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Abstract: In this study, we used shotgun metagenome sequencing to examine the metabolic diversity, 

microbial community structure and diverse antimicrobial resistance genes of mucilage in the surface 

waters of the Çanakkale Strait (Dardanelles). Mucilage samples were collected in April 2021 from the 

three different stations of the Dardanelles. The dominant microbial communities at the phylum level 

were Bacteroidetes (20.06%), Proteobacteria (13.68%), Verrucomicrobia (6.25%), Planctomycetes 

(3.02%) and Cyanobacteria (2.5%). Metabolic pathway analysis using KEGG (Kyoto Encyclopedia of 

Genes and Genomes) revealed that most of the genes of mucilage samples were involved in unclassified 

(73.86%) followed by metabolism (14.45%), genetic information processing (4.16%), environmental 

information processing (2.57%), cellular processing (1.88%), human diseases (1.61%), and organismal 

systems (1.47%). The dfrA3 gene was the most prevalent (20.36%) followed by CRP (18.17%), PmrE 

(14.92%), rpoB2 (11.17%), SoxR (7.49%), AbeS (6.83%), baeR (5.22%), PmrF (3.70%), dfrA22 

(2.20%), dfrA26 (1.76%), dfrA20 (1.63%), golS (1.26%), CAT (1.03%), mtrA (1.01%), TMB-1 (0.64%), 

novA (0.64%), dfrK (0.59%), vanXB (0.48%), dfrG (0.39%), FosC2 (0.31%), and MexA (0.20%) genes. 

Antibiotic resistance gene (ARG) types mainly included the resistance genes of multidrug (40.19%), 

trimethoprim (26.93%), polymyxin (18.62%), rifamycin (11.17%), chloramphenicol (1.03%), 

aminocoumarin (0.64%), beta-lactamase (0.64%), fosfomycin (0.31%), and vancomycin (0.48%). 

Antibiotic-resistant bacteria in mucilage can adhere to human skin during swimming, fishing, water 

sports etc., enter the body through the nose and mouth, and transfer genetic information to the bacteria 

in contact areas in the human body. Therefore, this situation is risky in public health, and necessary 

precautions should be taken.  

In the light of these findings, it has been observed that there is a need for more detailed studies in the 

future. 

 

Keywords: Antibiotic, ARG, marine aggregates, metagenome, mucilage, public health. 

 

Çanakkale Boğazı Yüzey Sularındaki Müsilaj İçin Shotgun Metagenomik Analizi: Metabolik Çeşitlilik, 

Mikrobiyal Topluluk Yapısı ve Antibiyotik Direnç Genleri 
 

 

 

 
 
 
 
 
 
 
 
 

 
Öz: Bu çalışmada Çanakkale Boğazı yüzey sularındaki müsilajın metabolik çeşitliliğini, mikrobiyal 

topluluk yapısını ve çeşitli antimikrobiyal direnç genlerini incelemek için shotgun metagenom dizilimi 

kullanılmıştır. Nisan 2021'de Çanakkale Boğazı'nın üç farklı istasyonundan müsilaj örnekleri 

toplanmıştır. Filum düzeyinde baskın mikrobiyal topluluklar Bacteroidetes (%20,06), Proteobacteria 

(%13,68), Verrucomicrobia (%6,25), Planctomycetes (%3,02) ve Cyanobacteria (%2,5) olarak 

belirlenmiştir. KEGG (Kyoto Genler ve Genomlar Ansiklopedisi) kullanılarak yapılan metabolik yol 

analizi, müsilaj örneklerinin genlerinin çoğunun sınıflandırılmamış (%73,86), ardından sırasıyla 

metabolizma (%14,45), genetik prosesler (%4,16), çevresel prosesler ( %2,57, hücresel prosesler 

(%1,88), insan hastalıkları (%1,61) ve organizma sistemleri (%1,47) ile ilişkili olduğunu göstermiştir. 

dfrA3 geni baskın çıkmıştır (%20,36), ardından sırasıyla CRP (%18,17), PmrE (%14,92), rpoB2 

(%11,17), SoxR (%7,49), AbeS (%6,83), baeR (%5,22), PmrF (%3,70), dfrA22 (%2,20), dfrA26 

(%1,76), dfrA20 (%1,63), golS (%1,26), CAT (%1,03), mtrA (%1,01), TMB-1 (%0,64), novA (%0,64), 

