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Abstract 

 

Joule-Thomson liquefiers are the commonest machines to liquefy gases. Over the years, countless number of articles 

have been published on the subject. Dozens of 1st and 2nd law analyses were carried out on Joule-Thomson liquefaction 

cycles. And yet an aspect of purely theoretical interest seems to have passed unnoticed, namely: for a given volume 

of gas, what conditions should be fulfilled to achieve maximum liquefaction without considering engineering details 

of design equipment and the highly irreversible character of work-consuming devices, heat exchangers, heat leaks and 

the throttling process. This work addressed this issue by applying the 1st law analysis and elementary calculus 

prescriptions to a simple Linde-Hampson liquefying process. The same approach could be applied to other liquefying 

cycles. As is well-known, for a given mass flow rate of a gas, maximum fraction liquefied occurs when the pre-cooling 

temperature, 𝑇𝑖  , and initial pressure, 𝑃𝑖  , lie on the inversion curve. It has been proved that this is only true if an 

additional condition is fulfilled. Expressions for it were derived for the van der Waals, RKS and PR equations of state. 
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1.Introduction 

Commercial liquefaction of gases is a century-old 

technology. The pioneering work of Carl von Linde in 

Germany, William Hampson in England and Georges 

Claude in France opened a new branch of science and 

technology: cryogenics [1]. From biological research, where 

liquid nitrogen is used to freeze blood cells, tissues, and 

similar, to space flight, where liquid oxygen is used in 

combination with liquid hydrogen to propel rockets, 

liquefied gases have found a variety of applications in 

modern industrial societies [2].   

In throttling processes, fluids flow through a restriction 

which can be an orifice, a valve or a porous plug. They 

undergo, in general, an increase or a decrease in temperature. 

The Joule-Thomson (or Kelvin) coefficient is a measure of 

the change in temperature which results from a drop in 

pressure across the constriction. And is defined by 

  

𝜇 =  (
𝜕𝑇

𝜕𝑃
)

ℎ
                                      (1)                                                                                          

      

A throttling process does not necessarily  entail cooling 

or heating. An isenthalpic expansion of  ideal gases results in 

no temperature change. From this point of view, the Joule-

Thomson coefficient can be seen as a measure of departure 

from ideal-gas behaviour.  

Joule-Thomson coefficients may be positive, zero (as in 

the case of ideal gases) or negative. Fig. 1 below illustrates,  

𝜇 , for different gases as a function of the temperature. 

For most real gases, the Joule-Thomson coefficient gives 

rise to a decrease of temperature within only a certain domain 

of temperature and pressure. At room temperatures (see Fig. 

1), the coefficient is positive for nearly all gases. Thus, if a 

gas undergoes an isothermal compression, and is allowed to 

expand to low pressures, part of it will be liquefied. The 

higher the pressure or lower the temperature, the higher the 

non-ideality is to produce enough cooling to liquefy the gas 

[4].  

 

 
Figure 1. Joule-Thomson coefficients as a function of the 

temperature for different gases [3]. 

 

Most liquefaction cycles use the Joule-Thomson effect to 

attain a certain level of non-ideality in the cryogenic gas. In 

the Linde-Hampson liquefier, a nozzle is used to produce the 

Joule-Thomson effect to cool the gas to become a liquid. The 

incoming gas is compressed in a multistage compressor to 

high pressure before delivery to the cooler, which is a 

recuperative heat exchanger. This counter-flow heat 

exchanger cools down the incoming gas to a temperature 

below the inversion temperature by exchanging heat with 

chilled water available. The cold gas is constantly recycled 

to cool more incoming compressed gas. Because of the 

cumulative cooling effect, the gas gradually becomes cold 

enough until liquefaction occurs after expansion at the 

http://en.wikipedia.org/wiki/Liquid_hydrogen
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throttle. In the Claude liquefier, part of the gas from the 

multistage compressor goes to the expander where it does 

work. The expansion engine operates adiabatically to lower 

the temperature of part of the high pressure gas. The work of 

the expander partially compensates for the work of 

compression and reduces the requirement for very high 

pressures in the liquifier. The gas cooled down in the process 

is used to cool the incoming compressed gas in the cooler. 

