholm integral equations (NMSVFIEs), to �nd out more details see
[5, 7, 24, 27].
We introduce the nonlinear mixed system of Volterra-Fredholm as Eq (1), where

y(κ, t) =
(
y1(κ, t) + y2(κ, t) + · · ·+ yn(κ, t)

)t
f(κ, t) =

(
f1(κ, t) + f2(κ, t) + · · ·+ fn(κ, t)

)t
(28)

F (κ, t, ξ, τ)y(ξ, τ) =
(
F1(κ, t, ξ, τ, y(ξ, τ)) + F2(κ, t, ξ, τ, y(ξ, τ))

+ · · ·+ Fn(κ, t, ξ, τ, y(ξ, τ))
)t
,
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where the unknown functions y(κ, t) is de�ned on D = [0, T ]× Ω, and a closed subset Ω is de�ned on(Rn),
n = 1, 2, 3.

3.1. HPM

To demonstrate the HPM for NMSVFIEs, we consider the system (1) and (28) as follows

yi(κ, t) = fi(κ, t) +
∫ t

0

∫
Ω
ki(κ, t, ξ, τ, y1(ξ, τ), . . . , yn(ξ, τ))dξdτ, i = 1, 2, ..., n. (29)

Now, we divide the function fi into fi,0 and fi,1 and the sum of these two parts can be written as:

fi = fi,0 + fi,1, i = 1, 2, . . . , n

Rewriting Eq. (29) as

yi(κ, t) = fi,0(κ, t) + fi,1(κ, t) +
∫ t

0

∫
Ω
ki(κ, t, ξ, τ, y1(ξ, τ), . . . , yn(ξ, τ))dξdτ, i = 1, 2, ..., n. (30)

To solve the Eq. (29), we will use the HPM to presented two homotopies cases as follows

Case 1.

Fi(κ, t)− fi(κ, t)− p

(
Fi(κ, t)− fi(κ, t) (31)

−
∫
Ω
Ki(κ, t, ξ, τ, F1(ξ, τ), . . . , Fn(ξ, τ))dξdτ

)
= 0, i = 1, 2, . . . , n.

Assume that the solution of the system (32) is de�ned by

Fi(κ, t) = Fi,0(κ, t) + pFi,1(κ, t) + p2Fi,2(κ, t) + . . . , i = 1, 2, . . . , n, (32)

where the functions Fi,j(κ, t), i = 1, 2, . . . , n, j = 0, 1, 2, . . . , must be determined.
Putting Eq. (32) into Eq. (32), and according to on powers of p, we reordered the terms, we get:

p0 : Fi,0(κ) = f1(κ), i = 1, 2, . . . , n,

p1 : Fi,1(κ) =
∫ t

a

∫
Ω
ki
(
κ, t, ξ, τ, F1,0(ξ, τ), F2,0(ξ, τ), . . . , Fn,0(ξ, τ)

)
dξτ,

p2 : Fi,2(κ) =
∫ t

a

∫
Ω
ki
(
κ, t, ξ, τ, F1,1(ξ, τ), F2,1(ξ, τ), . . . , Fn,1(ξ, τ)

)
dξτ,

...

pk : Fi,k(κ) =
∫ t

a

∫
Ω
ki
(
κ, t, ξ, τ, F1,k(ξ, τ), F2,k(ξ, τ), . . . , Fn,k(ξ, τ)

)
dξτ,

...

i = 2, ..., n.

Therefore by setting p = 1 in Eq. (30) we can obtain the following approximation solutions

yi(κ, t) = lim
p→1

Fi(κ, t) =
∞∑
j=0

Fi,j(κ, t), i = 1, 2, . . . , n. (33)
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Case 2.

yi(κ, t)− fi,0(κ, t)− p

(
fi,1(κ, t) (34)

+

∫ t

0

∫
Ω
Ki(κ, t, ξ, τ, y1(ξ, τ), . . . , yn(ξ, τ))dξdτ

)
= 0, i = 1, 2, . . . , n.