* : https://orcid.org/0000-0002-4809-5809 

  : https://orcid.org/0000-0002-9626-5446 

  : https://orcid.org/0000-0003-4514-457X 

  : https://orcid.org/0000-0001-9648-8925 

 

 

*Corresponding author: 

Sevdan YILMAZ 

Çanakkale Onsekiz Mart University 

Faculty of Marine Sciences and Technology  

Çanakkale, Turkey 

: sevdanyilmaz@comu.edu.tr 

 

https://doi.org/10.35229/jaes.989058
https://doi.org/10.35229/jaes.989058
https://orcid.org/0000-0002-4809-5809
https://orcid.org/0000-0002-9626-5446
https://orcid.org/0000-0003-4514-457X
https://orcid.org/0000-0001-9648-8925
sevdanyilmaz@comu.edu.tr


Yılmaz et al., (2021)                                                       J. Anatolian Env. and Anim. Sciences, Year:6, No:4, (717-726), 2021 

   

   
718 

 
 

 
 
 

dfrK (%0,59), vanXB (%0,48), dfrG (%0,39), FosC2 (%0,31) ve MexA (%0,20) genleri yer almıştır. 

Antibiyotik direnç geni (ARG) tipleri, temel olarak çoklu ilaç direnci (%40,19), trimetoprim (%26,93), 

polimiksin (%18,62), rifamisin (%11,17), kloramfenikol (%1,03), aminokumarin (%0,64), beta-

laktamaz (%0,64), fosfomisin (%0,31) ve vankomisin (%0,48) direnç genleri olarak belirlenmiştir. 

Müsilaj yapıdaki antibiyotik dirençli bakteriler yüzme, su sporları, balıkçılık ve benzeri faliyetler 

sırasında insan derisine tutunabilir, burun ve ağız yolu ile vücudumuza girebilir ve genetik bilgiyi insan 

vücudunda temas ettiği bölgelerdeki bakterilere aktarabilir. Bu durum halk sağlığı açısıdan riskli olup 

gerekli önlemlerin alınması gerekmektedir. Bu bulgular ışığında gelecekte daha detaylı çalışmalara 

ihtiyaç olduğu gözlemlenmiştir. 
 

Anahtar kelimeler: Antibiyotik, ARG, deniz agregatları, halk sağlığı, metagenom, müsilaj. 

 

 
INTRODUCTION 

 

Domestic and industrial factors have started to 

pollute the environment more due to the increase in the 

human population. As a result of increasing pollution in the 

natural environment, climate change and global warming, 

ecosystem balances have deteriorated, and ecological 

problems have arisen. Among these problems, the incident 

known as mucilage occurred first time in 1729 when it 

caused the congestion of fishing nets in the Adriatic Sea 

(Fonda-Umani et al., 1989). Danovaro et al. (2009) 

investigated the relationship between climate change and the 

frequency of mucilage formation in the Mediterranean in the 

last 200 years. They determined that it has increased 

exponentially over the years. 

Intense mucilage formation was first recorded in 

Turkey between 2007 and 2008 in the Sea of Marmara 

(Aktan et al., 2008; Tüfekçi et al., 2010; Balkis et al., 2011) 

and in the Dardanelles Strait (Yentur et al., 2013). In the first 

two quarters of 2021, mucilage reached dimensions that 

would adversely affect fishery industry, tourism and social 

life. 

Mucilage is a dense and highly viscous structure 

consisting of polymeric substances and extracellular 

polysaccharides produced, secreted or leaked by various 

marine microorganisms such as diatoms, dinoflagellate, 

cyanobacteria and bacteria, especially in stressful situations; 

and it is a substance with hydrogel properties, rich in 

dissolved and polymeric organic matter (Giani et al., 2005; 

Danovaro et al., 2009; Öztürk et al., 2021). Conducted 

studies have shown that the content of mucilage can consist 

of many different species and sizes of sea creatures such as 

viruses, bacteria, phytoplankton and even zooplankton 

(Aktan et al., 2008; Danovaro et al., 2009; Tüfekçi et al., 

2010; Balkis et al., 2011; Yentur et al., 2013; Toklu-Alicli et 

al., 2020; Öztürk et al., 2021; Balkıs-Ozdelice et al., 2021).  