As in the Linde liquefier, the continuing flow of gas will 

decrease the temperature at a point where part of the gas will 

be liquefied by the Joule-Thomson effect. For gases with a 

negative Joule-Thomson coefficient, near-standard 

conditions (hydrogen, helium, neon), the Claude should be 

replaced by the Collins liquefier ─ an extension of the 

Claude liquefaction process with a sophisticated mechanical 

design of reciprocating expanders and heat exchangers. This 

is because the cooling duty required is the highest among 

cryogens for the removal of the sensible heat. The incoming 

gas from the compressor is cooled by liquid nitrogen in the 

cooler. For a detailed exposition of all cryogenic liquefaction 

processes and liquefiers, the interested reader should consult 

Mukhopadhyay [5].  

The performance of liquefiers can be assessed by means 

of the concept of the figure of merit (FOM). A very good 

description of FOM and the thermodynamics associated with 

cryogenic plants may be found in references [6,7]. FOM is 

defined by the ratio of the ideal work, −𝑊𝑖 for a 

thermodynamically ideal liquefaction process to the actual 

work required to liquify the cryogenic gas, −𝑊𝑙 . Thus, 

 

  𝐹𝑂𝑀 =
−𝑊𝑖

−𝑊𝑙
                                                                        (2)                                                                  

 

Table.1 illustrates the performance of a simple Linde-

Hampson liquefier for different gases.  

 

Table 1. Work of liquefaction and FOM of a simple Linde-

Hampson process* for different cryogens(reproduced under 

permission from Mukhopadhyay [4]) *P1= 1 atm, P2= 200 

atm, T1 = T2 = 300 K, 100% efficiency of isothermal 

compressor and 100% effectiveness of the main heat 

exchanger with no temperature difference between the 

incoming and outgoing streams at the inlet. 

Cryogen Normal 

boiling 

point 

(K) 

% 

Liquefied 

Work of 

liquefaction 

           

(kJ/kg) 

FOM 

N2 77.4 7.08 6673 0.115 

Air 78.8 8.08 5621 0.131 

Ar 87.3 11.83 2750 0.174 

O2 90.2 10.65 3804 0.167 

CH4 111.7 19.77 3957 0.276 

C2H6 184.5 52.57 611 0.588 

 

Like all cyclic machines, liquefiers depend on 

components performance to maximise the liquid yield. The 

highly irreversible character of work-consuming devices, 

heat exchangers, heat leaks and the throttling process do 

reduce the fraction liquefied. In a very interesting study, B.-

Z. Maytal [8] showed that for any real Linde–Hampson 

machine of finite size, the recuperator can be optimized to 

reach extreme rates of performance. For a similar group of 

liquefiers an optimal flow rate was found to maximize the 

rate of production of liquid cryogen. A study by M. Kanoglu 

et al [9] based on 1st and 2nd law analyses of a simple Linde–

Hampson cycle established the minimum work requirement, 

applicable to any cryogen to enhance the performance of the 

liquefier. More recently, C. Yilmaz et al. [10] carried out a 

comprehensive thermodynamic analysis of the simple Linde-

Hampson, precooled Linde-Hampson, Claude, and Kapitza 

cycles. They were model in the computer environment and 

analyzed with Engineering Equation Solver (EES) software 

program. The authors concluded that the Claude cycle 

delivers the largest liquid yield while the Kapitza cycle, the 

best exergy efficiency. Nontheless, they pondered that 

despite their low efficiencies, the simple Linde-Hampson 

and precooled Linde-Hampson cycles offer the simplicity of 

their setup. 

To the best of the authors’ knowledge, the only work 

found in the literature related to this was published by A. T. 

A. M. de Waele [11].  The author carried out a 1st law 

analysis of a simple Linde-Hampson machine and obtained, 

as expected, the expression for the liquefied fraction exactly 

the same as ours. However, de Waele did not investigate the 

(thermodynamic) pre-requisites for it to achieve maximum 

liquefaction.   

