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Using generating functions with their functional equations method, a great number of novel 
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1. INTRODUCTION 

 

Recently, generating functions of certain polynomials and numbers have been applied not only in 

mathematics, but also in statistics and in other sciences. Using these functions, one finds a great number of 

characteristics of these certain polynomials. 

 

The motivation of this paper is to give a great number of relations for Fubini type polynomials and numbers 

with aid of these functions. These relations are comprised combinatorial sums, Apostol type polynomials 

and numbers, the Cauchy and (𝜆-) Stirling numbers, and 𝜆-array polynomials.  

 

The following specific notations can be used: let ℕ = {1,2,3, … } and ℕ0 = {0,1,2,3, … }. Let ℝ, set of real 

numbers, ℂ, set of complex numbers, and 
 

(
𝑠
0

) = 1 and (
𝑠
𝑢

) =
(𝑠)𝑢

𝑢!
,    (𝑢 ∈ ℕ, 𝑠 ∈ ℂ) 

 

where 

 
(𝑠)0 = 1 and (𝑠)𝑢 = 𝑠(𝑠 − 1) … (𝑠 − 𝑢 + 1) 

(cf. [1-24]). 

http://dergipark.gov.tr/gujs
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The Stirling numbers of the second kind are given by 

 

𝐻𝑆2(𝑧, 𝑝) =
(𝑒𝑧 − 1)𝑝

𝑝!
= ∑

𝑆2(𝑑, 𝑝)

𝑑!
𝑧𝑑

∞

𝑑=0

 (1) 

 

and 

 

𝑦𝑑 = ∑ 𝑆2(𝑑, 𝑚)(𝑦)𝑚

𝑑

𝑚=0

 (2) 

 

(cf. [1-24]). 

 

The Fubini numbers are given by 

 

𝐻𝑤(𝑧) =
1

2 − 𝑒𝑧
= ∑

𝑤𝑔(𝑑)

𝑑!
𝑧𝑑

∞

𝑑=0

 (3) 

 

(cf. [3,4,8,10,12]). 

 

Using Equation (3), we have 

𝑤𝑔(𝑑) = ∑ 𝑚! 𝑆2(𝑑, 𝑚)

𝑑

𝑚=0

 (4) 

 

(cf. [3,4,8,10,12]).  

 

By using (3) and (4), Good [5] gave many combinatorial applications for these numbers. 

 

The Fubini type polynomials of order 𝑝 are given by 

 

𝐻𝑎(𝑧, 𝑝, 𝑦) =
2𝑝

(2 − 𝑒𝑧)2𝑝
𝑒𝑦𝑧 = ∑

𝑎𝑠
(𝑝)(𝑦)

𝑠!
𝑧𝑠,

∞

𝑠=0

 (5) 

 

where 𝑝 ∈ ℕ0 and |𝑧| < ln 2 (cf. [10]). 

 

When 𝑦 =  0, using (5), one gets 

 

𝑎𝑠
(𝑝)

(0) = 𝑎𝑠
(𝑝)

. 
 

If 𝑝 = 1, one gets 

 

𝑎𝑠
(1)(0) = 𝑎𝑠. 

 

By using (3), we have 

𝑎𝑠 = ∑ (
𝑠
𝑗) 𝑤𝑔(𝑗)𝑤𝑔(𝑠 − 𝑗)

𝑠

𝑗=0

 (6) 

 

(cf. [10, Theorem 4.7]). 
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For 𝑛 =  1, 2, 3, …, few values of 𝑎𝑠 are given by 

 

𝑎0 = 2, 𝑎1 = 4, 𝑎2 = 16, 𝑎3 = 88,      𝑎4 = 616,       
 

and so on. 

 

By using (5), we have 

 

𝑎𝑠
(𝑚+𝑙)

= ∑ (
𝑠
𝑗)

𝑠

𝑗=0

𝑎𝑗
(𝑚)

𝑎𝑠−𝑗
(𝑙)

 

and 

 

𝑎𝑠
(𝑝)

(𝑦) = ∑ (
𝑠
𝑗)

𝑠

𝑗=0

𝑎𝑗
(𝑝)

𝑦𝑠−𝑗 

 

(7) 

(cf. [10, Equations (20) and (21)]). 

