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We consider the fractional differential equation cDα
z f ′(z)+A(z)cDα

z f (z)+B(z) f (z)= 0,
where cDα

z be the Caputo fractional derivative of orders 0 < α ≤ 1, and z is complex
number, A(z),B(z) be entire functions. We will find conditions on A(z),B(z) which will
guarantee that every solution f ̸≡ 0 of the equation will have infinite order.

1. Introduction

Many researchers have been interested in the study of the order and hyper-order of solutions of linear ordinary
differential equations with entire functions, meromorphic functions and analytic functions coefficients in the com-
plex domain or in the unit disk, has significant applications in various scientific fields of research especially in
physics, we cite some of them for example ( [1–7]). In this new work, we study the order of solving a fractional
differential equation withentire functions coefficients, we consider the following equation

cDα
z f ′(z)+A(z)cDα

z f (z)+B(z) f (z) = 0, (1.1)

where cDα
z be the Caputo fractional derivative of order 0 < α ≤ 1, and z is complex number, A(z),B(z) be

entire functions.

Throughout this paper, we assume that the reader is familiar with the fundamental results and the standard
notations of the Nevanlinna value distribution theory of meromorphic functions (see [8]). Let ρ( f ) denote the
order of an entire function f , that is,

ρ( f ) = lim
r→+∞

logT (r, f )
logr

= lim
r→+∞

log logM(r, f )
logr

,

where T (r, f ) is the Nevanlinna characteristic function of f (see [8]), and

M(r, f ) = max
|z|=r

| f (z)| .

For example, the function f (z) = ez2
satisfies ρ( f ) = 2.

The question which arises is: what conditions on A(z),B(z) will guarantee that every solution f ̸≡ 0 has infinite
order?
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1- In this section [9], we introduce some notations and definitions for fractional operators (derivative and
integral) in the complex z-plane C as follows.

Definition 1.1. ( [9]) The fractional derivative of order α is defined, for a function f (z), by

Dα
z f (z) =

1
Γ(1−α)

d
dz

z∫
0

f (ξ )
(z−ξ )α dξ , 0 ≤ α < 1, (1.2)

where the function f (z) is analytic in a simply-connected region of the complex z−plane containing the origin,
and the multiplicity of (z−ξ )−α is removed by requiring log(z−ξ ) to be real when (z−ξ )> 0.

where Γ(.) denotes the Gamma function is the Euler gamma function defined by

Γ(α) =

∞∫
0

tα−1e−tdt,α > 0.

Definition 1.2. ( [9]) The fractional integral of order α is defined, for a function f (z), by

Iα
z f (z) =

1
Γ(α)

z∫
0

(z−ξ )α−1 f (ξ )dξ , 0 < α, (1.3)

where the function f (z) is analytic in a simply-connected region of the complex z−plane containing the origin,
and the multiplicity of (z−ξ )α−1 is removed by requiring log(z−ξ ) to be real when (z−ξ )> 0.

Using the Caputo sense, we have

Definition 1.3. The Liouville-Caputo fractional derivative of order n−1 < α ≤ n,n ∈ N∗, for a function f (z) is
defined as

cDα
z f (z) =

1
Γ(n−α)

z∫
0

(z−ξ )n−α−1 f (n)(ξ )dξ , n−1 < α ≤ n (1.4)

where the function f (z) is analytic in a simply-connected region of the complex z−plane containing the origin,
and the multiplicity of (z−ξ )n−α−1 is removed by requiring log(z−ξ ) to be real when (z−ξ )> 0.

Remark 1.4. In the following we put
cDα f (z) = f (α)(z).

Lemma 1.5. ( [10, 11]) Let α > 0 then

Iα f (α)(z) = f (z)+ c0 + c1z+ ...+ c[α]z
[α],

where are c0,c1, ...,c[α] constants in C.