This work aims to discuss a question raised by Zemansky 

and Dittman [12] on the optimal theoretical conditions to 

liquefy common gases.   

 

2. Thermodynamic Model 

Consider the steady-state liquefying system shown 

pictorially in Fig. 2 and corresponding T-s diagram . 

For simplicity, engineering details of the system 

components are omitted. The objective is to determine the 

maximum fraction liquefied from first principals. Zemansky 

and Dittman’s analysis captures enough of the physics of 

liquefaction by identifying the states visited by the stream of 

gas. This paper followed Zemansky and Dittman’s reasoning 

and kept their notation.   

At steady state, liquid is formed at a constant rate: a 

certain mass flow rate fraction, 𝒚,  is liquefied and stored in 

a vessel for later use, and 1— 𝒚 of mass flow rate fraction of 

low-pressure gas pre-cools the incoming high-pressure gas 

in a counter-flow heat exchanger. A fresh stream of makeup 

gas at room temperature joins the low-pressure stream of gas 

before entering the compressor to replenish the cycle. 

Considering there are no pressure drops, no heat leaks, no 

temperature of approach at the warm end of the heat 

exchanger, a simple first law analysis yields 

 

ℎ𝑖 = 𝒚 ℎ𝐿 + (1 − 𝒚)ℎ𝑓.                                                       (3)                                                                                                                       

      

This shows the enthalpy of the incoming gas equals the 

enthalpy of  𝒚  units of mass flow rate in liquid form plus the 

enthalpy of 1— 𝒚  units of mass flow rate of the outgoing 

gas. Or: 

 

 𝒚 =  
ℎ𝑓−ℎ𝑖

ℎ𝑓−ℎ𝐿
                                                                   (4)                                                                                    

 

Where:  

𝒉𝒊 is the enthalpy of the incoming gas at (𝑇𝑖 , 𝑃𝑖  ) 

𝒉𝑳 is the enthalpy of the fraction liquefied at (𝑇𝐿 , 𝑃𝐿 )  

𝒉𝒇 is the enthalpy of the outgoing gas at (𝑇𝑓 , 𝑃𝑓  ) 

if the heat exchanger and throttling valve are thermally 

insulated (schematically shown by the dotted lines in the 

figure). 
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Figure 2. Pictorial view of a simple Linde-Hampson liquefier 

(inspired on a figure of the book of Zemansky and Dittman 

[12]) and correspondingT-s diagram drawn by Mrs. Isabel 

Menezes. 

 

The enthalpy of the incoming gas,  𝒉𝒊 , is a function of 

pressure that may be chosen at will (the optimum pressure to 

start throttling corresponds to a point on the inversion curve) 

at a fixed  𝑇𝑖  ; 𝒉𝑳 , the enthalpy of the fraction liquefied at 

the entry of the storage vessel, is independent of both 

pressure and temperature, and therefore, constant. 𝒉𝒇 ,the 

enthalpy of the outgoing gas, despite the pressure drop in the 

return pipe, remains nearly constant. Therefore, the fraction 

liquefied, 𝒚 , is a function of, 𝒉𝒊 , only. For maximum 

liquefaction (highest possible value of  𝒚 ), 𝒉𝒊 ought to be a 

minimum, i.e.:  

(
𝜕ℎ𝑖

𝜕𝑃
)

𝑇=𝑇𝑖

=  − (
𝜕ℎ𝑖

𝜕𝑇
)

𝑃
(

𝜕𝑇

𝜕𝑃
)

ℎ𝑖

=  − 𝑐𝑝𝜇 = 0                    (5)                                                                                                                       

 

Zemansky and Dittman posited on page 284 of their book 

that  𝒚 to be a maximum, 𝜇 = 0   at    𝑇 =  𝑇𝑖  since 𝑐𝑝 cannot 

be zero except at the absolute zero. But they did not carry 

their analysis any further and promptly concluded that “…the 

point (𝑇𝑖 , 𝑃𝑖) must lie on the inversion curve in order to 

maximize the fraction 𝒚 of the liquid ”. 

