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Abstract

Nanotechnological approaches are emerging as one of the most contemporary
restoration strategies that may be used to remove a variety of contaminants
from the environment, including heavy metals, organic and inorganic
pollutants. The application of nanoparticles (NPs) is entrenched with
biological processes to boost up the removal of toxic compounds from
contaminated soils. Many efforts have been taken to increase the effectiveness
of phytoremediation such as the addition of chemical additives, application of
rhizobacteria, and genetic engineering, etc. In this context, the integration of
nanotechnology with bioremediation has introduced new dimensions to the
reclamation methods. Thus, advanced remediation methods that combine
nanotechnology with phytoremediation and bioremediation, where nano-
scale process regulation aids in the absorption and breakdown of pollutants.
NPs absorb/adsorb a variety of contaminants and also catalyze reactions by
lowering the energy required for their breakdown due to unique surface
properties. As a result, these nanobioremediation procedures decrease the
accumulation of contaminants while simultaneously limiting their dispersal
from one medium to another. Therefore, the present review is dealing with all
the possibilities of the application of NPs for restoration of contaminated soils.

Keywords: Phytoremediation potential, phytorestoration strategy, NPs,
contaminated soils, plants, microorganisms.
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Introduction

Soil is the essence of agriculture and it is enriched with vital macro and micronutrients that promote healthy
growth of the crops that ultimately impart health benefits to humans (Joshi et al, 2020). Several
anthropogenic activities contaminate the soil with a load of synthetic organic compounds, heavy metals,
agrochemicals, and an excess of nutrients as well (Minkina et al,, 2019; Ghazaryan et al., 2020). Similarly,
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industrialization/urbanization is adding solid wastes, chemicals and solvents, and other persistent organic
and inorganic materials to different environmental matrices (Midhat et al,, 2019).

Advancement in nanotechnology and nanoscience provide new directions to research and development in
almost every field of science. It is an expanding research field that involves structures, devices, and systems
with unique properties owing to the arrangement of their atoms at the nanoscale (1-100 nm) (Bayda et al,,
2019; Rajput et al,, 2020b; 2021b). In recent decades, nanotechnology has been used in a range of contexts,
notably medicine, textiles, pharmaceutics, electronics, optics, cosmetics, sports, and many others. The
application of NPs in agriculture was accepted at the beginning of the twenty-first century (Fraceto et al,,
2016), and more than 232 products are available for various agricultural uses (Rajput et al., 2021a). Also, it
has not remained static in the field of environmental restoration (Guerra et al., 2018; Singh et al., 2020).

Recently, nanobioremediation (NBR) is declared as a technology for cleaning up environmental
contamination by accelerating natural biodegradation processes using NPs. NBR is defined as a process that
uses NPs with microorganisms, or plants to eradicate hazardous contaminants from the soils (Cecchin et al.,
2017). Following that, distinct NBR procedures are defined based on the type of organism used for
contaminants remediation (i.e.,, nanophytoremediation, and microbial nanoremediation (Burachevskaya et
al,, 2020; Rajput et al., 2020a,c; Singh et al., 2020; Kumari et al., 2021). The intensification in the expenses of
chemical as well as physical processes, microbes- and plant-mediated NBR technologies are receiving more
attention.

Coming to the benefits of NBR, there is a multitude of reasons why nanotechnology is integrated with
bioremediation. For example, NPs have a large surface area per unit mass, which means that a greater
number of particles can come into contact with the environment, boosting the remediation process
(Fernandez-Luquefio et al., 2018; Kaur et al.,, 2018). Thus, NBR efforts to minimize pollutant concentrations
to risk-based thresholds while also decreasing secondary environmental impacts. Furthermore, this method
of reclamation also combines the advantages of nanotechnology and bioremediation to create a remediation
process that is more efficient, faster, and environmentally benign than the individual methods (Patil et al,,
2016; Kumar et al.,, 2021).

However, every advance of the process of remediation has particular explicit merits as well as demerits that
need to be taken into consideration for each location. In a nutshell, after the extensive literature survey, it
can be concluded that integration of bioremediation with nanotechnology appears to be a feasible
alternative to conventional remediation technologies either in sequence or in parallel to them. However,
there are still more studies and development measures necessary to bring these types of sustainable
technology to the market for full implementation.

Recent advances in bioremediation of polluted soil

Chemical and physical remediation, incineration, and bioremediation are some of the NBR technologies that
are currently in use. With recent advances, NBR provides an environmentally friendly and economically
viable option for removing contaminants (Patra Shahi et al, 2021). The fundamental principle behind the
NBR is depicted as the degradation of organic wastes employing nano-catalysts as a medium that allows
them to enter deep within contaminants, thereby executes the whole process safely without modulating the
environment (Rizwan et al., 2014; Cecchin et al., 2017; Chauhan et al, 2020). The overview of NBR is
presented in figure 1.

As bioremediation relies on live species to clean up contaminated environments, thereby a good relationship
between NPs and living organisms is critical for the efficacy of this phenomenal technique (Sangwan and
Dukare, 2018; Paterlini et al, 2021). In this context, it is documented that the physical and chemical
interactions between NPs, biota, and contaminants are influenced by numerous factors viz., NPs’ size and
shape, surface coating, and chemical nature. Plus, the nature of contaminants, the type of organism used, the
media, pH, and temperature are also recorded to impact the process considerably (Ibrahim et al., 2016; Tan
etal., 2018).