The must understand the characteristics of 

microbial genes and their metabolic functions in mucilage. 

With metagenomic analysis, it is possible to obtain 

comprehensive genomic information about microbial 

structures and gene functions in various environmental 

samples. Functional gene characteristics of the microbial 

community can be discovered with KEGG, eggNOG and 

CAZy databases (Fadiji & Babalola 2020).In this study, 

metabolic diversity, microbial community structure and 

diverse antimicrobial resistance genes of mucilage were 

analyzed for the first time with a shotgun metagenomic 

approach. 

 

MATERIAL AND METHOD 

 

Sampling, DNA Extraction, Library Preparation 

and Sequencing: Mucilage samples were collected from the 

three different stations of the Dardanelles (Station 1: 

40°15'22.53"N, 26°40'43.58"E; Station 2: 40°10'59.21"N, 

26°37'81.17"E; Station 3: 40°11'15.67"N, 26°39'90.81"E) in 

April 2021. The overview of the sampling points is given in 

the published paper by Yılmaz et al. (2021). The 

accumulation of the mucilage in Dardanles was observed on 

these sampling stations during the sampling period. A 5L 

Niskin bottle was used for sampling according to the ISO 

5667-9 method by the Turkish Coast Guard ship in 

Çanakkale (ISO 5667-9, 1992). Mucilage samples were 

centrifuged at  10,000 × g for 10 min and separated.  

Accumulated fresh samples were immedietaly used for DNA 

extraction. According to the manufacturer's instructions, 

genomic DNA was extracted from the mucilage samples 

using GeneMATRIX Soil DNA Purification Kit (EURx 

Poland). DNA degradation and concentration were 

monitored using spectrometry (OD260/280), fluorometry 

(Qubit® 2.0 Flurometer), and 1% agarose gel 

electrophoresis. DNA contents above 1 μg was used to 

construct the library. Metagenomic analyses were performed 

by the BM Labosis laboratory (Ankara, Turkey). Briefly, 

sequencing libraries were generated, and index codes were 

added using NEBNext® Ultra™ DNA Library Prep Kit for 

Illumina according to the manufacturer's guidelines. 

Fragments of the DNA sample fragmented to 350bp size by 

sonication were polished. After Poly(A) Tail was carried out, 

it was ligated with a full-length adapter for Illumina 

sequencing by PCR amplification. PCR products were 

purified with the AMPure XP system and quantified by real-

time PCR. Library preparations were sequenced with the 

Illumina platform, and paired-end reads were generated. 

SOAP denovo (Version 2.21): 

http://soap.genomics.org.cn/soapdenovo.html, SoapAligner 
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(Version: 2.21): http://soap.genomics.org.cn/soapaligner. 

html, MetaGeneMark （ Version:  2.10 ）

http://exon.gatech.edu/GeneMark/ and CD-HIT（Version: 

4.5.8): http://www.bioinformatics.org/cd-hit/ software were 

used to process and analyze metagenomic sequence data. 

 

RESULTS  

 

Taxonomic Diversity of Microbial Communities: 

Figure 1 depicts a Krona (Ondov et al., 2011) visualization 

of microbial communities detected in April 2021 mucilage 

samples across the three sites. The dominant microbial 

communities at the phylum level were Bacteroidetes 

(20.06%), Proteobacteria (13.68%), Verrucomicrobia 

(6.25%), Planctomycetes (3.02%) and Cyanobacteria (2.5%) 

(Figure 1). It is expected that Bacteroidetes is dominant in 

mucilage samples because species belonging to this phylum 

are generally known to live in symbiosis with algae 

(Bobrova et al., 2016). In addition, Bacteroidetes species can 

break down polymeric substances and use them as carbon 

and energy sources develop on detritus particles or algae 

cells (Fernández-Gómez, 2012). In this study, it was 

determined that proteobacteria, which is the second most 

dominant group, is a dominant phylum both in polluted and 

highly salty (Cortés-Lorenzo et al., 2014) environments and 

in marine environments (Qian et al., 2011; Polymenakou et 

al., 2020). In their study carried out in the Northern Adriatic 

Sea, Vojvoda et al. (2014) determined that Bacteroidetes, 

Cyanobacteria, and Proteobacteria groups were dominant in 

both mucilage and ambient water in December 2009 and 

August 2010. 