Assume that the solution of the system (35) is given by

yi(κ, t) = yi,0(κ, t) + pyi,1(κ, t) + p2yi,2(κ, t) + . . . , i = 1, 2, . . . , n, (35)

where the functions yi,j(κ, t), i = 1, 2, . . . , n, j = 1, 2, . . . , n, must be de�ned.
Putting Eq. (35) into Eq. (35), and according to on powers of p, we reordered the terms, we obtain

p0 : yi,0(κ) = fi,0(κ, t), i = 1, 2, . . . , n,

p1 : yi,1(κ) = fi,0(κ, t) +
∫ t

a

∫
Ω
ki
(
κ, t, ξ, τ, y1,0(ξ, τ), y2,0(ξ, τ), . . . , yn,0(ξ, τ)

)
dξτ,

p2 : yi,2(κ) =
∫ t

a

∫
Ω
ki
(
κ, t, ξ, τ, y1,1(ξ, τ), y2,1(ξ, τ), . . . , yn,1(ξ, τ)

)
dξτ,

...

pk : yi,k(κ) =
∫ t

a

∫
Ω
ki
(
κ, t, ξ, τ, y1,k(ξ, τ), y2,k(ξ, τ), . . . , yn,k(ξ, τ)

)
dξτ, ,

...

i = 2, ..., n.

Therefore, by setting p = 1 in Eq. (29), we can obtain the following approximation solution

yi(κ, t) = lim
p→1

yi(κ, t) =
∞∑
j=0

yi,j(κ, t), i = 1, 2, . . . , n. (36)

3.2. VIM

To �nd the solution of Eqs. (1) and (28) by VIM, we �rst consider ith of Eq.(1) as follows

yi(κ, t) = fi(κ, t) +
∫ t

0

∫
Ω
fi(κ, t, ξ, τ, y1(ξ, τ), . . . , y1(ξ, τ))dξdτ, i = 1, 2, . . . , n. (37)

Now,we are trying to get an e�ective method to solve a nonlinear system in Eq. (28). Assume Ω = [0, 1],
then we take the partial derivative of Eq. (37) concerning t as the following

∂yi(κ, t)
∂t

− ∂fi(κ, t)
∂t

−
∫ 1

0
Fi(κ, t, ξ, τ, y1(ξ, τ), . . . , yn(ξ, τ))dξ −

∫ t

0

∫ 1

0

∂Fi

∂t
dξdt = 0. (38)

As a restricted variation that we apply VIM for Eq.(38), thus we get the iteration sequences of the system
as

yi,n+1(κ, t) = yi,n(κ, t) +
∫ t

0
λi
[∂fi
∂τ

(κ, τ)
∂yi,n
∂τ

(κ, τ)

−
∫ 1

0
Fi(κ, τ, ξ, τ, y1(ξ, τ), . . . , yn(ξ, τ))dξ −

∫ τ

0

∫ 1

0

∂Fi

∂τ
dξdt

]
dτ, (39)

i = 1, 2, . . . , n n = 1, 2, . . . .
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Taking the e�ect δ and the variation theorem in both sides of Eq.(39) and also assuming

δyi,n+1 = 0,

δ
(
−
∫ 1

0
Fi(κ, τ, ξ, τ, y1(ξ, τ), . . . , yn(ξ, τ))dξ −

∫ τ

0

∫ 1

0

∂Fi

∂τ
dξdt

]
dτ

)
= 0,

we get
δyi,n+1(κ, t) = (1 + λi(t))δyi,n(κ, t)− λ

′
i(τ)δyi,n(ξ, τ)dτ = 0.

Through considering δyi,n+1(κ, t) = 0, by applying the stationary conditions, we have

1 + λi(t) |τ=t= 0, λ
′
i(τ) |τ=t= 0.

Therefore, the general multiplier of Lagrange could be identi�ed easily as λi = −1.
By substituting λi = −1, in Eq.(39), then to �nding the solution of Eqs. (1) and (28), we get the following
iteration algebraic system

yi,n+1(κ, t) = yi,n(κ, t)−
∫ t

0

[∂yi,n(κ, t)
∂τ

(κ, τ)
∂fi(κ, t)
∂τ

(κ, τ)

−
∫ 1

0
Fi(κ, τ, ξ, τ, y1(ξ, τ), . . . , yn(ξ, τ))dξ −

∫ τ

0

∫ 1

0

∂Fi

∂τ
dξdt

]
dτ.