Elementary calculus shows that after establishing the 

critical points of a function by setting  𝑓′(𝑥) = 0,  we need 

to calculate the second order derivative to determine whether 

such points are a local maximum or a local minimum. If the 

function 𝑓(𝑥)  is twice differentiable at a critical point,  𝑥, 

then:  

if 𝑓′′(𝑥) < 0 then  𝑓(𝑥) has a local maximum at  𝑥 . 

if 𝑓′′(𝑥) = 0 then the test is inconclusive. 

if 𝑓′′(𝑥) > 0 then  𝑓(𝑥) has a local minimum at  𝑥 . 

In brief, the sign of the second order derivative should be 

studied, (
𝜕2ℎ𝑖

𝜕𝑃2 )
𝑇
 , in order to decide whether the point (𝑇𝑖 , 𝑃𝑖) 

lies on the inversion curve. 

 

2.1 The Joule-Thomson Inversion Curve 

The locus of all points at which the Joule-Thomson 

coefficient, 𝜇 , is zero is called the inversion curve, shown 

schematically in red in Fig.3 (a P-T diagram in reduced 

coordinates,  𝑇𝑟 = 𝑇
𝑇𝑐

⁄  and  𝑃𝑟 = 𝑃
𝑃𝑐

⁄ ). The locus is a 

collection of points of maximum values of curves of equal 

enthalpy. The inversion curve joins together points at which 

the slope (
𝜕𝑇

𝜕𝑃
)

𝐻
changes from positive to negative according 

to elementary calculus prescriptions (
𝜕𝑇

𝜕𝑃
)

ℎ
= 0  and 

(
𝜕2𝑇

𝜕𝑃2)
ℎ

< 0. The inversion curve, which is parabolic in 

shape, is a boundary between two regions: the region of 

cooling where 𝜇 > 0, and the region of heating where  𝜇 <
0. The upper part cuts the T-axis at the maximum inversion 

temperature while the lower part ends, abruptly, at the 

vapour pressure curve (Fig.3) [13-14]. An isobar drawn on 

the diagram intersects several isenthalps (shown in black) at 

a number of points at which  𝜇 is calculated by measuring the 

slope.  

 
Figure 3.  Joule-Thomson inversion curve drawn by one of 

the authors. 
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To draw the inversion curve, experimental points for 

which 𝜇 = 0 are required.  Since volumetric data of 

sufficient accuracy for gases are rare at highly reduced 

temperatures, the upper part is either determined by a least-

square fit or by an equation of state (EoS) [13].  

Over the years, several authors have calculated the Joule-

Thomson inversion curve by making use of equations of 

state, [13-22]. The calculation of the Joule-Thomson 

inversion curve for each new EoS provides a severe test for 

its predictive capability. A better agreement with 

experimental inversion curves of different substances is a 

clear indication of its superiority.   

Written in reduced coordinates, the predictive inversion 

curve (for an equation of state) is given by,    

    

𝑇𝑟 (
𝜕𝑃𝑟

𝜕𝑇𝑟
)

𝑉𝑟

+  𝑉𝑟 (
𝜕𝑃𝑟

𝜕𝑉𝑟
)

𝑇𝑟

= 0.                                                 (6)                                     

 

A plot of an inversion curve on a P-T plane in reduced 

temperature and pressure should yield a curve that is valid 

for all gases. This behaviour can only be justified by evoking 

the theorem of corresponding states: chemical compounds at 

equal reduced pressures and temperatures have equal 

reduced volumes. Strictly speaking, the theorem of 

corresponding states is only valid for the so-called simple 

fluids; those whose force field has a high degree of 

symmetry. Fortunately, most liquefied gases (Ar, CH4 , N2, 

O2,  C2H4  etc.) fall into this category. Next, the derivatives 

(
𝜕𝑃𝑟

𝜕𝑇𝑟
)

𝑉𝑟

and   (
𝜕𝑃𝑟

𝜕𝑉𝑟
)

𝑇𝑟

 can be determined from an arbitrarily 

chosen equation of state. A judicious choice depends, to a 

large extent, on which class of fluids the equation of state 

was designed for. Van der Waals equation of state (vdW 

EoS), despite its severe limitations, offers a useful picture of 

the thermodynamic properties for simple fluids. And unlike 

modern cubic equations of state, it is far more superior (e.g. 