These events grow complicated due to the large number of potential parameters that have a direct or
indirect influence on such interactions. For example, temperature and pH of media are reported as
important factors for the optimal development of biological organisms (Patra and Baek, 2014). Now
pinpointing the different actions, such as dissolution, absorption, and biotransformation may occur when
NPs and biota interact (Kranjc and Drobne, 2019; Vazquez-Nuiiez et al., 2020). On the other hand,
interactions of NPs and biota can be toxic or stimulating which results in a biocidal or bio-stimulant effect,
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thus the performance of organisms involved in the NBR process could be impacted (Juarez-Maldonado et al.,
2019).

Some of the most important NPs used in NBR are nano-iron, nanosized dendrimers, carbon nanotubes, single
enzyme NPs, engineered NPs, etc. (Kaur et al, 2018; Patra Shahi et al,, 2021). In the NBR technique, the
contaminants are first broken down by NPs to a level that is conducive to biodegradation, and then the
contaminants are biodegraded. The main advantages of bioremediation over conventional strategies are
high competency, reduced generation of chemical and biological wastes, selectivity, no additional nutrient
requirements, bio-sorbent regeneration, the probability of metal recovery, etc. (Juwarkar et al, 2010;
Rizwan et al,, 2014; Chauhan et al., 2020).

Bioremediation
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Figure 1. The pictorial representation of nanobioremediation and its types along with environmental risks

On top of it, most currently available conventional remediation procedures are based on the classic ex-situ
strategy, which entails excavating contaminated material and then treating them with conventional means.
Plus, some of these processes are energy-intensive, which makes them expensive, and they may also leave
concentrated hazardous waste residues that require additional treatment and disposal (Wuana and
Okieimen, 2011; Chauhan et al., 2020). On the flip side, in-situ remediation methods benefit greatly from the
peculiar characteristics of NPs (Kumari et al, 2021; Rajput et al,, 2021b). Thus, in-situ NBR can annihilate
the need for draining out of groundwater and transportation of contaminated soils to treatment and disposal
sites.

Nanophytoremediation of polluted soils

Nano-encapsulated enzymes also have greater potential in treating some complex organic pollutants, for
example, persistent pesticides (organochlorines) and long-chain hydrocarbons are hard to degrade by
microbial or plant remediation process (Chauhan et al., 2020). Few successful field applications of NPs have
been done in past for the bioremediation of soils.

Heavy metals

Heavy metal pollution of arable soils is an increasing problem, as it poses a serious threat to food safety,
public health, and the food chain and ecosystem. For in-situ treatment of polluted soils, phytoremediation is

45


http://ejss.fesss.org/10.18393/ejss.990605

V.D.Rajput et al. Eurasian Journal of Soil Science 2022, 11(1), 43 - 60

documented as a favored and cost-effective method by researchers (Liang et al.,, 2017). Phytoremediation of
soils polluted with cadmium, chromium, lead, nickel, and zinc was improved with the introduction of NPs,
according to several studies (Wani et al., 2017; Ekta and Modi, 2018; Kanwar et al., 2020). It is a well-
established that exposure to heavy metal pollutants has major health risks to the well-being of humans
(Rajput etal., 2020d; Zamani et al., 2020).

Phytoextraction is the most familiar method adopted to eliminate heavy metals from polluted soil (Ali et al.,
2013). The application of NPs to enhance the phytoextraction efficiency has been a successful strategy
towards nanophytoremediation (Ebbs and Kochian, 1998; Ghazaryan et al., 2018; Ghazaryan et al., 2019).
Iron NPs are used as a strong reductant for those pollutants that require a reduction process for degradation
(Sun et al., 2006), whereas, zerovalent iron (nZVI) has great potential in phytoremediation of a range of
pollutants as it is a highly reactive reducing agent. Plants treated with the lower concentrations (100- 500
mg/kg) of nZVI have exhibited the maximum accumulation (1175.40 g per pot with 100 mg/kg of nZVI).
Whereas, a higher dose of nZVI NPs (500-1000 mg/kg) caused oxidative stress in Lolium perenne thereby
reducing the uptake of Pb (Huang et al., 2018). Another study reports the similar characteristics of nZVI of
concentration 100-500 mg/kg that improves Pb uptake up to 857.18 pg per pot (at 500 mg/kg) in the
ragweed (Kochia scoparia also known as Bassia scoparia).

The TiO2 NPs of 100, 200, and 300 mg/kg spiked in soil have shown Cd accumulation in Glycine max by 1.9,
2.1, and 2.6 folds in the shoots and 2.5, 2.6, and 3.3 folds in roots, respectively. However, 1534.7 mg/kg per
pot of Cd was reported to be the maximum accumulation (Singh and Lee, 2016). The inoculation of
Acaulospora mellea considerably enabled the immobilization of heavy metals. The acceptable concentration
of nZVI was 50 mg/kg to 1000 mg/kg (Cheng et al., 2021).

The concentration of nZVI at 100, 500, and 1000 of mg/kg showed effective uptake of Cd in the Boehmeria
nivea L. root, stem, and leaves by 16-50%, 29-52%, and 31-73%, respectively (Gong et al, 2017).
Arbuscular mycorrhizal (AM) fungi, A. mellea along with nZVI have shown uptake of Cd, Pb, and Zn from the
acidic soil by Sorghum bicolor L. A table has been appended below that exhibits the role of NPs in the
phytoremediation of heavy metals (Table 1).

Organic pollutants

Organic pollutants are a major threat to agricultural soil, food chain, ecosystem, and human health. They are
majorly released from industrial operations and agricultural applications (Alharbi et al., 2018). Phenols,
polycyclic aromatic hydrocarbons (PAHs), organochlorine insecticides, and polychlorinated biphenyls
(PCBs) are all examples of cyclic organic compounds that are documented as persistent organic pollutants
(Sushkova et al., 2016, 2018). Many of them are lipophilic, thereby they tend to get bioaccumulated and
biomagnified in adipose tissues of several organisms in the food chains of aquatic and terrestrial ecosystems
(Penell etal., 2014).