 

The Apostol-Bernoulli numbers of order 𝑝 are given by 

 

𝐻𝐴𝐵(𝑧, 𝑝; 𝜆) = (
𝑧

𝜆𝑒𝑧 − 1
)

𝑃

= ∑
ℬ𝑠

(𝑝)
(𝜆)

𝑠!
𝑧𝑠

∞

𝑠=0

, (8) 

 

where  |𝑧| < 2𝜋 when 𝜆 = 1;  |𝑧| < |log( 𝜆)| when 𝜆 ≠ 1, λ∈ ℂ, 𝑝 ∈ ℕ (cf. [9,16,17,21,23]). 

 

The Apostol-Bernoulli polynomials of order 𝑝 are given by 

 

𝐹𝐴𝐵(𝑧, 𝑝, 𝑦; 𝜆) = 𝐻𝐴𝐵(𝑧, 𝑝; 𝜆)𝑒𝑦𝑧 = ∑
ℬ𝑠

(𝑝)(𝑦; 𝜆)

𝑠!
𝑧𝑠

∞

𝑠=0

  

 

(9) 

(cf. [9,16,17,21,23]). 

 

When 𝑦 =  0, using (9), one gets 

 

ℬ𝑠
(𝑝)(0; 𝜆) = ℬ𝑠

(𝑝)(𝜆) 

 

(cf. [9,16,17,21,23]). 

 

Substituting 𝑝 = 0 into (9), we also have 

 

ℬ𝑠
(0)(𝑦; 𝜆) = 𝑦𝑠. 

 

Let 𝑝 ∈ ℕ0 and 𝜆 ∈ ℂ. The 𝜆-Stirling numbers of the second kind are given by 

 

𝐻𝑆(𝑧, 𝑝; 𝜆) =
(𝜆𝑒𝑧 − 1)𝑃

𝑝!
= ∑

𝑆2(𝑑, 𝑝; 𝜆)

𝑑!
𝑧𝑑

∞

𝑑=0

 

 

(10) 

(cf. [19,21,22]).  

 

When 𝜆 = 1 in (10), we obtain 
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𝑆2(𝑑, 𝑝; 1) = 𝑆2(𝑑, 𝑝). 
 

Let 𝑝 ∈ ℕ0 and 𝜆 ∈ ℂ. The 𝜆-array polynomials are given by 

 

𝐺(𝑧, 𝑝, 𝑦; 𝜆) =
(𝜆𝑒𝑧 − 1)𝑃

𝑝!
𝑒𝑦𝑧 = ∑

𝑆𝑝
𝑑(𝑦; 𝜆)

𝑑!
𝑧𝑑

∞

𝑑=0

 

 

(11) 

(cf. [2,19,21]). 

 

When 𝑦 =  0, using (11), one gets 

 

𝑆𝑝
𝑑(0; 𝜆) = 𝑆2(𝑑, 𝑝; 𝜆). 

 

The Cauchy numbers are given by 

 

𝑧

log(1 + 𝑧)
= ∑

𝑏𝑠(0)

𝑠!
𝑧𝑠

∞

𝑠=0

 

 

(cf. [15,18,21]). 

 

The numbers 𝑏𝑠(0) are also given by 

 

𝑏𝑠(0) = ∫ (𝑦)𝑠𝑑𝑦
1

0

 

 

(10) 

(cf. [15,18,21]). 

 

Let us briefly summarize the results of this paper: 

By generating functions with their functional equations, a great number of novel combinatorial sums 

including Fubini type numbers and polynomials, (𝜆-) Stirling numbers, and 𝜆-array polynomials are given 

by section 2. A great number of novel identities for the Fubini type polynomials and numbers, the Apostol-

Bernoulli polynomials are obtained. By applying the Riemann integral to these formulas, some integral 

formulas involving the Cauchy numbers are given by section 3. In section 4, conclusion section is given.  

 

2. COMBINATORIAL SUMS INVOLVING FUBINI TYPE POLYNOMIALS 

 

With the aid of generating functions with their functional equations, a great number of novel combinatorial 

sums involving Fubini type numbers and polynomials, (𝜆-) Stirling numbers, and 𝜆-array polynomials are 

given below. 