Redlich-Kwong-Soave (RKS) EoS [23], Peng-Robinson 

(PR) EoS [24 ] and RK-PR EoS [25]), vdW EoS 

 

𝑃 =
𝑅𝑇

𝑉−𝑏
−

𝑎

𝑉2                                                                          (7)                                                                                                                                                                                 

 
obeys the theorem of corresponding states. Written in 

reduced form, 

 

(𝑃𝑟 +
3

𝑉𝑟
2) (3𝑉𝑟 − 1) = 8𝑇𝑟  ,                                                 (8)                                                

 

van der Waals equation applies in principle to any substance, 

but can only provide actual properties when critical 

properties are known. 

Inserting the derivatives (
𝜕𝑃𝑟

𝜕𝑇𝑟
)

𝑉𝑟

and  (
𝜕𝑃𝑟

𝜕𝑉𝑟
)

𝑇𝑟

 of (8) in (6) 

yields, 

    

−
𝑇𝑟

(3𝑉𝑟−1)2 + 
3

4

1

𝑉𝑟
2 = 0.                                                       (9)                                                                                

 

A rather involved algebraic manipulation to eliminate 𝑉𝑟  

between (6) and (7) results in the well-known van der Waals 

inversion curve,  

 

𝑇𝑟 =   3 [1 ±
√9−𝑃𝑟

6
  ]

2

                                                     (10) 

 

which is illustrated in Fig. 4. 

 
Figure 4. Van der Waals inversion curve and experimental 

data for three commercial gases (data collected from [26]) 

drawn by one the authors . 

. 

When  (
𝜕𝑇

𝜕𝑃
)

ℎ
= 0  and (

𝜕2𝑇

𝜕𝑃2)
ℎ

< 0 are applied to vdW 

EoS, yields,  

 

𝑇𝑖𝑛𝑣 =
2𝑎

𝑅𝑏
 

(𝑣−𝑏)2

𝑣2 ≅  
2𝑎

𝑅𝑏
                                                     (11)                                                                                        

 

the maximum inversion temperature,  𝑇𝑖𝑛𝑣  , i. e. the highest 

temperature for which 𝜇 =  (
𝜕𝑇

𝜕𝑃
)

ℎ
  is positive so that a 

reduction in pressure results in a decrease in temperature. 

Table 2 shows maximum inversion temperature values, 

boiling points (for comparison) and critical points for 

common gases.  

 

Table 2. Maximum inversion temperatures, boiling points 

and critical points for common gases (data collected from 

[27]). 

cryogen maximum 

inversion 

temperature,  

𝑇𝑖𝑛𝑣  (K) 

Critical 

temperature 

(K) 

Normal 

boiling 

point (K) 

He 51 5.2 4.2 

H2 205 33.2 20.4 

Ne 250 44.4 K 27.07 

N2 621 126 77.4 

O2 893 154 90.2 

Ar 794 150.7 87.3 

CH4 939 190.7 111.7 

 

3. Results and Discussion   

To achieve maximum liquefaction, 𝒉𝒊 ought to be a 

minimum, i.e.:  

 

(
𝜕ℎ𝑖

𝜕𝑃
)

𝑇=𝑇𝑖

= 0     and     (
𝜕2ℎ𝑖

𝜕𝑃2 )
𝑇=𝑇𝑖

> 0                          (12) 

 

Or: 

 

 (
𝜕(−𝑐𝑝𝜇)

𝜕𝑃2 )
𝑇=𝑇𝑖

> 0   since   (
𝜕ℎ𝑖

𝜕𝑃
)

𝑇=𝑇𝑖

=  − 𝑐𝑝𝜇                   

but  𝜇 =  
1

𝑐𝑃
[𝑇 (

𝜕𝑣

𝜕𝑇
)