This study reported that bacterial species belonging 

to the third most dominant phylum, verrucomicrobia, play an 

essential role in the biogeochemical cycle of carbon and 

anaerobic ammonium oxidation in the oceans (Freitas et al., 

2012). Verrucomicrobia species have been isolated from a 

lake (Arnds et al., 2010; Chiang et al., 2018), soil (Bergmann 

et al., 2011; Zhou et al., 2017), seawater column (Bano & 

Hollibaugh 2002; Yoon et al., 2007), and marine sediment 

(Urakawa et al., 1999; Yoon et al., 2008; Dalcin Martins et 

al., 2021). 

Typically, planctomycetes  are a rare or low-level 

group in the marine environment. It was reported in studies 

conducted in the Black Sea (Fuchsman et al., 2012) and 

Santa Barbara Channel (DeLong et al., 1993) that they are 

among the dominant bacterial groups in mucilage structure. 

Known for their complex organic matter decomposition 

properties in oxygen, some members of this phylum are 

known to be special decomposers of sulfated 

polysaccharides such as fucoidan, which can enable them to 

utilize the carbon produced by algae (Woebken et al., 2007; 

Bengtsson & Øvreås, 2010. 

In our study, the fourth most dense group was the 

Cyanobacteria phylum, with an average rate of 2.5%. 

Although species belonging to this phylum are generally 

found in freshwater environments, climate change and 

anthropogenic pressure were also reported as factors leading 

to an increase in Cyanobacteria populations in marine 

environments (Bobrova et al., 2016). Similarly, 

Cyanobacteria members were detected extensively in 

mucilage in the Northeast Atlantic Ocean (Lampitt et al., 

1993) and Sargasso Sea (Lundgreen et al., 2019). 

 

 Station 1 
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 Station 2 

 

 Station 3 

Figure 1. Krona visualization. Microbial community compositions in the mucilage samples. 

 

 

Metabolic Pathway Analysis of Mucilage Samples: 

Metabolic pathway analysis using KEGG revealed that most 

of the genes of mucilage samples were involved in 

unclassified (73.86%) followed by metabolism (14.45%), 

genetic information processing (4.16%), environmental 

information processing (2.57%), cellular processing 

(1.88%), human diseases (1.61%), and organismal systems 

(1.47%) (Figure 2). These genes were enriched into 374 

pathways of 6 KEGG A classes and 45 KEGG B classes 

(Figure 3).  
Figure 2. Distribution of the KEGG classification in mucilage 

samples. 
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Figure 3. Heat map of mucilage samples KEGG pathway annotations. 

 

As shown in Figure 4, the category glycoside 

hydrolases corresponded to the highest number of genes, and 

the category polysaccharide lyases corresponded to the 

lowest number of genes. 

 

 
Figure 4. Number of matched genes of carbohydrates. 

 

The eggNOG database annotation results are shown 

in Figure 5. As a result, the main functions of the genes 

included carbohydrate transport and metabolism, amino acid 

transport and metabolism, information storage and 

processing, and energy production and conversion. These 

four functional types were involved in main metabolism in 

various environmental samples (Meneghine et al., 2017; 

Zhao et al., 2019; Raiyani & Singh 2020). Previous studies 

showed that carbohydrates and proteins were significant 

fractions of mucilage (Mecozzi et al., 2001; Mecozzi et al., 

2004). The carbohydrate and protein rich contents can 

contribute to the enrichment of the carbohydrate and amino 

acid metabolism genes, so that large amounts of carbon and 

nitrogen can be utilized and converted within the mucilage 

structure. 

The dfrA3 gene was the most prevalent (20.36%) 

followed by CRP (18.17%), PmrE (14.92%), rpoB2 

(11.17%), SoxR (7.49%), AbeS (6.83%), baeR (5.22%), 

PmrF (3.70%), dfrA22 (2.20%), dfrA26 (1.76%), dfrA20 

(1.63%), golS (1.26%), CAT (1.03%), mtrA (1.01%), TMB-1 

(0.64%), novA (0.64%), dfrK (0.59%), vanXB (0.48%), dfrG 

(0.39%), FosC2 (0.31%), and MexA (0.20%) genes (Figure 

6). The distribution of antibiotic classes detected in each 

station (S1: Station 1, S2: Station 2, S3: Station 3) by Circos 

(Krzywinski et al., 2009) was shown in Figure 7.  
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Figure 5. Distribution of the functional genes in mucilage samples.  