 

Theorem 1.  For 𝑑 ∈ ℕ0 and 𝑠 ∈ ℕ, we have 

 

∑ ∑ (−1)𝑚 (
2𝑑
𝑚

) (
𝑠
𝑐

)

2𝑑

𝑚=0

𝑠

𝑐=0

(𝑚 − 𝑦)𝑐2𝑑−𝑚𝑎𝑠−𝑐
(𝑑) (y) = 0. (13) 

 

Proof.  Using (5), we get 

 

2𝑑 = ∑ (−1)𝑚 (
2𝑑
𝑚

)

2𝑑

𝑚=0

𝑒𝑢(𝑚−𝑦)22𝑑−𝑚𝐻𝑎(𝑢, 𝑑, 𝑦). 

 

Thus 
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1 = ∑ (−1)𝑚 (
2𝑑
𝑚

)

2𝑑

𝑚=0

2𝑑−𝑚 ∑(𝑚 − 𝑦)𝑠
𝑢𝑠

𝑠!
∑ 𝑎𝑠

(𝑑)
(𝑦)

𝑢𝑠

𝑠!

∞

𝑠=0

∞

𝑠=0

. 

 

Therefore 

 

1 = ∑ ∑ ∑ (−1)𝑚 (
2𝑑
𝑚

) (
𝑠
𝑐

)

2𝑑

𝑚=0

𝑠

𝑐=0

(𝑚 − 𝑦)𝑐2𝑑−𝑚𝑎𝑠−𝑐
(𝑑)

(y)
𝑢𝑠

𝑠!

∞

𝑠=0

.  (14) 

 

The coefficients of 
𝑢𝑠

𝑠!
 the previous equation are equalized, we get Equation (13).  

 

When 𝑦 = 0, using (13), we have the following result: 

 

Corollary 2 (cf. [8]). For 𝑑 ∈ ℕ0 and 𝑠 ∈ ℕ, we have 

 

∑ ∑ (−1)𝑚 (
2𝑑
𝑚

) (
𝑠
𝑐

)

2𝑑

𝑚=0

𝑠

𝑐=0

𝑚𝑐2𝑑−𝑚𝑎𝑠−𝑐
(𝑑)

= 0. 

 

Substituting 𝑠 = 0 and 𝑦 = 0 into (14), we get 

 

1 = ∑ (−1)𝑚 (
2𝑑
𝑚

)

2𝑑

𝑚=0

2𝑑−𝑚𝑎0
(𝑑)

. 

 

By the aid of the previous equation and the following sum: 

 

𝑎0
(𝑑)

= ∑ (
𝑑
𝑗

)

𝑑

𝑗=0

, 

 

we obtain 

 

∑ (−1)𝑚 (
2𝑑
𝑚

)

2𝑑

𝑚=0

22𝑑−𝑚 = 1. 

 

Thus, we get the following result: 

 

Corollary 3.  For 𝑑 ∈ ℕ0, we have 

 

∑
(−1)𝑚

2𝑚
(

2𝑑
𝑚

)

2𝑑

𝑚=0

=
1

∑ (
2𝑑
𝑣

)2𝑑
𝑣=0

. 

 

Theorem 4. For 𝑑 ∈ ℕ, we have 

   

∑ (
𝑑
𝑚

) 𝑆2𝑝
𝑚 (−𝑦;

1

2
)

𝑑

𝑚=0

𝑎𝑑−𝑚
(𝑝)

(y) = 0. 
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Proof.  By (5), we have 

 

2𝑝 = (2 − 𝑒𝑢)2𝑝𝑒−𝑦𝑢𝐻𝑎(𝑢, 𝑝, 𝑦).  (15) 

 

Combining (15) with (11), we get 

 

1 = (2𝑝)! 2𝑝 ∑ ∑ (
𝑑
𝑚

) 𝑆2𝑝
𝑚 (−𝑦;

1

2
)

𝑑

𝑚=0

𝑎𝑑−𝑚
(𝑝)

(y)
𝑢𝑑

𝑑!

∞

𝑑=0

. 

 

Therefore 

 

∑ (
𝑑
𝑚

) 𝑆2𝑝
𝑚 (−𝑦;

1

2
)

𝑑

𝑚=0

𝑎𝑑−𝑚
(𝑝)

(y) = 0. 

 

Hence, proof of theorem is complemented. 