Hence, phytoremediation is always considered as a cost-effective and sustainable approach to remediate
these organic pollutants (Kang et al., 2018). Application of NPs in phytoremediation of organic pollutants
like trichloroethylene, endosulfan, and trinitrotoluene have been reported in the past (Pillai and Kottekottil,
2016). Fullerene NPs have been reported to enhance the uptake of trichloroethylene using Populus deltoides,
2 and 15 mg/L of fullerene NPs have enhanced the uptake by 26% and 82%. Plantago major with the
appropriate adsorbent (activated charcoal) and solubilizing agent, SiO, as green synthesized NPs of Fe and
Ag namely Ficus-FeNPs (F-Fe0) (size 2.46 nm-11.49 nm), Ipomoea-Ag (Ip-Ag0 ) (size 6.27 to 21.23 nm) and
Brassica-AgNPs (Br-Ag0 ) (size 6.05 to 15.02 nm) were able to remove 93.7%, 91.30%, and 92.92%,
respectively of chlorfenapyr (Romeh and Saber, 2020). Studies have also reported that pollutants like
chlorpyrifos, molinate and, atrazine could be removed and broken by nanosized zerovalent iron.

Plants that absorb contaminants in their tissues to breakdown and detoxify from the environment are used
in nanophytoremediation. Plants that are favored for phytoremediation purposes should have
characteristics such as:

Fast grower with higher biomass producer

The highly branched and well-developed root system

Potential to tolerate and accumulate pollutants

Higher sink potential that allows hyperaccumulation

Easy harvesting of plant's sink organs

Genetic manipulation should be easier, and

It should be non-consumable by humans
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Table 1. Role of engineered NPs in the phytoremediation of Pb and Cd from the soil

Pollution Applied NPs Mode of action of NPs Plant name Remarks Reference
Lower concentration of  Kochia 100-500 mg/kg of nZVI
nZVI nZVI promoted plant scoparia enabled 857.18 pug per potof  Zand and Tabrizi, 2020
growth Pb accumulation in the plant
With nano-hydroxyapatite the
Nanohydroxya Promoted plant growth L. perenne concentration of Pb in the root
Pb patite through phosphate was reduced by 2.86- 21.1% and Ding etal,, 2017
mobilization in the soil in the shoots 13.19-20.3%
reduction of Pb was observed
Lower concentration of L. perenne Accumulated maximum
nZVvlI nZVI promoted plant concentrations of Pb in the root Huang et al,, 2018
growth and shoot of the plants
Nanohydroxya Reduced phytotoxicity, L. perenne The 21.97% remediation
patite and enhance plant efficiency was observed within 6 Jinetal, 2016
growth weeks
Concentration (100 to 300
Improved germination  Glycine max  mg/kg) dependent increase in
TiO: and photosynthetic the uptake of Cd was observed Singh and Lee, 2016
Cd capacity of the plant (128.5 pg-507.6 pg of Cd per
plant)
Increase in the accumulation of
nZVvlI Promoted plant growth  Boehmeria Cd in the leaves by 31-73%, Gongetal, 2017
nivea stems by 29-52%, and roots by
16-50% were recorded
Sorghum Enhanced uptake of Pb and Cd of
Pb,Cd  nZVI Promoted plant growth  bicolor the concentration 50 mg/kg to Chengetal, 2021
1000 mg/kg
Reduced seed Brassica Pb was reduced by 1.2-3.8-folds
Pb, As CNT with germination; however, rapa and significantly reduced As Awad et al,, 2019
biochar toxicity was modulated accumulation in the soil
by biochar
As, Cd, Helianthus Reduced up to 60% uptake of As,
Pb, Zn nZvl Stabilized HMs annuus, Cd, Pb, and Zn in roots and shoots Vitkova etal., 2018
L. perenne compared to the control plants
Improved the Secale Accumulation of Pb in Moameri and Khalaki, 2019
availability of Pb and montanum the roots was achieved up to
Cd,Pb  Nano-silica Cd to the plants, and 533.6 mg/kg DW and Cd up to

also promoted the
growth of the plant

208.6 mg/ kg DW.

Microbial nanoremediation

Microbes-mediated nanoremediation, a novel and efficient approach, involved the cellular enzymes secreted
by microorganisms that successfully degraded and cleaned up the broad variety of organic pollutants in the
contaminated ecosystem (Sangwan and Dukare, 2018; Torimiro et al, 2021). Numerous environmental
conditions limit and influence the efficiency with which pollutants are degraded by microbes in
contaminated soils. Within a microbial association, the biological response to environmental pollutants is
differed, and the presence of co-contaminants may bring out changeable reactions to the bioremediation
process (Sangwan and Dukare, 2018; Rajput et al.,, 2021c; Shende et al., 2021). Despite this, NBR offers a
proficient and lucrative approach for contaminated soil and waste or groundwater treatment.

Microbes-mediated nanoremediation of xenobiotics is a fundamental environment-friendly approach to
eradicate persistent toxic compounds gathered in the surroundings. The capacity of microbes to metabolize,
transform, as well as degrade, xenobiotic compounds has been documented as a competent approach to
remove dangerous and toxic wastes (Agarry and Solomon, 2008). Microorganisms are preferably
appropriate to remove pollutants due to the enzyme system present that allocates them to utilize
ecologically noxious pollutants as their energy and food source. The progressions in bioremediation science
have been accredited to the individual as well as interdisciplinary contribution afforded by scientific areas of
analytical chemistry, microbiology, biochemistry, molecular biology, environmental engineering, and very
recently, nanobiotechnology (Hu et al., 2014; Sangwan and Dukare, 2018; Singh et al,, 2020). The process of
bioremediation includes mineralization and detoxification, in which the transformation of waste into
inorganic compounds, like water, methane, and carbon dioxide has been carried out (Liu et al., 2018a;
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Vazquez-Nufiez et al., 2020; Paterlini et al., 2021). Microbes can alter almost all organic materials, with
catalytic mechanisms and wider diversity (Paul et al., 2005). They can function still in anaerobic plus
extreme environmental conditions, which constructs them a smart candidate for the process of
bioremediation.