2. Main result

Lemma 2.1. ( [12]) Let w be a transcendental entire function of finite order σ . Let ϒ = {(k1, j1),(k2, j2) , · · · ,
(km, jm)} denote a finite set of distinct pairs of integers that satisfy ki > ji ≥ 0, i = 1, ...,m, and let ε > 0 be a given
constant. Then there exists a set E ⊂ [0,2π) that has linear measure zero, such that if ψ0 ∈ [0,2π)−E, then there
is a constant R0 = R0(ψ0)> 0 such that for all z satisfying argz = ψ0 and |z| ≥ R0, and for all (k, j) ∈ ϒ we have∣∣∣∣∣w(k)(z)

w( j)(z)

∣∣∣∣∣≤ |z|(k− j)((σ−1+ε)) .
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Lemma 2.2. Let w be entire, 0 < α ≤ 1, and suppose that
∣∣w(α)(z)

∣∣ is unbounded on some ray argz = θ . Then
there exists an infinites equence of points zn = rneiθ where rn → θ , such that w(α)(z)→ ∞ and∣∣∣∣ w(zn)

w(α)(zn)

∣∣∣∣≤ (1+o(1)) |zn|α , (2.1)

as zn → ∞.

Proof. Let M
(
r,w(α),θ

)
= max

∣∣w(α)(z)
∣∣ over all satisfying 0 ≤ |z| ≤ r and argz = θ . It follows that there exists

an infinite sequence of points zn = rneiθ where rn → 0, such that M
(
rn,w(α),θ

)
=
∣∣w(α)(rneiθ )

∣∣ for all Then for
each n, we have

|w(zn)| =
∣∣∣Iαw(α)(zn)− c0

∣∣∣
≤

∣∣∣∣∣∣ 1
Γ(α)

zn∫
0

(zn −ξ )α−1 w(α)(ξ )dξ

∣∣∣∣∣∣+ |c0|

≤
∣∣w(α)(zn)

∣∣
Γ(1+α)

|zn|α + |c0|

≤
∣∣∣w(α)(zn)

∣∣∣( 1
Γ(1+α)

+
|c0|∣∣w(α)(zn)
∣∣ |zn|α

)
|zn|α .

Since w(α)(zn)→ ∞, we obtain ∣∣∣∣ w(zn)

w(α)(zn)

∣∣∣∣≤ (1+o(1)) |zn|α .

Lemma 2.3. Let w be analytic on a ray argz = θ and 0 < α ≤ 1 , and suppose that for some constant κ > 1 we
have ∣∣∣∣∣w(α)(z)

w(z)

∣∣∣∣∣= O
(
|z|−κ

)
|z|1−α , (2.2)

as z → ∞ along argz = θ . Then there exists a constant c ̸= 0 such that w(z)→ c as z → ∞ along argz = θ .

Proof. From (2.2) it follows that there exists an R0 > 0 and a simply connected domain D such that w(α)

w is analytic
on D and where if z satisfies argz = θ and |z| ≥ R0 then z ∈ D. Hence there exists an analytic function F(z) on D
such that F ′ = w(α)

w on D. If z1 = r1eiθ and z2 = r2eiθ are large, where R0 < r1 < r2, then by consideration of

F (z2)−F (z1) =

z2∫
z1

w(α)(t)
w(t)

dt,

and (2.2), it can be deduced that there exists a constant b such that F(z) → b as z → ∞ along argz = θ . It
follows that there exists a constant c ̸= 0 such that w(z)→ c as z → ∞ along argz = θ .

Theorem 2.4. Let A(z),B(z) ̸≡ 0 be entire functions such that for real constants λ ,η ,θ1,θ2 where λ > 0,η > 0,
and θ1 < θ2, we have

|A(z)| ≥ exp
{
(1+o(1))λ |z|ηα

}
(2.3)

and

|B(z)| ≤ |z|1−α

Γ(2−α)
exp
{

o(1) |z|ηα
}
, (2.4)
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as z → ∞ in θ1 ≤ argz ≤ θ2. Let ε > 0 be a given small constant, and let S (ε) denote the angle θ1 + ε ≤
argz ≤ θ2 − ε. If f ̸≡ 0, max

ζ∈[0,z]
| f ′(ξ )| = | f ′(z)| and max

ζ∈[0,z]
| f ′′(ξ )| = | f ′′(z)| is a solution of equation (1.1) where

ρ ( f )< ∞, then the following conclusions hold:
(i) There exists a constant b ̸= 0 such that f (z)→ b as z → ∞ in S (ε). Furthermore,

| f (z)−b| ≤ exp
{
(1+o(1))λ |z|ηα

}
, (2.5)

as z → ∞ in S (ε).
(ii) For each k ≥ α, as z → ∞ in S (ε)∣∣∣ f (k)(z)∣∣∣≤ exp

{
−(1+o(1))λ |z|ηα

}
. (2.6)