 

Theorem 5 (cf. [8]). For 𝑠 ∈ ℕ0, we have 

 

𝑦𝑠 = (2𝑝)! 2𝑝 ∑ (
𝑠
𝑐

) 𝑆2 (𝑐, 2𝑝;
1

2
)

𝑠

𝑐=0

𝑎𝑠−𝑐
(𝑝)

(y). (16) 

 

Proof.  Combining (15) with (10), we get 

 

∑ 𝑦𝑠
𝑢𝑠

𝑠!

∞

𝑠=0

= (2𝑝)! 2𝑝 ∑ 𝑆2 (𝑠, 2𝑝;
1

2
)

𝑢𝑠

𝑠!
∑ 𝑎𝑠

(𝑝)
(y)

∞

𝑠=0

𝑢𝑠

𝑠!
.

∞

𝑠=0

  

 

Therefore 

 

∑ 𝑦𝑠
𝑢𝑠

𝑠!

∞

𝑠=0

= (2𝑝)! 2𝑝 ∑ ∑ (
𝑠
𝑐

) 𝑆2 (𝑐, 2𝑝;
1

2
)

𝑠

𝑐=0

𝑎𝑠−𝑐
(𝑝)

(y)
𝑢𝑠

𝑠!
.

∞

𝑠=0

  

 

The coefficients of 
𝑢𝑠

𝑠!
 the previous equation are equalized, we get Equation (16).  

 

When 𝑦 = 0, using (16), we get the following result: 

 

Corollary 6 (cf. [8]). For 𝑠 ∈ ℕ, we have 

 

∑ (
𝑠
𝑐

) 𝑆2 (𝑐, 2𝑝;
1

2
)

𝑠

𝑐=0

𝑎𝑠−𝑐
(𝑝)

= 0.  

 

3. RELATIONS AND INTEGRAL REPRESENTATIONS FOR FUBINI TYPE POLYNOMIALS  

 

A great number of formulae and recurrence relation involving Fubini type polynomials, and the Apostol-

Bernoulli polynomials and numbers are obtained. By applying Riemann integral to these formulas, some 

integral formulae for these polynomials and the Cauchy numbers are given below. 

 

Theorem 7. For 𝑠 ∈ ℕ0, we have   
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𝑎𝑠
(𝑝)

(y) =
1

2
𝑎𝑠

(𝑝−1)
(y) −

1

4
𝑎𝑠

(𝑝)
(y + 2) + 𝑎𝑠

(𝑝)
(y + 1). 

 

Proof.  By (5), we get 

 

4𝐻𝑎(𝑢, 𝑝, 𝑦) − 4𝐻𝑎(𝑢, 𝑝, 𝑦 + 1) + 𝐻𝑎(𝑢, 𝑝, 𝑦 + 2) = 2𝐻𝑎(𝑢, 𝑝 − 1, 𝑦), 
 

where for 𝑝 ∈ ℕ. From the above equation, we have 

 

4 ∑ 𝑎𝑠
(𝑝)

(y)
𝑢𝑠

𝑠!

∞

𝑠=0

− 2 ∑ 𝑎𝑠
(𝑝−1)

(y)
𝑢𝑠

𝑠!
= 4 ∑ 𝑎𝑠

(𝑝)
(y + 1)

𝑢𝑠

𝑠!
− ∑ 𝑎𝑠

(𝑝)
(y + 2)

𝑢𝑠

𝑠!

∞

𝑠=0

∞

𝑠=0

∞

𝑠=0

. 

 

The coefficients of 
𝑢𝑠

𝑠!
 the previous equation are equalized, we obtain 

 

𝑎𝑠
(𝑝)

(y) =
1

2
𝑎𝑠

(𝑝−1)
(y) −

1

4
𝑎𝑠

(𝑝)
(y + 2) + 𝑎𝑠

(𝑝)
(y + 1). 

 

Hence, proof of theorem is complemented. 

 

Theorem 8. For 𝑠 ∈ ℕ0, we have 

 

𝑎𝑠
(𝑚+𝑙)

(w + y) = ∑ (
𝑠
𝑑

) 𝑎𝑑
(𝑚)

(w)𝑎𝑠−𝑑
(𝑙)

(y)

𝑠

𝑑=0

.  (17) 

 

Proof.  Using (5), we get 

 

∑ 𝑎𝑠
(𝑚+𝑙)(w + y)

𝑢𝑠

𝑠!