Additionally, microorganisms play a significant function in biogeochemical cycles as well as the ecosystems’
sustainability. The conversion of xenobiotic contaminants by microbes may occur either in an anoxygenic or
oxygenic environment. Nevertheless, molecular oxygen contributes to aliphatic as well as aromatic
xenobiotic compounds (Cao et al,, 2009; Sinha et al,, 2009). Amid the different microorganisms, bacteria
have been established as the most competent and prevailing in the natural bioremediation processes. In
both the conditions, i.e., aerobic as well as anaerobic, bacteria have developed an approach for acquiring
energy from nearly every compound by electron acceptors like ferric ions, sulfate, nitrate, etc. Several genera
of bacteria, e.g., Alcaligenes, Acinetobacter, Bacillus, Escherichia, Gordonia, Moraxella, Micrococcus,
Pseudomonas, Pandoraea, Rhodococcus, Streptomyces, and Sphingobium either independently or in
amalgamation are implicated in oxygenic breakdown. In contrast, bacterial genera concerned with the
anaerobic degradation of xenobiotics include Azoarcus, Clostridium, Desulfotomaculum, Desulfovibrio,
Geobacter, Methanococcus, Methanosaeta, Pelotomaculum, Syntrophobacter, Syntrophus, and Thauera
(Jindrova et al,, 2002; Van Hamme Jonathan et al., 2003; Kulkarni and Chaudhari, 2007; Weelink et al., 2010;
Sangwan and Dukare, 2018)

The remediation of extremely persistent and xenobiotic water and soil contaminants, such as hydrocarbons,
heavy metals, dye in textile (acid dyes, cationic dyes, azo dyes), pharmaceutical constituents (antibiotics and
antiseptics), and other such contaminants are critical for wastewater and soil treatment and its future
application. These contaminants increase pollution and pessimistically affect the environment (Koul et al.,
2021; Sushkova et al., 2016).

Since NPs have a larger surface area and are smaller, they can act as catalysts or adsorb contaminants above
a larger surface area. Numerous reports documented the catalytic properties of various NPs together with
the biological components have been assessed to reduce harmful pollutants (Zhao et al., 1998; Kharissova et
al,, 2013). Many microorganisms have been utilized to hone NPs exploitation for the NBR process as several
researchers reported encouraging outputs in the application of microbe-mediated NPs in the process of
remediation.

An extensive recognition of microbes for this scientific approach was recognized owing to their exceptional
chemical, physical, biological, as well as optical properties like super-hydrophobic and filtering nature,
sensitive affinity membranes, modifiable functionality, as well as a higher surface-to-volume ratio (Sarwar
etal, 2017; Wang et al,, 2015; Sangwan and Dukare, 2018).

A detailed description of microbes-mediated nanoremediation has been given in the forthcoming sections.
Hydrocarbons

Many researchers have been reported that the microbes-mediated nanoremediation of persistent organic
pollutants; i.e., hydrocarbon. It was reported the electrostatic interaction of magnetic NPs functionalized by
Rhodococcus erythropolis harnessing system that substantively bio-desulfurize hydrocarbon component
dibenzothiopene (DBT) by 56%. Thus, validating the advantage of magnetic NPs functionalized by R.
erythropolis above the solitary exploitation of every component for bioremediation (Ansari et al., 2009). The
efficient synergistic effect of the nZVI with Sphingomonas sp. as an effectual twosome towards the de-
bromination and gradual polybrominated diphenyl ethers (PBDEs) degradation in aqueous solution (Kim et
al, 2012). Alternatively, the feasibility of the combined employ of bimetallic (Pd/nFe) NPs and
Sphingomonas wittichii for the NBR 2,3,7,8-tetrachlorodibenzo-p-dioxin hydrocarbon was also recognized
(Bokare et al., 2012). The active dechlorination facilitated by integrated hybrid (nano-bioredox) resulted to
form dibenzo-p-dioxin.

A study has revealed the applications of Sphingomonas sp. as a bio-functionalized tool for carboxymethyl
cellulose (CMC) stabilized bimetallic (Pd/Fe) NPs (Singh et al., 2013). The nano-composite was found to be
triumphant for the deprivation of gamma-hexachlorocyclohexane (y-HCH), generally identified as lindane
and the main component in cosmetics (Singh et al., 2013). The study was performed to remove Aroclor
1248- a congener of PCBs, where the noteworthy de-chlorination, as well as conversion of the contaminant,
was observed by the treatment of bimetallic (Pd/Fe) NPs under anoxic surrounding resulted in the
formation of biphenyls (Le et al, 2015). Progressive bioremediation of the resulting biphenyls further
catalytically decreased the persistent Aroclor 1248 from 33.8 x 10-5pg/g to 9.5 x 10-5ug/g with Burkholderia
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xenovorans (Le et al., 2015). The silica NPs biofunctionalized with lipid bilayers of Pseudomonas aeruginosa
was investigated to clean up PAH (benzo[a]pyrene) (Wang et al.,, 2015). The 1,2-dimyristoylsn-glycero-3-
phosphocholine, lipid molecule playing a dynamic role, to improve the sequestration or adsorption of the
PAHs, when conjugated by silica NPs. The biofunctionalized graphene oxide NPs with laccase enzyme
developed by Trametes versicolor were studied for their potential as well as combine enhance for the
biodegradation of PAH (anthracene) (Patil et al.,, 2016). The amalgamation of laccase enzyme from fungi as
conjugant was reported to have the enhanced ability of degradation than their single application and also
extended their stability. The polymer (polyallylamine hydrochloride)-layered magnetic NPs functionalized
by Alcanivorax borkumensis established an opportunity for vigorous hydrocarbon degradation (Konnova et
al, 2016). Exceptional features like forming the neutral lipid inclusions in biofilms of A. borkumensis, the
biosurfactant micelle ascertain the opportunity of hydrocarbon decomposition.