Theorem 2.5. Let A(z) and B(z) ̸≡ 0 be entire functions such that for real constants λ ,η ,θ1,θ2 where λ > 0,η >
0, and θ1 < θ2, we have

|B(z)| ≥ |z|1−α

Γ(2−α)
exp
{
(1+o(1))λ |z|αη

}
(2.7)

and

|A(z)| ≤ exp
{

o(1) |z|αη
}
, (2.8)

as z → ∞ in θ1 ≤ argz ≤ θ2, if max
ζ∈[0,z]

| f ′(ξ )|= | f ′(z)| and max
ζ∈[0,z]

| f ′′(ξ )|= | f ′′(z)| . Then every solution f ̸≡ 0,

of equation (1.1) has infinite order.

3. Proof of Theorem 2.4

Suppose that f ̸≡ 0 and sup
ζ∈[0,z]

| f ′′(ξ )| = | f ′′(z)| , is a solution of (1.1) with ρ( f ) < ∞. Set σ = ρ( f ). Then from

Lemma 2.1 there exists a set E ⊂ [0,2π) that has linear measure zero, such that if ψ0 ∈ [0,2π)−E, then

∣∣∣∣∣( f ′)(α)(z)
f (α)(z)

∣∣∣∣∣ =

1
Γ(1−α)

∣∣∣∣ z∫
0
(z−ξ )1−α−1 f ′′(ξ )dξ

∣∣∣∣
1

Γ(1−α)

∣∣∣∣ z∫
0
(z−ξ )1−α−1 f ′(ξ )dξ

∣∣∣∣ (3.1)

≤
max

ζ∈[0,z]
| f ′′(ξ )|

∣∣∣∣ z∫
0
(z−ξ )−α dξ

∣∣∣∣
max

ζ∈[0,z]

∣∣∣∣ z∫
0
(z−ξ )−α dξ

∣∣∣∣
≤

max
ζ∈[0,z]

| f ′′(ξ )|

max
ζ∈[0,z]

| f ′(ξ )|

≤
max

ζ∈[0,z]
| f ′′(ξ )|

| f ′(z)|

≤
∣∣∣∣ f ′′(z)

f ′(z)

∣∣∣∣
= o(1) |z|σ ,

as z→ ∞ along argψ0.
Now suppose that

∣∣ f (α)(z)
∣∣ is unbounded on some ray argz = φ0 where φ0 ∈ [θ1,θ2]−E. Then from Lemma

2.2, there exists an infinite sequence of points zn = rn exp(iφ0) where rn → ∞, such that f (α)(zn)→ ∞ and

73



Beddani CUJSE 19(02): 070-077 (2022)

∣∣∣∣ f (zn)

f (α)(zn)

∣∣∣∣≤ (1+o(1)) |zn|α , (3.2)

as zn → ∞. From (1.1),

|A(z)| ≤

∣∣∣∣∣( f ′)(α)

f (α)

∣∣∣∣∣+ |B(z)|
∣∣∣∣ f

f (α)

∣∣∣∣ . (3.3)

By using (2.3), (2.4), (3.1), and (3.2), , we will obtain a contradiction in (3.3) as zn → ∞. Therefore,
∣∣ f (α)(z)

∣∣
is bounded on any ray argz = φ where φ ∈ [θ1,θ2]−E. It then follows from the classical Phragmen-Lindelof
theorem [8] that there exists a constant M > 0 such that

∣∣∣ f (α)(z)
∣∣∣ ≤ |z|1−α | f ′(z)|

Γ(2−α)
(3.4)

≤ M,

for all z ∈ S (ε) .
If θ0 ∈ [θ1 + ε,θ2 + ε]−E, then when argz = θ0, we obtain from (3.4) that

| f (z)| =
∣∣∣Iα f (α)(z)− c0

∣∣∣ (3.5)

≤
∣∣∣Iα f (α)(z)

∣∣∣+ |c0|

≤

∣∣∣∣∣∣ 1
Γ(α)

z∫
0

(z−ξ )α−1 f (α)(ξ )dξ

∣∣∣∣∣∣+ |c0|

≤ M
|z|α

Γ(1+α)
+ |c0|

≤ N |z|α + |c0| ,

where N = M
Γ(1+α) . From (3.1), (3.5), and (1.1), we obtain that

|A(z)|
∣∣∣ f (α)(z)