∞

𝑠=0

= ∑ 𝑎𝑠
(𝑚)(w)

𝑢𝑠

𝑠!

∞

𝑠=0

∑ 𝑎𝑠
(𝑙)(y)

𝑢𝑠

𝑠!

∞

𝑠=0

.  

 

Therefore 

 

∑ 𝑎𝑠
(𝑚+𝑙)(w + y)

𝑢𝑠

𝑠!

∞

𝑠=0

= ∑ ∑ (
𝑠
𝑑

) 𝑎𝑑
(𝑚)(w)𝑎𝑠−𝑑

(𝑙) (y)

𝑠

𝑑=0

𝑢𝑠

𝑠!

∞

𝑠=0

.  

 

The coefficients of 
𝑢𝑠

𝑠!
 the previous equation are equalized, we get Equation (17).  

 

When 𝑙 = 0, using (17) and the following identity 

 

𝑎𝑛
(0)

= 𝑦𝑛, 
 

we have the following result: 

 

Corollary 9 (cf. [8]). For 𝑠 ∈ ℕ0, we have 

 

𝑎𝑠
(𝑚)(w + y) = ∑ (

𝑠
𝑑

) 𝑎𝑑
(𝑚)(w)𝑦𝑠−𝑑

𝑠

𝑑=0

. (18) 

 

Remark 10. Substituting 𝑦 = 1 into (18), we have 
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𝑎𝑠
(𝑚)

(w + 1) = ∑ (
𝑠
𝑑

) 𝑎𝑑
(𝑚)

(w)

𝑠

𝑑=0

  

 

(cf. [10, Equation (29)]). 

 

Theorem 11 (cf. [8]). For 𝑠 ∈ ℕ0, we have 

 

𝑎𝑠
(𝑝)

(y) =
ℬ𝑠+2𝑝

(2𝑝)
(𝑦;

1
2)

2𝑝(𝑠 + 2𝑝)2𝑝
. (19) 

 

Proof.  By using (5) and (9), we get 

 

∑ 𝑎𝑠
(𝑝)

(y)
𝑢𝑠

𝑠!

∞

𝑠=0

=
1

2𝑝𝑢2𝑝
∑ ℬ𝑠

(2𝑝)
(𝑦;

1

2
)

𝑢𝑠

𝑠!

∞

𝑠=0

.  

 

Thus 

 

∑ 𝑎𝑠
(𝑝)

(y)
𝑢𝑠

𝑠!

∞

𝑠=0

=
1

2𝑝
∑

ℬ𝑠+2𝑝
(2𝑝)

(𝑦;
1
2)

(𝑠 + 2𝑝)2𝑝

𝑢𝑠

𝑠!

∞

𝑠=0

.  

 

The coefficients of 
𝑢𝑠

𝑠!
 the previous equation are equalized, we get Equation (19).  

 

Remark 12. When 𝑝 = 1 and 𝑦 = 0 in (19), we obtain 

 

𝑎𝑠 =
ℬ𝑠+2

(2)
(

1
2

)

2(𝑠 + 1)(𝑠 + 2)
 

 

(cf. [10, Equation (25)]). 

 

By using Equations (7) and (19), we get the Theorem 13: 

 

Theorem 13. For 𝑠 ∈ ℕ0, we have 

 

𝑎𝑠
(𝑝)

(y) = ∑ (
𝑠
𝑚

)
𝑦𝑠−𝑚

2𝑝(𝑚 + 2𝑝)2𝑝
ℬ𝑚+2𝑝

(2𝑝)
(

1

2
) .

𝑠

𝑚=0

 

 

3.1. Applications of Integral Representations for Fubini Type Polynomials 

 

Applying the Riemann integral to the Fubini type polynomials of order 𝑝, some identities and integral 

representations for these polynomials are derived. 

 

Theorem 14.  For 𝑠 ∈ ℕ0, we have 

 

∫ 𝑎𝑠
(𝑝)(𝑦)𝑑𝑦 =

1

𝑠 + 1
(𝑎𝑠+1

(𝑝) (𝑑) − 𝑎𝑠+1
(𝑝) (𝑐)) .