Bacillus licheniformis-mediated nanoremediation process was evaluated bio-functionalization of ZnsOHsCl;
modified Fe;03 NPs with B. licheniformis to break crude oil into naturally degradable compounds.
Additionally, demonstrate some prospects on the promising improvement of microbial bio-surfactants for
efficient NBR of widespread oil pollution (El-Sheshtawy and Ahmed, 2017). The synergistic effect concerning
iron oxide NPs and Alkaligenes faecalis improved the crude oil biodegradation in the contaminated
environment (Oyewole et al.,, 2019). The authors observed that assessing variable deliberations of A. faecalis
with iron oxide NPs, at 200 mg efficiently cleans up crude oil pollution.

Heavy metals

Microbes-mediated nanoremediation of heavy metals corroborates the potential of microorganisms in
cleaning up the environment. NPs’ effectiveness in bioremediation was accomplished during the in-situ
fabrication of palladium (Pd) NPs from Pd (II) ions intervened by Clostridium pasteurianum acquired from
sandy aquifer matter. The biosynthesized Pd NPs evidenced positive remediation in the alteration of
hexavalent chromium; i.e., Cr (VI) into insoluble Cr (IlII) and, therefore, leading to the production of
hydrogen gas (Chidambaram et al, 2010). In this study, the removal rate of Cr (VI) was considerably
improved, reaching 7.2 g, indicating the importance of nano-catalysts over traditional in situ bio-simulation
techniques. A comparable strategy accomplished was channeled towards reduction of Cr (VI) by sodium
alginate, polyvinyl alcohol (PVA), as well as a matrix of carbon nanotubes (CNTS) immobilized upon
Pseudomonas aeruginosa cells (Pang et al,, 2011). The biogenic Cr (VI) reduction to soluble Cr (III) was
shown in wastewater by the immobilized bacterial cells (Nancharaiah et al.,, 2010).

In the NBR process, algae also have revealed their significance. Iron NPs fabrication by Chlorococcum sp.
demonstrated a noticeable elimination of Cr (VI) to Cr (III) about 92% of 4 mg/L (Subramaniyam et al.,
2015). Iron NPs synthesized from algae was mediated with the biomolecules from algal cell illustrated more
excellent stability, high reactivity, and proficient toxic pollutants reduction in the environment. On the other
hand, the biogenic role of Lysinibacillus sphaericus in the production of magnetic oxide NPs intended to
remove Cr (VI) contamination from the surroundings (Kumar et al., 2019). The authors reported the employ
of exopolysaccharides (EPS) matrix of biofilm derived from L. sphaericus as a superior reducing, capping, and
stabilizing agent, acquiring several binding sites for different metal ions. Magnetic oxide NPs functionalized
with EPS illustrated the improved potential to adsorb Cr (VI). In another study, it was reported the
integration of Chlorella vulgaris in ultrafine bi-metallic i.e, TiO/Ag chitosan nanofiber mats, as a
functionalized agent, elucidated the significance of algae in the photo-removal strategy of Cr (VI) under UV
light irradiation (Wang et al., 2017a). The discharge of organic substances such as chlorophylls, carboxylic
acids, etc., through C. vulgaris, was documented to have an improved photocatalytic reduction of Cr (VI) on
the Ti02/Ag chitosan nanofiber mats, confirming the synergistic way of hybrid NPs by algae and TiO,/Ag.

The fabrication of lead sulfide i.e., PbS NPs from Rhodosporidium diobovatum demonstrating the prospect of
a straightforward breaking down of Pb(II) ions into less toxic and helpful forms by fungi (Seshadri et al,,
2011). The triumphant elimination of Cd in Cd-polluted water illustrated the competence of Pseudomonas
aeruginosa improved Cd bioreduction which in turn hasten the cadmium sulfide (CdS) NPs biosynthesis (Raj
et al.,, 2016). Likewise, the removal and bioremediation of Cd from Cd-polluted soils also evaluated (Liu et al.,
2018b). The authors demonstrated that the co-treatment of Bacillus subtilis and nano-hydroxyapetite
(NHAP) efficiently eliminated the Cd contamination, encouraging the propagation of microbial community of
rhizosphere along with the diversity of bacteria in the remediated soil (Liu et al., 2018b).

The evaluation of somewhat variable biofunctionalized approach including polyvinylpyrrolidone (PVP)-
coated iron oxide NPs intermingled with Halomonas sp. isolated from the oil-contaminated soil, has been
reported (Alabresm et al., 2018). Selenium NPs were found efficient in NBR of mercury polluted soil; those
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NPs were formed by the occurrence of Citrobacter freudii (Wang et al., 2017c). The alteration of elemental
form of (HgO0) to the insoluble form mercuric seleniide (HgSe) with biogenic selenium NPs evaluated under
aerobic as well as anaerobic conditions accounted for a bioremediation value 39.1-48.6% and 45.8-57.1%,
respectively. The nickel compound was removed in the effluent by introducing Microbacterium sp. resulting
in the production and recovery of nickel oxide NPs (Sathyavathi et al., 2014). In another study, the potential
of Hypocrea lixii was discovered to reduce noxious metals, specifically nickel, in contaminants and devising
the nickel oxide NPs biosynthesis from the waste for further applications (Salvadori et al., 2015).