∣∣∣≤ o(1) |z|σ
∣∣∣ f (α)(z)

∣∣∣+ |B(z)|
(
N |z|α + |c0|

)
. (3.6)

as z → ∞ along argz = θ0. From (2.3), (2.4), and (3.6), we can deduce that

∣∣∣ f (α)(z)
∣∣∣≤ [ |B(z)|(N |z|α + |c0|

)
|A(z)|−o(1) |z|σ

]
≤ |z|1−α

Γ(2−α)
exp
{
−(1+o(1))λ |z|ηα

}
, (3.7)

as z → ∞ along argz = ∞. By using an application of the Phragmén-Lindelöf theorem on (3.7), it can be
deduced that ∣∣∣ f (α)(z)

∣∣∣≤ |z|1−α

Γ(2−α)
exp
{
−(1+o(1))λ |z|ηα

}
, (3.8)

as z → ∞ in S (2ε) . This gives k = 1 in (2.6)
Now let z ∈ S (3ε) where |z| > 1, let Ω be a circle of radius one with center at z, and let k ≥ 1 be an integer.

Then from the Cauchy integral formula and (3.8), we obtain as z → ∞ in S (3ε),

∣∣∣ f (k) (z)∣∣∣ ≤ (k−1)!
2π

∫
Ω

∣∣∣(z−ξ )−k f ′(ξ )dξ

∣∣∣
≤ (k−2)!

2π

∣∣ f ′(z)∣∣
74



Beddani CUJSE 19(02): 070-077 (2022)

and we have ∣∣ f ′(z)∣∣≥ Γ(2−α)
∣∣∣ f (α) (z)

∣∣∣ |z|α−1 .

In case | f ′(z)|= Γ(2−α)
∣∣ f (α) (z)

∣∣ |z|α−1, we have

∣∣∣ f (k) (z)∣∣∣ ≤ (k−2)!
2π

Γ(2−α)
∣∣∣ f (α) (z)

∣∣∣ |z|α−1 (3.9)

≤ exp
{
−(1+o(1))λ |z|ηα

}
.

This proves (2.6). Now fix θ ,ψ, where θ1 + ε ≤ θ ,ψ ≤ θ2 − ε, and set

c =
∞∫
0

(
eiψ − eiθ

)α−1
eiθ f (α)(teiθ )dt, (3.10)

where we note that c ∈ C from (2.6). Let z = |z|eiψ where θ1 + ε ≤ ψ ≤ θ2 − ε,. Then from the Cauchy
theorem and (3.10), we obtain

f (z)+ c0 − c (3.11)

= Iα f (α)(z)− c

=
1

Γ(α)

z∫
0

(z−ξ )α−1 f (α)(ξ )dξ −
∞∫
0

(
teiψ − teiθ

)α−1
f (α)(teiθ )eiθ dt

=
i

Γ(α)

ψ∫
θ

|z|eix (|z|eiψ −|z|eix)α−1
f (α)(|z|eix)dx−

∞∫
|z|

(
teiψ − teiθ

)α−1
eiθ f (α)(teiθ )dt

=
i |z|α

Γ(α)

ψ∫
θ

eix (eiψ − eix)α−1
f (α)(|z|eix)dx−

∞∫
|z|

(
teiψ − teiθ

)α−1
eiθ f (α)(teiθ )dt,

From (2.6) and (3.11), it can be deduced that

| f (z)−b| (3.12)

≤
∣∣ f (α)(z)

∣∣ |z|α
Γ(α)

∣∣∣∣∣∣
ψ∫
θ

(
eiψ − eix)α−1

dx

∣∣∣∣∣∣+
∣∣∣ f (α)(z)

∣∣∣
∣∣∣∣∣∣

∞∫
|z|

(
teiψ − teiθ

)α−1
dt

∣∣∣∣∣∣
≤

∣∣ f (α)(z)
∣∣ |z|α

Γ(α)

ψ∫
θ

∣∣∣(eiψ − eix)α−1
∣∣∣dx+

∣∣∣ f (α)(z)
∣∣∣
∣∣∣∣∣∣

∞∫
|z|

tα−1
(

eiψ − eiθ
)α−1

dt

∣∣∣∣∣∣
≤

2α−1
∣∣ f (α)(z)