3.3. ADM

In this part, we will show how to use the ADM to solve the NMSVFIEs:
In ADM the canonical form of (1) for Eqs. (1) and (29), can be given by

yi(κ, t) = fi(κ, t) +Ni(κ, t). (40)

Then it can be decomposed into nonlinear and linear and components, depending on the integral operator
Ni's features, where Ni is an analytical operator of the nonlinear integral, so we have

Ni(κ, t) =
∫ t

0

∫
Ω
ki(κ, t, ξ, τ, y1(ξ, τ), . . . , yn(ξ, τ))dξdτ, i = 1, 2, . . . , n. (41)

To implement the ADM, let yi(κ, t) =
∑∞

j=0Ni,j(κ, t) and Ni(κ, t) =
∑∞

j=0Ai,j(κ, t) where Ai,j , j =
0, 1, 2, . . . are polynomials based on
y10, . . . , y1j , . . . , yn0, . . . , ynj that called Adomian polynomials and then we approximate the solution by

φik(κ, t) =
∑k−1

j=0 yij(κ, t) where lim
k→∞

φik(κ, t) = yi(κ, t), and we get

yi(κ, t) =
∞∑
j=0

yij(κ, t)λj . (42)

To �nd the Adomian polynomials we can write:

yi(κ, t) =
∞∑
j=0

yij(κ, t)λj , (43)

Ni(κ, t) =
∞∑
j=0

Aij(κ, t)λj , (44)

where λ is a parameter established for convenience. We have got from (44)

Aij(κ, t) =
1

j!

[
dj

dλj
Niλ(y1, . . . , yn)

]
λ=0

. (45)
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As a result, we use the following Adomian scheme

yi,0(κ, t) = fi(κ, t), (46)

yi,j+1(κ, t) =
1

j!

∫ t

0

∫
Ω

[
dj

dλj
gi

(
κ, t, ξ, τ,

∞∑
k=0

y1kλ
k,

∞∑
k=0

y2kλ
k

)]
λ=0

dξdτ. (47)

4. Theoretical Results

In this section, we prove the uniqueness and existence theorems for the NMVFIEs.

Lemma 4.1.

1

n!

dn

dpn
F

(
κ, t, ξ, τ,

n∑
k=0

pkyi,k

)∣∣∣∣
p=0

= yi,n∂vF (κ, t, ξ, τ, yi,0)

+
1

2

∑
i1+i2=n,i1,i2≥1

yi,i1yi,i2∂
2
vF (κ, t, ξ, τ, yi,0)

+ · · ·+ 1

k!

∑
∑k

j=1 ij=n,i1,ij≥1

yi,i1yi,i2 . . . yi,ik∂
k
vF (κ, t, ξ, τ, yi,0)

+ · · ·+ 1

n!
yni,i1∂

n
v F (κ, t, ξ, τ, yi,0),

where ∂vF (κ, t, ξ, τ, yi,0) =
∂

∂v
F (κ, t, ξ, τ, v) |v=yi,0 . and

∂kvF (κ, t, ξ, τ, yi,0) =
∂k

∂vk
F (κ, t, ξ, τ, v) |v=yi,0 .

Put

Mi = sup

[
max

0≤r≤t≤1,κ,ξ∈Ω
| ∂vkF (κ, t, ξ, τ, yi,0(ξ, τ)) |, k = 0, 1, 2, . . .

]

c0 = 4
5

9
, c1 = 9, β =

c1
c20
(ec0 − 1), βn =

c1
c20

n∑
m=1

cm0
m!
, qi = ti − ti−1

S1(k) = k2
∑

i1+i2=k,i1,i2≥1

1

i21i
2
2

, S2(k) = (k + 1)2
∑

i1+i2=k,i1,i2≥1

1

i21i
2
2

.

Lemma 4.2. S1(k) ≤ c0, S2(k) ≤ c1 for every integer k ≥ 2.