Recently, it was demonstrated that the silver (Ag) NPs synthesized through greener way assisted by Bacillus
cereus was supported with alumina, found efficient in NBR of pharmaceutical effluents restraining heavy
metals, mostly chromium (Cr) and lead (Pb) (Kumari and Tripathi, 2020). The bacterial cell-mediated nano-
adsorbent method certified to remove about 98.13% (Cr) and 98.76% (Pb) that were discharged from
pharmaceutical industries as waste effluents. The possibility of nanobioremediation of cadmium (Cd) and
lead (Pb) in the soil by the mutual exploitation of Escherichia coli along with metal NPs towards the
elimination of these heavy metals (Zhu et al.,, 2020).

Pharmaceutical ingredients

The recurrent emancipation of pharmaceutical ingredients (antiseptics and antibiotics) in wastewater is
considered a serious concern. These mainly originate from domestic and industrial effluents, which have
polluted not only the environment but also enhanced the appearance of antibiotic-resistant microbes in
wastewater (Adesoji et al, 2020). Nevertheless, the prospect of eliminating these pharmaceutical
ingredients by the NBR strategy was evaluated as per the many research studies. The biosynthesis of both
Au and Ag NPs using Turbinaria conoides, an alga which was found useful as an antimicrofouling agent
(Vijayan et al, 2014). Hydrogen peroxide, a common pharmaceutical ingredient, yet a pollutant of the
environment, was proficiently removed from waste effluents from industries by the electrocatalytic
reduction of the compound aided with Pd NPs synthesized Sargassum bovinum (Momeni and Nabipour,
2015).

Micro-accumulation of triclosan, which has been found to be linked with cancer, has frequently been used as
an antibacterial and antiseptic agent. Nevertheless, the significance of fungi (Trametes versicolor) as an
essential biofunctionalized agent for bimetallic (Pd/Fe) NPs to remove triclosan in liquid effluents was
established (Bokare et al., 2010). In this work, T. versicolor was observed to secrete laccase enzyme that was
found to play a vital role in the two-step redox strategy, which involved the anaerobic dechlorination as well
as sequential oxidation of 2-phenoxy phenol. Similarly, (Adikesavan and Nilanjana, 2016) described the
magnesium oxide (Mg0) NPs biofunctionalization by yeast (Candida sp.). The myco-nano approach was
found to have hastened the process of Cefdinir degradation and treatment in an aqueous environment. A
group of bacteria conquered by Bacillus and Pseudomonas spp. accountable for the biosynthesis of
manganese oxide (MnO) NPs was found to efficiently eradicate 1,2,4-triazole from wastewater (Wu et al.,
2017). This study established the prospective of biogenic manganese oxide NPs to remove a variety of
recalcitrant pollutants from bio-treated chemical industrial wastewater.

The efficiency of Pt and Pd NPs biosynthesized from Desulfovibrio vulgaris to remove effluents containing
pharmaceutical compounds was reported. The numerous chemical compounds contribute greatly to the
pharmaceutical industry. Likewise, 1,2,4-triazole used in different clinical applications because of a large
number of compounds of the ring system. Besides, 1,2,4-triazole is also applied in the production of
pesticides that often contributes to groundwater pollution during leaching (Martins et al., 2017). Similarly,
picric acid (2,4,6-trinitrophenol (TNP), is a valuable constituent in the production of antiseptic, posturing
hazard to the environment as a pollutant in an aqueous solution. The study established the progressive
application of Pseudomonas aeruginosa mediated Fes04 NPs as a portion of multiwalled carbon nanotubes
(MWCNT) to produce nanocomposite moderately employed for NBR of picric acid (Yousefi et al., 2020).

Dyes in textile

Dyes have been widely recognized as an essential component in a multitude of sectors, including cosmetics
and textiles. Nevertheless, it is disposed-off mainly as liquid waste matter into the surroundings, which is
poisonous to living beings (Asaduzzaman et al, 2016). A study ascertained the coalesce effect of
biofunctionalized Ag NPs by Chromobacterium violaceum as a biosorption strategy to remediate washing
water employed to process cotton fabrics (Duran et al., 2010; Duran et al., 2017). This process demonstrated
the successful removal of organic compounds as well as dyes used in the production of fabrics. This
treatment further illustrated its effectiveness for eliminating used Ag NPs and the revival of bacteria, posing
lesser harm to the environment. The application of Ag NPs synthesized from Bacillus pumilis have been used
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to remediate the Congo red dye from wastewater, which was applied on cotton fabrics (Modi et al., 2015).
The goal was to develop and implement an efficient method for removing Congo red dye because it is less
resistant to light and washing. The highest revival of Ag NPs leached in the effluents to evade harm to the
environment.

In another study, it was observed that Ag NPs competently decolorize the organic dyes during the catalytic
activity and confirmed that NPs might be employed as catalysts in industries to degrade organic dyes with
higher competence (Sharma et al., 2015). It has been reported that Ag and Au NPs demonstrated good
catalytic activity in the removal of organic dyes. These NPs reduced the time requisite for eliminating dye
while also competently improved the rate of reaction (Suvith and Philip, 2014). The Au NPs could also be
employed as adsorbents for organic dyes. As Au NPs, comprising surface proteins produced from fungus
Cladosporium oxysporum AJP03, efficiently enhanced the rhodamine-B organic dye adsorption (Bhargava et
al,, 2016). The roles of different NPs and nanocomposites such as TiO, NPs, FeNPs, magnetic NPs, bimetallic
NPs, nanotubes, nanoclays, and nanosponges in the NBR of soil are also revealed (Koul and Taak, 2018). The
authors accentuated that the synthesis of NPs by green methods might be an efficient approach for treating
water and soil pollution. The efficient catalysis of Congo red dye by Ag NPs synthesized from green alga
Caulerpa serrulate was reported (Aboelfetoh et al., 2017).