𝑃
− 𝑣] or −𝑐𝑝𝜇 =  [𝑣 −  𝑇 (

𝜕𝑣

𝜕𝑇
)

𝑃
]   (13) 
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thus: 

 

 (
𝜕(−𝑐𝑝𝜇)

𝜕𝑃2 )
𝑇=𝑇𝑖

=  {(
𝜕𝑣

𝜕𝑃
)

𝑇
−  (

𝜕𝑇

𝜕𝑃
)

𝑣
(

𝜕𝑣

𝜕𝑇
)

𝑃
−

 𝑇 (
𝜕2𝑣

𝜕𝑃𝜕𝑇
)

𝑇,𝑃
}

𝑇=𝑇𝑖

                                                             (14)                             

 

and by making use of the cyclic relation: 

  

(
𝜕𝑇

𝜕𝑃
)

𝑣
(

𝜕𝑃

𝜕𝑣
)

𝑇
(

𝜕𝑣

𝜕𝑇
)

𝑃
= −1 

 

Eq. (14) becomes:  

  

(
𝜕(−𝑐𝑝𝜇)

𝜕𝑃2 )
𝑇=𝑇𝑖

=  {2 (
𝜕𝑣

𝜕𝑃
)

𝑇
−  𝑇 (

𝜕2𝑣

𝜕𝑃𝜕𝑇
)

𝑇,𝑃
}

𝑇=𝑇𝑖

              (15) 

 

Given the pressure-explicit vdW EoS:   

 

𝑝 =
𝑅𝑇

(𝑣−𝑏)
−  

𝑎

𝑣2                                                                 (16)                                                                                  

 

one can easily determine (
𝜕𝑣

𝜕𝑃
)

𝑇
 and 𝑇 (

𝜕2𝑣

𝜕𝑇𝜕𝑃
)

𝑃,𝑇
 .These are 

as follows: 

 

 (
𝜕𝑣

𝜕𝑃
)

𝑇
= [

2𝑎

𝑣3 −
𝑅𝑇

(𝑣−𝑏)2]
−1

     

 

 𝑇 (
𝜕2𝑣

𝜕𝑃𝜕𝑇
)

𝑇,𝑃
=

𝑅𝑇

(𝑣−𝑏)2  [
2𝑎

𝑣3 −
𝑅𝑇

(𝑣−𝑏)2]
−2

    

 

And the expression for the second order derivative of the 

enthalpy with respect to pressure at constant temperature 

becomes,  

 

 (
𝜕2ℎ𝑖

𝜕𝑃2 )
𝑇

= 2 [
2𝑎

𝑣3 −
𝑅𝑇

(𝑣−𝑏)2]
−1

−  
𝑅𝑇

(𝑣−𝑏)2  [
2𝑎

𝑣3 −
𝑅𝑇

(𝑣−𝑏)2]
−2

   (17)                                                                                                                   

 

For (
𝜕2ℎ𝑖

𝜕𝑃2 )
𝑇

> 0  (17) can be re-written as:  

 
4𝑎

𝑣3 −
3𝑅𝑇

(𝑣−𝑏)2 > 0                                                                (18)                                                                                                                                      

 

And the solution of the inequality (18) becomes:               

 

𝑇𝑖 <  
4𝑎(𝑣−𝑏)2

3𝑅𝑣3  .                                                                 (19)                                                                                       

 

Written in reduced coordinates yields:     

 

𝑇𝑖𝑟 <
3

2
 
(𝑉𝑟− 

1

3
)

2

𝑉𝑟
3  .                      (20) 

      

Expressions for 𝑇𝑖   obtained from RKS EoS [23] and PR 

EoS [24] are given in the Appendix. 

 

4. Conclusions 
Joule-Thomson liquefiers are a suitable means to produce 

the liquefaction of gases. They are technically much simpler 

than the multistage cascade liquefiers. And they have two 

important advantages. Firstly, the lower the temperature, the 

larger the drop in temperature for a given pressure drop. 