Proof. It is not di�cult to prove S1(k + 1) < S1(k) for every k ≥ 4. So S1(k) ≤ max[S1(2), S1(3), S1(4)] =

4
5

9
= c0. For every k ≥ 4,

S2(k + 1)− S2(k) = (
k + 2

k + 1
)2S1(k + 1)− (

k + 1

k
)2S1(k)

= (1 +
1

k + 1
)2S1(k + 1)− (1 +

1

k
)2S1(k) < 0.

Hence S2(k) ≤ max[S2(2), S2(3), S3(4)] = 9 = c1.

Lemma 4.3. For every integer k ≥ l,

(k + 1)2.
∑

∑n+l
j=1 ij=k,ij≥1

1

i21i
2
2 . . . i

2
l

≤ cl−2
0 c1
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Proof. By using the mathematical induction. When l = 2, and combining it with lemma (4.2), we obtain

(k + 1)2.
∑

∑n+l
j=1 ij=k,ij≥1

1

i21i
2
2

= S2(k) ≤ c1.

Assume that the conclusion holds when l = n, that is,

(k + 1)2.
∑

∑l
j=1 ij=k,ij≥1

1

i21i
2
2 . . . i

2
n

= S2(k) ≤ cn−2
0 c1.

Now for l = n+ 1,

(k + 1)2.
∑

∑n+l
j=1 ij=k,ij≥1

1

i21i
2
2 . . . i

2
n+1

=
k−n∑

in+1=1

(k + 1)2

i2n+1(k − in+1 + 1)2
(k − in+1 + 1)2.

∑
∑n

j=1 ij=k−in+1,ij≥1

1

i21i
2
2 . . . i

2
n

≤ cn−2
0 c1

k∑
in+1=1

(k + 1)2

i2n+1(k − in+1 + 1)2
(k − in+1 + 1)2

= cn−2
0 c1S1(k + 1) ≤ cn−2

0 c1c0 = cn−1
0 c1.

Put L =
∫
Ω dξ. Without a doubt, the value of L is �nite.

Lemma 4.4. ∥ yi,n ∥c≤
(βqiMiL)

n

n2
, n = 1, 2, . . .

Proof. yi,1 =
∫ t
ti−1

∫
Ω F (κ, t, ξ, τ, yi,0)dξdτ when n = 1. Combining this with

∫ t
ti−1

dτ = t− ti−1 ≤ ti − ti−1 =
qi,
it follows that

| yi,1(κ, t) |≤ max
0≤τ≤t≤1,κ,ξ∈Ω

| F (κ, t, ξ, τ, yi,0(ξ, τ)) |
∫ t

ti−1

∫
Ω
dξdτ

≤ LMiqi ≤ βLMiqi.

So, ∥ yi,1 ∥c≤ βLMiqi. Hence, the conclusion holds for n = 1.

Now, assuming that ∥ yi,n ∥c≤
(βqiMiL)

n

n2
, n = 1, 2, . . . is correct for every n ≤ k, then when n = k + 1,

yi,k+1(κ, t) =
∫ t

ti−1

∫
Ω

1

k!

dk

dpk
F
(
κ, t, ξ, τ,

k∑
i=0

plyi,1(ξ, τ)
)
|p=0 dξdτ

=

∫ t

ti−1

∫
Ω

k∑
m=1

1

m!

∑
∑m

j=1 ij=k,ij≥1

yi,i1 , yi,i2 , . . . , yi,im∂
m
v F

(
κ, t, ξ, τ, yi,0(ξ, τ)

)
dξdτ.
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Hence,

| yi,k+1(κ, t) |≤Mi.

∫
Ω
dξ

∫ t

ti−1

dτ
k∑

m=1

1

m!

k∑
m=1

1

m!

∑
∑m

j=1 ij=k,ij≥1

∥ yi,i1 ∥c∥ yi,i2 ∥c . . . , ∥ yi,im ∥c

≤ qiMiL.

k∑
m=1

1

m!

k∑
m=1

1

m!

∑
∑m

j=1 ij=k,ij≥1

(βqiMiL)
i1

i21

(βqiMiL)
i2

i22
. . .

(βqiMiL)
im

i2m

≤ qiMiL|(βqiMiL)

k∑
m=1

1

m!

k∑
m=1

1

m!

∑
∑m

j=1 ij=k,ij≥1

1

i21i
2
2 . . . i

2
m

.