Even though methyl orange dye is infrequently employed in textile because of its susceptibility to acids, they
still find expediency as a dye for wool fabrics, a type of contaminant in wastewater. Mechanism of NBR
evaluated the consortium of Cellulosimicrobium sp., Micrococcus lylae, and Micrococcus aloeverae to produce
TiO2 NPs (Fulekar et al., 2018). The active degradation of methyl orange dye was achieved in a reactor by the
influence of UV light. These rhizospheric root-associated microorganisms demonstrated the opportunity and
efficiency of normal sources for the biosynthesis of NPs and around ~99 % of methyl orange dye
photocatalytic degradation, a signal for the significance of photocatalytic process for a safe environmental
and passable nanobioremediation system. A comparable discovery was recognized for algae Hypnea
musciformis [wulfen] ].V Lamouroux-mediated synthesis of Ag NPs and their dynamic efficacy in humiliating
methyl orange dye solution under visible light (Ganapathy Selvam and Sivakumar, 2015). An effort on the
Azo dyes bio-reduction, which are imperative synthetic colorants are generally used in textile, paper
manufacturing, printing, etc. was conceded out by Pd NPs fabricated from Klebsiella oxytoca (Wang et al.,
2018). The synthetic organic colorants were effectively bio-reduced with recovery from the effluent liquids.
The biosynthesized polysulfone nanofibrous web and Chlamydomonas reinhardtii were originated a
synergistic effect that removes reactive dyes from wastewater (San Keskin et al., 2015).

The Ag NPs synthesized from microalgae Caulerpa racemosa and Chlorella pyrenoidosa were reported for the
photo-catalytic degradation of methylene blue and the treatment of liquid effluent containing hazardous dye
produced significant results i.e., dropping the level of the contaminants under controlled experimental
conditions (Aziz et al,, 2015; Edison et al.,, 2016). In recent work, the descriptive information on various
approaches for the NPs synthesis using microbial cells; their applications in agriculture, bioremediation,
diagnostics, and medicine; and their prospects are provided (Koul etal,, 2021).

Other toxic chemicals

Besides these major groups of pollutants, there are found some other toxic chemicals in the environment.
The biogenic synthesis of manganese oxide NPs by Pseudomonas putida documented the bacteria potential
for sufficient removal of organic micropollutants (Furgal et al., 2015). Bisphenol A (BPA), generally known as
an essential chemical substance exploited in the industries for developing resins and plastics, requisite for
storage of food and beverages, has become an aggravation to the ecology. The elimination of bisphenol A by
a route focused on applying MnO NPs biosynthesized from algae (Desmodesmus sp.) (Wang et al., 2017b).
Commercially produced nitro compounds for solvents or chemical intermediates create a relatively
extensive volume in effluents from industries (Torimiro et al., 2021).

The application of Chlorella vulgaris on nitrate removal from liquid effluents, in which algae played a dual
role in biogenic production of Pd NPs and its immobilization on nanofibre mats prepared by an electrospun
method that improves the catalytic activity of the complex to remove nitrate from liquid effluents was
demonstrated (Eroglu et al., 2013). NBR mechanism evaluated in Sargassum tenerrimum and Tubinaria
conoides for the biological production of Au NPs applied to reduce the nitro compounds in wastewater
(Ramakrishna et al,, 2016).
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Environmental concerns and future perspective

Environmental contamination is a serious issue that humanity is currently struggling with (Litvinov et al,,
2017; Sushkova et al,, 2017; Rajput et al,, 2017b,2018). Numbers of techniques are being used and some
others are under trial for the remediation of contaminants of the environment (Song et al., 2019; Baig et al.,,
2021; Kumar et al,, 2021; Kumari et al., 2021; Paterlini et al., 2021). There are several examples which are
come under the category of contaminants, such as pesticides, herbicides, sewage and organic compounds,
toxic gases, fertilizers, trace metals etc. (Vaseashta et al., 2007; Khan and Pathak, 2020). Therefore, to deal
with these challenges, the engagement of NPs in the expansion of emerging green remediation technologies
has been the subject of recent investigations (Tratnyek and Johnson, 2006). NBR is a unique technology
employed in transforming the adverse effects of pollutants into safer molecules through NPs.

l Foliar spraying of NPs and adsorption
I Soil spraying and deposition
I Interaction of NPs with rhizosphere microbes

Consequences of NPs’ exposure to

microbes and plants B Uptake, translocation, and impacts of NPs on
cellular components
I lAcceleration in ROS generation in plant cell
l ROS mediated peroxidation of lipid bilayer

N ¥ l Mitochondrial dysfunction and disturbed electron

e Mg transport chain that causes ATP depletion
I Plants I Reduction in gas exchange that reduce
photosynthesis
I DNA damages and altered gene expression
. Inactivation of enzymes or proteins

Microbes

# Nanoparticles

11 and 12 Deposition and adsorption of NPs

13 Concentration of NPs disturb normal soil activities that may
impact soil respiration and symbiotic association X
14 Modulation in nutrient cycling

15 Accumulation and contamination of groundwater with NPs

Figure 2. The exposure of NPs and associated impacts on microbes and plants

—

However, nanotechnology has gained very much importance in recent years because of its extraordinary
properties. It has been accounted to play a major function in tackling diverse efficient and inventive
resolutions to several ecological confront (Yan et al.,, 2013; Reddy et al., 2014). But pioneering thoughts for
progress are similar a twice impacts. Every unique approach has been connected to pros and cons. It
depends on researchers how they tackle and apply the new approach. In the turf of NBR, the negative
aspects related to NPs are very significant and crucial which cannot be disregarded (Jiang et al., 2018; Rajput
etal,, 2021b).