Secondly, the absence of moving parts requires no 

lubrication and this is crucial when working at low 

temperatures. Their efficiency, however, depends on several 

factors (performing work-consuming devices, effective heat 

exchangers, absence of heat leaks and the efficiency of the 

throttling process) to produce the maximum fraction 

liquefied.  

By a simple 1st law analysis and elementary calculus 

prescriptions (maximum and minimum conditions imposed 

on functions of one variable) to a simple Linde-Hampson 

liquefying process, maximum fraction liquefied is obtained 

when 𝒉𝒊 is a minimum. From a theoretical point of view, this 

is achieved when the pre-cooling temperature, 𝑇𝑖  , and initial 

pressure, 𝑃𝑖  , lie on the inversion curve and 𝑇𝑖𝑟 <
9

4
 
(𝑉𝑟− 

1

3
)

2

𝑉𝑟
3 . 

As for a more accurate equation of state than of van der 

Waals’, such as RKS or PR EoS, expressions for the second 

order derivative of  𝒉𝒊 (given in the Appendix), and therefore 

𝑇𝑖 , are algebraically too complicated to draw a conclusive 

physical picture. 
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Nomenclature 

a attraction parameter in the van der Waals equation 

of state [m6 kPa/kg2] 

b effective molecular volume in the van der Waals 

equation of state [m3/kg] 

cp specific heat capacity [kJ/kg K] 

EoS equation of state 

FOM figure of merit 

ℎ𝑖 enthalpy of the incoming gas at (𝑇𝑖 , 𝑃𝑖  ) [kJ/kg] 

ℎ𝐿 enthalpy of the liquid yield at (𝑇𝐿 , 𝑃𝐿 ) [kJ/kg] 

ℎ𝑓 enthalpy of the outgoing gas at (𝑇𝑓 , 𝑃𝑓  ) [kJ/kg] 

PR Peng-Robinson cubic equation of state 

P pressure [kPa] 

R universal gas constant [kJ/kg K] 

RKS Redlich-Kwong-Soave cubic equation of state 

RK-PR Combined Redlich-Kwong-Soave and Peng-

Robinson equation of state 

T temperature [K] 

vdW van der Waals cubic equation of state 

v molar volume [m3/kg] 

y fraction of liquefied gas [dimensionless] 

Greek letters  

μ Joule-Thomson coefficient [K/Pa] 

ω acentric factor [dimensionless] 

Subscripts 

c critical value 

i incoming 

f outgoing 

L liquid  

r reduced property 
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Appendix  

For a matter of convenience, the cubic equations of state are 

written in the following form: 

 

𝑃 =
𝑅𝑇

𝑉−𝑏
−

Γ(𝑇)

Ψ(𝑉)
                                                                 (A)                                                                                                                                                                                                     

such that   Γ(𝑇) ≠ 0   and  Ψ(𝑉) ≠ 0  

 

For the van der Waals EoS: 

 

Γ(𝑇) = 𝑎    and    Ψ(𝑉) =  𝑉2 

 

For Redlich-Kwong-Soave (RKS) EoS: 

 

Γ(𝑇) = 𝑎 (1 + 𝑚(1 − 𝑇𝑟
0.5))

2
 

 

where 𝑚 = 0.480 + 1.574𝜔 − 0.176𝜔2 

 

and 𝜔 is the acentric factor. 

 

Ψ(𝑉) = 𝑉(𝑉 − 𝑏) 

 

And for Peng-Robinson (PR) EoS: 

 

Γ(𝑇) = 𝑎 (1 + 𝑚(1 − 𝑇𝑟
0.5))

2
 

 

where 𝑚 = 0.37464 + 1.54226𝜔 − 0.26992𝜔2 

 

and 𝜔 is the acentric factor. 