Lemma (4.3) shows that

(k + 1)2
k∑

m=1

1

m!

∑
∑m

j=1 ij=k,ij≥1

1

i21i
2
2 . . . i

2
m

=
k∑

m=1

1

m!

(k + 1)2∑∑m
j=1 ij=k,ij≥1

1

i21i
2
2 . . . i

2
m

≤
k∑

m=1

1

m!
cm−2
0 c1 =

c1
c20

k∑
m=1

cm0
m!

≤ c1
c20
(ec0 − 1) = β.

Consequently,
k∑

m=1

1

m!

∑
∑m

j=1 ij=k,ij≥1

1

i21i
2
2 . . . i

2
m

≤ β

(k + 1)2
.

Hence,

| yi,k+1(κ, t) |≤ qiMiL(βqiMiL)
k β

(k + 1)2
=

(βqiMiL)
k+1

(k + 1)2
.

Thus, ∥ yi,k+1 ∥c≤
(βqiMiL)

k+1

(k + 1)2
. The proof is completed.

Applying Lemma (4.4), the following theorem easily can be proved.

Theorem 4.5. If βqiMiL ≤ 1, F (κ, t, ξ, τ, v) is not an nth-order polynomial with respect to v, then:

�

∑∞
k=0 yi,k converges to the exact solution Yi(κ, t) of Eq. (13).

� The error estimation ∥
∑∞

k=n+1 yi,k ∥c≤
(βqiMiL)

n+1

1− βqiMiL
with βqiMiL < 1 and the error estimation

∥
∑∞

k=n+1 yi,k ∥c≤
1

n
with βqiMiL = 1.

Similarly, we can prove the following theorem:

Theorem 4.6. If F (κ, t, ξ, τ, v) is not an nth-order polynomial with respect to βnqiMiL ≤ 1, then:

�

∑∞
k=0 yi,k converges to the exact solution Yi(κ, t) of Eq. (13).

� The error estimation ∥
∑∞

k=n+1 yi,k ∥c≤
(βqiMiL)

n+1

1− βqiMiL
with βnqiMiL < 1 and the error estimation

∥
∑∞

k=n+1 yi,k ∥c≤
1

n
with βnqiMiL = 1.
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Remark: If the length of interval [ti−1, ti] is small enough, then qi is small enough which ensures that
βqiMiL < 1 or βnqiMiL < 1. Thus, Theorems (4.5) and (4.6) show that algorithm (13) converges to the
exact solution of Eq.(1).

Theorem 4.7. Suppose that

� G(κ, t, ξ, τ, y) =
∫
Ω F (κ, t, s, y(s, t))ds.

� There exist nonnegative continuous m(κ, t) and n(τ) de�ned on D and R respectively, such that

G(κ, t, ξ, τ, y) satis�es to a generalized Lipschitz condition of the form

∥ G(κ, t, ξ, τ, y1)−G(κ, t, ξ, τ, y2) ∥≤ m(κ, t)n(τ) ∥ y1 − y2 ∥ .

Then, the bound for the Adomian decomposition series for Eq. (1), can be established as

∥
∞∑
k=0

An ∥≤ v(κ, t)m(κ, t)
∫ t

0
v(κ, t)n(τ)eκp

[ ∫ t

τ
m(κ, η)n(η)dη

]
dτ,

where

v(κ, t) =∥
∫ t

0
G(κ, t, τ, f(κ, t))dτ ∥ .

Now, we introduce the following hypotheses:

(H1) There exists a nonnegative continuous function g(κ, t, ξ, τ) de�ned on D2 such that

∥ G(κ, t, ξ, τ, y1)−G(κ, t, ξ, τ, y2) ∥≤ g(κ, t, ξ, τ) ∥ y1 − y2 ∥ .

and ∫ t

0

∫
Ω
g(κ, t, ξ, τ) exp(µ(ξ+ ∥ τ ∥)) ≤ Q exp(µ(κ+ ∥ t ∥)),

where (κ, t, ξ, τ, yi) ∈ D2 × Rn, i = 0, 2 and Q ≤ 0.