Besides their positive effects, some negative aspects of NPs are also being seen in the environment. It is
documented that NPs do not supply any profit in the situation of bioaugmentation, since they stop the
microbial inhabitants in contaminated surroundings (Nzila et al., 2016; Amoatey and Baawain, 2019). The
appliance of NPs for ecological action intentionally injects NPs into the soil or water body. This has finally
involved rising anxiety from all stakeholders. The compensation of NPs such as their minute size, elevated
activity, and immense capacity, could develop into a possible deadly feature by inducing unfavorable cellular
toxic and damaging properties, abnormal in small-sized counterparts (Figure 2).

In stiff water and seawater, NPs tend to aggregate and are greatly influenced by the type of natural material
or other natural colloids present in freshwater. The situation of dispersal will change the ecotoxicity, but
several abiotic factors that influence this, such as pH, salinity, and the attendance of organic matters stay to
be methodically investigated (Handy et al., 2008). It was demonstrated that the hindering effect of the nZVI
in soils happens when the NPs begin to be putting on the facade of the soil particles, accumulating in such a
method that they attract additional constituent parts in suspension, jamming the way of fluids (Reddy et al.,
2014). Since the strainer result occurs as the concluding phase of deposition, which ends up providing a
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“clogging” of the soil hole, not allowing for the channel of the element. It has been confirmed that carbon
nanotubes (CNT) abridged the biodegradation pace by hindering bacterial expansion and microbial action
(Zhang et al,, 2015).

Nanosorbent have a significant impact in explaining ecological subjects like the filtration of water that
established immense interests because of their unique physicochemical properties. However, the use of
nanosorbent material in water bodies can also have certain negative consequences (Yaqoob et al., 2020).
Major drawbacks are the probable negativity of the remaining NPs in the water and their large size which
causes that few probable functioning is not used (Zhu et al., 2019). The exercise of silver NPs in many
products direct them to their discharge to the water body and befall a source of suspended silver and thus
produce negative impacts on marine organisms (Navarro et al., 2008).

Several microbes are present in the water body; therefore, it is a very natural process for NPs to encounter
microbes after they are released into the water body. When nZVI is in straight connection with bacterial
cells, it results in oxidative stress and membrane demolition (Figure 2). The current study represents the
thrashing of intracellular components and the disturbance of communication between the outside and inside
environment of the bacteria (Lv etal., 2017).

Carbon nanotubes change the oxidation nature of enzymes in water molecules, which causes adverse
impacts on microbes (Chen et al., 2016). Graphene oxide enhances the active oxygen application, but it does
not harm cells. However, a higher concentration of silver NPs are used, the enzymatic action was retarded,
but the genes for resistance were augmented (Li et al., 2019; Kolesnikov et al., 2021). The application of
silver NPs and zinc oxide NPs on the activity of bacterial is reported to depend on the dimension of particles,
and the microorganism concentration (Mboyi et al, 2017). Treatment of zinc oxide NPs to anaerobic
fermentation, zinc ions are engrossed in the mud, however, bacterial quantity, cell activity, enzymatic
activity, and zinc ion concentration significantly decreased (Figure 2).

Generally, the negative impacts of NPs on microbial activity largely engage membrane devastation and
oxidative stress (Rajput et al.,, 2017a; Chen et al,, 2019). Conclusively, microorganisms and planktons are
highly vulnerable to the toxicity of NPs. Furthermore, these water-loving organisms are pretentious by the
adverse effects of NPs, and occasionally it is quite hard to recover due to those NPs not simply root of cell
injury, but also harm genes and influence reproduction.

Challenges associated with nanobioremediation

e Nanophytoremediation studies are yet to be adopted widely and need to explore rigorously.

e Most studies using nanophytoremediation approaches are microcosm therefore in-situ and realistic
studies in future research could bring a new direction in this scope

e Time series and long-term research using NPs are also necessary, that can enable us to observe the
actual effects of NPs in phytoremediation progression and also their effect on soil characteristics,
microbiome, and nutrients

e NPs may get aggregate, dissolved, undergo dissociation in different soil pH, or it can also undergo
photodegradation. These processes certainly affect their mobility. Application of doping, composite, or
polymeric structure for nanophytoremediation must be explored in this regard.

e Assessment of effects and safety of NPs application in agriculture or polluted soil should be mandatory.
Sustainable nanophytoremediation largely relies on climatological conditions hence our exploration
should also include the identification of a naturally stable NPs

Conclusion

The advent in nanobiotechnology as a research field brings up possibilities for developing nanoremediation
methods for the restoration of contaminated soils. Several investigations' experimental findings revealed the
potential of nanobioremediation for the removal of various inorganic and organic pollutants from terrestrial
ecosystems. Also, these techniques could be applied to decontaminating air, or water, in cost-effective ways;
however, significant environmental concern regarding the application of NPs should be in the regulatory
framework, and eco-friendly. Thus, the understanding of NPs interaction with plants, microbes, pollutants,
and human health is of utmost importance as these effects might be negative or positive. Thus,
nanobioremediation will undoubtedly be a promising tool for achieving environmental sustainability once
these research gaps regarding its environmental concerns will have been revealed.
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