 
Figure 6. The abundance of resistance genes in mucilage samples. 

 

 

Figure 7. Circos representation of the dominant antibiotic classes. 
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The metagenomic analysis is widely used in order 

to quantitatively analyze the occurrence, abundance and 

diversity of ARGs in samples obtained from marine or 

freshwater environments and to reveal metabolic diversity 

and microbial community structures (Pinnell & Turner 

2019; Quillaguamán et al., 2021; Wang et al., 2021). 

However, a similar study on mucilage structure has not 

been found in the literature. In this study, the functional 

diversity of the microbiome in mucilage samples was 

analyzed for the first time. The results were found to be 

similar to those of marine water (Gilbert et al., 2008), 

Amazonian geothermal spring (Paul et al., 2016), biofloc 

(Meenakshisundaram et al., 2021) and mud (Zhang et al., 

2019) samples. 

In addition, 21 resistance genes were detected in 

mucilage samples collected from 3 different stations. 

Antibiotic resistance gene (ARG) types mainly included 

the resistance genes of multidrug (40.19%), trimethoprim 

(26.93%), polymyxin (18.62%), rifamycin (11.17%), 

chloramphenicol (1.03%), aminocoumarin (0.64%), beta-

lactamase (0.64%), fosfomycin (0.31%), and vancomycin 

(0.48%).  

It is noteworthy that the multi-antibiotic resistance 

rate is approximately 40%. We consider that the obtained 

results are related to antibiotics used extensively in human 

and animal medicine. Trimethoprim (Kılıç & Yenilmez, 

2019), which is among the top 5 antibiotics prescribed in 

Turkey, is used to treat enteric, respiratory, skin and 

urinary tract infections (Huovinen et al., 1995). 

In recent years, although the use of polymyxin has 

been recommended to prevent multi-resistant infections 

caused by Pseudomonas spp. and Acinetobacter spp., it has 

also been reported that there is a risk of developing 

resistance (Turgut, 2017).  

Rifamycin is used to treat tuberculosis, leprosy 

and AIDS-related mycobacterial infections. Still, 

Rifamycin resistance develops very rapidly, and it is 

recommended to be applied with other agents to overcome 

this resistance (Floss & Yu, 2005).  

Chloramphenicol used in treating superficial eye 

infections such as bacterial conjunctivitis and otitis externa 

(Oong & Tadi, 2021) is currently used more in animal 

medicine than human medicine (Grenni et al., 2018). The 

FAO/WHO Expert Committee on Food Additives 

(JECFA) concluded that chloramphenicol could cause 

genetic damage and possibly cause cancer (FAO, 2002).  

In this study, beta-lactamase and fosfomycin, 

which are antibiotics that showed resistance below 1%, 

were among the antibiotics most frequently prescribed by 

family physicians throughout Turkey (Isli et al., 2020). In 

this study, vancomycin showing a low resistance rate 

(0.48%) is used to treat Enterococcus infections, standing 

out as hospital-associated pathogens with multiple 

antibiotic resistance. The vancomycin resistance of 

Enterococcus faecalis and Enterococcus faecium strains 

isolated in Turkey in 2017 was determined as 1% and 13%, 

respectively (WHO, 2018). 

In a comprehensive study conducted in the North 

Pacific, South Sea of Korea, Indian Ocean, Sargasso Sea, 

Arctic Ocean, Bay of British Columbia, and the Gulf of 

Mexico, it was noteworthy that multidrug and 

aminocoumarin resistance was found in all viromes rather 

than being in excess of a percent (Calero-Cáceres & 

Balcázar, 2019). 

 

CONCLUSION 

 

In conclusion, it was determined in this study that 

the findings obtained from metagenomic analyzes on 

mucilage samples collected from 3 different stations were 

similar. Antibiotic-resistant bacteria in mucilage can 

adhere to human skin during swimming, fishing, water 

sports etc., enter the body through the nose and mouth, and 

transfer genetic information to the bacteria in contact areas 

in the human body. Thus, this situation is risky in public 

health, and necessary precautions should be taken. In the 

light of these findings, it has been observed that there is a 

need for more detailed studies with samples to be taken at 

different times and from depths in the future. 
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