 

Ψ(𝑉) = 𝑉2 + 2𝑏𝑉 −  𝑏2 

 

Rewriting (A) and making use of the implicit function 

theorem, yields: 

 

𝑓(𝑃, 𝑇, 𝑉) = 𝑃 −  
𝑅𝑇

𝑉−𝑏
+  

Γ(𝑇)

Ψ(𝑉)
   

 

Then:  

 

𝜕𝑉

𝜕𝑃
=  − 

𝜕𝑓

𝜕𝑃
𝜕𝑓

𝜕𝑉

     and     
𝜕𝑉

𝜕𝑇
=  − 

𝜕𝑓

𝜕𝑇
𝜕𝑓

𝜕𝑉

                                      (B)                                                                                       

 
𝜕𝑓

𝜕𝑉
=  

𝑅𝑇

(𝑉 − 𝑏)2
−

Γ(𝑇)

Ψ(𝑉)2

𝑑Ψ

𝑑𝑉
 

 
𝜕𝑓

𝜕𝑃
= 1 

 
𝜕𝑓

𝜕𝑇
= 

𝑅𝑇

𝑉−𝑏
−

1

Ψ(𝑉)
 
𝑑Γ(𝑇)

𝑑𝑇
 

 

Inserting the derivatives above in B,  one gets: 

 
𝜕𝑉

𝜕𝑃
=  − 

1

[
𝑅𝑇

(𝑉−𝑏)2− 
Γ(𝑇)

Ψ(𝑉)2
𝑑Ψ

𝑑𝑉
]
  

 

𝜕𝑉

𝜕𝑇
=  

𝑅
(𝑉 − 𝑏)

−
1

Ψ(𝑉)
 
𝑑Γ(𝑇)

𝑑𝑇
 

[
𝑅𝑇

(𝑉 − 𝑏)2 −  
Γ(𝑇)

Ψ(𝑉)2
𝑑Ψ
𝑑𝑉

]
 

 

 and         
𝜕2𝑉

𝜕𝑃𝜕𝑇
= 0        since   

𝜕𝑉

𝜕𝑇
     doesn’t depend on P. 

 

As a result:  

 
𝜕𝑉

𝜕𝑃
=  − 

1

[
𝑅𝑇

(𝑉−𝑏)2− 
Γ(𝑇)

Ψ(𝑉)2
𝑑Ψ

𝑑𝑉
]

> 0  

 
𝑅𝑇

(𝑉−𝑏)2 − 
Γ(𝑇)

Ψ(𝑉)2

𝑑Ψ

𝑑𝑉
 < 0           or     

𝑅𝑇

(𝑉−𝑏)2 <  
Γ(𝑇)

Ψ(𝑉)2

𝑑Ψ

𝑑𝑉
      

     

Finally,   

 
𝑇

Γ(𝑇)
<

1

𝑅
 (

𝑉−𝑏

Ψ(𝑉)
)

2 𝑑Ψ

𝑑𝑉
                        (C) 

                                                                     

For vdW EoS , (C) becomes: 

 
𝑇

a
<

1

𝑅
 (

𝑉−𝑏

𝑉
)

2 𝑑Ψ

𝑑𝑉
         or    

𝑇

a
<

1

𝑅
 (

𝑉−𝑏

𝑉
)

2

𝑉2 

 

𝑇 <
2𝑎

𝑅𝑉
 (

𝑉 − 𝑏

𝑉
)

2

 

 

For RKS EoS: 

 

 
𝑅𝑇

𝑎 (1+𝑚(1−𝑇𝑟
0.5))

2 < 2 (
𝑉−𝑏

𝑉(𝑉−𝑏)
)

2
(2𝑉 − 𝑏)         or 

 
𝑅𝑇

𝑎 (1 + 𝑚(1 − 𝑇𝑟
0.5))

2 <
𝑎

𝑅𝑉2
(2𝑉 − 𝑏). 

 

And for PR EoS: 

 

𝑅𝑇

𝑎 (1 + 𝑚(1 − 𝑇𝑟
0.5))

2 < 2 (
𝑉 − 𝑏

𝑉2 + 2𝑏𝑉 −  𝑏2
)

2

(𝑉 + 𝑏) 

 

𝑅𝑇

𝑎 (1 + 𝑚(1 − 𝑇𝑟
0.5))

2 < 2 
𝑎

𝑅
(

𝑉 − 𝑏

𝑉2 + 2𝑏𝑉 −  𝑏2
)

2

(𝑉 + 𝑏). 
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