𝑑

𝑐

  (20) 

 

Proof.  Integrating the Equation (5) by parts with respect to 𝑦 from 𝑐 to 𝑑, we get 
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 ∑ ∫ 𝑎𝑠
(𝑝)(𝑦)

𝑢𝑠

𝑠!
𝑑𝑦 =

2𝑝

(2 − 𝑒𝑢)2𝑝
∫ 𝑒𝑦𝑢𝑑𝑦

𝑑

𝑐

.
𝑑

𝑐

∞

𝑠=0

 

 

Therefore 

 

∑ ∫ 𝑎𝑠
(𝑝)

(𝑦)
𝑢𝑠

𝑠!
𝑑𝑦 = (∑

𝑎𝑠+1
(𝑝)

(𝑑)

𝑠 + 1

∞

𝑠=0

𝑢𝑠

𝑠!
− ∑

𝑎𝑠+1
(𝑝)

(𝑐)

𝑠 + 1

𝑢𝑠

𝑠!

∞

𝑠=0

) .
𝑑

𝑐

∞

𝑠=0

 

 

The coefficients of 
𝑢𝑠

𝑠!
 the previous equation are equalized, we get Equation (20).  

 

Combining (7) with (20), we get the following result: 

 

Corollary 15.  For 𝑠 ∈ ℕ0, we have 

 

∫ 𝑎𝑠
(𝑝)(𝑦)𝑑𝑦 = ∑ (

𝑠
𝑚

)
𝑎𝑚

(𝑝)

𝑠 − 𝑚 + 1
(𝑑𝑠−𝑚+1 − 𝑐𝑠−𝑚+1)

𝑠

𝑚=0

.
𝑑

𝑐

  (21) 

 

Remark 16. Substituting 𝑐 = 0 and 𝑑 = 1 into (21), we have 

 

∫ 𝑎𝑠
(𝑝)

(𝑦)𝑑𝑦 = ∑
1

𝑠 − 𝑣 + 1
(

𝑠
𝑣

) 𝑎𝑣
(𝑝)

𝑠

𝑣=0

1

0

  

 

(cf. [10]). 

 

Theorem 17.  For 𝑠 ∈ ℕ0, we have 

 

∫ 𝑎𝑠
(𝑝)

(𝑤 + 𝑦)𝑑𝑦 = ∑ ∑ (
𝑠
𝑑

)

𝑠−𝑑

𝑣=0

𝑆2(𝑠 − 𝑑, 𝑣)𝑎𝑑
(𝑝)

(𝑤)𝑏𝑣(0)

𝑠

𝑑=0

.
1

0

  

 

Proof.  From the Equations (2) and (18), we get 

 

𝑎𝑠
(𝑝)(𝑤 + 𝑦) = ∑ (

𝑠
𝑑

) 𝑎𝑑
(𝑝)

(𝑤) ∑ 𝑆2(𝑠 − 𝑑, 𝑣)

𝑠−𝑑

𝑣=0

(𝑦)𝑣

𝑠

𝑑=0

.  

 

Integrating the above equation by parts with respect to 𝑦 from 0 to 1, we get 

 

∫ 𝑎𝑠
(𝑝)(𝑤 + 𝑦)𝑑𝑦 = ∑ (

𝑠
𝑑

) 𝑎𝑑
(𝑝)

(𝑤) ∑ 𝑆2(𝑠 − 𝑑, 𝑣)

𝑠−𝑑

𝑣=0

∫ (𝑦)𝑣𝑑𝑦
1

0

𝑠

𝑑=0

.
1

0

  

 

Combining the above equation with (12), we have 

 

∫ 𝑎𝑠
(𝑝)(𝑤 + 𝑦)𝑑𝑦 = ∑ (

𝑠
𝑑

) ∑ 𝑆2(𝑠 − 𝑑, 𝑣)𝑎𝑑
(𝑝)

(𝑤)𝑏𝑣(0)

𝑠−𝑑

𝑣=0

𝑠

𝑑=0

.
1

0

 

 

Hence, proof of theorem is complemented. 
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4. CONCLUSION 

 

In this present paper, by the aid of generating functions with their functional equations, we obtained a great 

number of novel combinatorial sums, identities, and recurrence relation involving Fubini type polynomials 

and numbers, the Cauchy numbers, the Apostol-Bernoulli polynomials and Stirling type polynomials. 

Moreover, applications of integral representations for Fubini type polynomials, Cauchy and Stirling 

numbers are presented. The results of this paper may contribute to diverse fields of science such as 

mathematics, engineering and physics. 
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