(H2) There exists a constant N > 0 such that

f(κ, t) +
∫ t

0

∫
Ω
∥ G(κ, t, ξ, τ, 0) ∥ dξdτ ≤ N exp(µ(κ+ ∥ t ∥)).

Theorem 4.8. Assumes that (H1) and (H2) hold, and if 0 < Q < 1. Then there exists a unique solution of

Eq.(1).

Proof. Let S is a space of all continuous functions ϕ : D −→ Rn in D satis�ed

∥ ϕ(κ, t) ∥= O exp(µ(κ+ ∥ t ∥)), (κ, t) ∈ D,µ > 0, (48)

then there exists a constant M > 0 such that

∥ ϕ(κ, t) ∥=M exp(µ(κ+ ∥ t ∥)).

Thus, we get |ϕ| ≤M .
It is easily seen that S with the norm |ϕ| = supD[∥ ϕ(κ, t) ∥ exp(−µ(κ+ ∥ t ∥))]is a Banach space.
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Now, let the operator T : S −→ S be de�ned by the right side of the equation (1). Evidently T (y) is
continuous in D and T (y(κ, t)) ∈ Rn for y ∈ S and (κ, τ) ∈ D.
Firstly, We prove that (48) is satisfactory, by assumptions (H1) and (H2) we have

T (y(κ, t)) ≤
∫ t

0

∫
Ω
∥ G(κ, t, ξ, τ, y(ξ, τ))−G(κ, t, ξ, τ, 0) ∥ dξdτ

+ ∥ f(κ, t) ∥ +

∫ t

0

∫
Ω
∥ G(κ, t, ξ, τ, 0)dξdτ

≤ |y|
∫ t

0

∫
Ω
g(κ, t, ξ, τ) exp(µ(ξ+ ∥ τ ∥))dξdτ +N exp(µ(κ+ ∥ t ∥))

≤ [MQ+N ] exp(µ(ξ+ ∥ τ ∥)).

So, T (y) ∈ S.
Secondly, we will prove that T (y) is a contraction map. We assume that y1, y1 ∈ S, then from(H1) we have

∥ T (y1(κ, t))− T (y2(κ, t)) ∥≤
∫ t

0

∫
Ω
∥ G(κ, t, ξ, τ, y1(ξ, τ))−G(κ, t, ξ, τ, y2(ξ, τ)) ∥ dξdτ

≤ |y1 − y2|
∫ t

0

∫
Ω
g(κ, t, ξ, τ) exp(µ(ξ+ ∥ τ ∥))dξdτ

≤ Q|y1 − y2| exp(µ(ξ+ ∥ τ ∥)).

Consequently, we have

|T (y1 − T (y2| ≤ Q|y1 − y2|.

As a result, T is the contraction map. We can deduce from the Banach contraction principle that T has a
unique �xed point y in S.

5. Numerical Results

Numerical examples are investigated in this section by the proposed methods.

Example 1 : Consider the following NMVFIE

y(κ, t) = κt− et + t+ 1 +

∫ t

0

∫ 1

0
tey(ξ,τ)dξdτ, 0 ≤ t ≤ 1, (49)

which has the exact solutoin y(κ, t) = κt

1. Using VIM to solve Eq. (49), we have this iteration formula

yn+1(κ, t) = yn(κ, t)−
∫ t

0

[
∂yn
∂τ

(κ, τ)− τ

∫ 1

0
eyn(ξ,τ)dξ + eτ − κ − 1

]
dτ, (50)

with the initial iteration y0(κ, t) = 0. Using the iteration formula (50), the approximate solution
convergents to the exact solution.

2. Using ADM and MADM. Subsitituting the series (20) to solve Eq. (49), we have

∞∑
n=0

yn(κ, t) = κt− et + t+ 1 +

∫ t

0

∫ 1

0
t(

∞∑
n=0

An)dξdτ,
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where An are the Adomian polinomial that calculating for nonlinear operator H(y) = ey(ξ,τ) as follows

A0 = H(y0),

A1 = y1H
′
(y0),

A2 = y2H
′
(y0) +

1

2
y21H

′′
(y0),

...

Now, we decompose f(κ, t) into f0 and f1 as follows

f0 = κt,
f1 = −et + t+ 1.

Applying MADM, we get

y0(κ, t) = κt,

y1(κ, t) = −et + t+ 1 +

∫ t

0

∫ 1

0
t(A0)dξdτ,

yk+2(κ, t) =
∫ t

0

∫ 1

0
t(Ak+1)dξdτ, k ≥ 0,

which implies

y0(κ, t) = κt,

y1(κ, t) = −et + t+ 1 +

∫ t

0

∫ 1

0
t(A0)dξdτ = 0,

yj(κ, t) = 0, j ≥ 2.

Therefor y(κ, t) = κt which is convergenting to the exact soluation.

3. Using HPM. Same MADM, we decompose f(κ, t) into f0 and f1 as follows

f0 = κt,
f1 = −et + t+ 1,

To solve Eq. (49), we are using the recursive relation given as:

p0 : y0(κ, t) = κt,

p1 : y1(κ, t) = −et + t+ 1 +

∫ t

0

∫ 1

0
tey(ξ,τ)dξdτ,

...

which gives

y0(κ, t) = κt,
y1(κ, t) = 0,

yj(κ, t) = 0, j ≥ 2.

Therefor y(κ, t) = κt which is convergenting to the exact soluation.
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Table 1: Approximation solutions of Example 2.

(x, t) E2(HPM)y1 E3(V IM)y1 En(ADM)y1
(0,0) 0 0 0

(0.1,0.1) 0.5630 ×10−9 2.0 ×10−13 8.7×10−7

(0.2,0.2) 0.7517×10−7 1.1×10−10 1.9 ×10−5

(0.3,0.3) 0.1371 ×10−5 4.0×10−9 8.8×10−5

(0.4,0.4) 0.1117 ×10−4 7.5×10−8 1.2×10−4

(0.5,0.5) 0.5881 ×10−4 6.7×10−7 3.7×10−4

(0.6,0.6) 0.2348 ×10−3 4.2×10−6 2.8×10−3

(0.7,0.7) 0.7739 ×10−3 2.1×10−5 1.0×10−2

(0.8,0.8) 0.2214 ×10−2 8.8×10−5 3.0×10−2

Example 2: Consider the following NSMVFIE

y1(κ, t) =
1

6
(κ2 + t2)(t cos(t)− sin(t)− 1

2
κ sin(t)) +

∫ t

0

∫ 1

0
(κ2 + t2)ξτy1(ξ, τ)dξdτ,

y2(κ, t) = 0.14726t3(t− κ) + t tan(κ) +
∫ t

0

∫ 1

0
(ξ(t− κ)y22(ξ, τ))dξdτ, (51)

which posses the exact solutoins y1(κ, t) = −κ
2 sin(t), y2(κ, t) = t tan(κ).

Table 1 indicates the comparison between the errors are obtained by the HPM, VIM and ADM respectively
for y1(κ, t) and we can see that the errors of y2(κ, t) are zeros because the approximate soluations and the
exact solutions are equal. It is shown in Table 1 that the solution found by the proposed methods nearly
congruous to the exact solution. In this example the precision and simplicity of the proposed methods are
demonstrated by calculating the absolute error. The accuracy of the analysis can be increased by adding a
more approximate solution. There is a strong concurrence between the exact solution and the approximate
solution obtained using the proposed methods.

6. Conclusion

HPM, MHPM, ADM, MADM, VIM have been applied for solving a class of nonlinear problems e�ectively,
easily and precisely with approximations that are converging rapidly to the exact solutions. In this paper, we
have investigated the approximate solution of NMVFIEs and NSVFIE via the proposed methods. The pro-
posed methods require much less calculation work compared to conventional methods and have been widely
used to �nd an approximate solution for the analytical methods of the nonlinear mixed Volterra-Fredholm
integral equation and its system. Also, the theoretical rseults such as the convergence and uniqueness of the
solution of the suggested methods for the considered problems have been proved. Moreover, the validity and
e�ciency of these methods have been demonstrated through various numerical examples that illustrate the
e�ciency, accuracy, and simplicity of the proposed methods. We can see that variational iteration method
is very e�ective and highly promising.
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Figure 1: Absolute error for y1(κ, t) in Example 2.
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