∣∣ |z|α
Γ(α)

|ψ −θ |+2α−1
∣∣∣ f (α)(z)

∣∣∣ |z|α
α

≤ 2α−1 |z|α
(
|ψ −θ |
Γ(α)

+
1
α

)∣∣∣ f (α)(z)
∣∣∣

≤ |z|1−α

Γ(2−α)
exp
{
−(1+o(1))λ |z|ηα

}
,

as z → ∞ in S(ε), where b = c− c0. (Note: It follows that c in (3.10) is independent of θ .) Since (3.12) is the
inequality ( 2.5), it remains only to show that b ̸= 0.

There exists a ray argz = ψ1 where θ1 + ε ≤ ψ1 ≤ θ2 − ε, such that
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∣∣∣∣∣( f ′)(α)(z)
f (z)

∣∣∣∣∣= o(1) |z|2σ−α+1

Γ(2−α)
, (3.13)

as z → ∞ along argz = ψ1. Then from (2.3), (2.4), (3.13), and (1.1), we obtain that∣∣∣∣∣ f (α)(z)
f (z)

∣∣∣∣∣≤
∣∣∣∣B(z)A(z)

∣∣∣∣+
∣∣∣∣∣( f ′)(α)(z)

A(z) f (z)

∣∣∣∣∣≤ |z|1−α

Γ(2−α)
exp
{
−(1+o(1))λ |z|ηα

}
, (3.14)

as z → ∞ along argz = ψ1. By applying Lemma 2.3 to (3.14), and noting that f (z)− b as z → ∞ in S(ε) from
(3.12), we see that b ̸= 0. Thus part (i) is proved,and the proof of Theorem 2.4 is now complete.

4. Proof of Theorem 2.5

Suppose that f ̸≡ 0 and sup
ζ∈[0,z]

| f ′′(ξ )| = | f ′′(z)| , is a solution of (1.1) of finite order. Set σ = ρ( f ). Then from

Lemma 2.1 there exists a set E ⊂ [0,2π) that has linear measure zero, such that if ψ0 ∈ [0,2π)−E, then

∣∣∣∣∣( f ′)(α)(z)
f (z)

∣∣∣∣∣ =

∣∣∣∣ z∫
0
(z−ξ )−α f ′′(ξ )dξ

∣∣∣∣
Γ(1−α) | f (z)|

(4.1)

≤
max

ζ∈[0,z]
| f ′′(ξ )|

∣∣∣∣ z∫
0
(z−ξ )−α dξ

∣∣∣∣
Γ(1−α | f (z)|

≤ |z|1−α

Γ(2−α)

∣∣∣∣ f ′′(z)
f (z)

∣∣∣∣
= o(1)

|z|2σ+1−α

Γ(2−α)

and

∣∣∣∣∣ f (α)(z)
f (z)

∣∣∣∣∣ =

∣∣∣∣ z∫
0
(z−ξ )−α f ′(ξ )dξ

∣∣∣∣
Γ(1−α) | f (z)|

(4.2)

≤ max
ζ∈[0,z]

∣∣ f ′(ξ )∣∣
∣∣∣∣∣∣

z∫
0

(z−ξ )−α dξ

∣∣∣∣∣∣
≤ |z|1−α

Γ(2−α)

∣∣∣∣ f ′(z)
f (z)

∣∣∣∣
= o(1)

|z|σ+1−α

Γ(2−α)
,

as z → ∞ along argz = ψ0. Then from (4.1), (4.2) and (1.1), we obtain

|B(z)| ≤

∣∣∣∣∣( f ′)(α)

f

∣∣∣∣∣+ |A(z)|

∣∣∣∣∣ f (α)

f

∣∣∣∣∣
≤ o(1)

Γ(2−α)
|z|2σ+1−α + |A(z)| o(1)

Γ(2−α)
|z|σ+1−α ,

as z → ∞ along argz = ψ0, and this contradicts (2.7) and (2.8).
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5. Conclusion

In this new work, using the Nevanlinna value distribution theory of meromorphic functions, we studied the order
of solving a fractional differential equation with the coefficients of the full functions, where we showed that the
solution of the fractional differential equation (1.1) has an infinite order.
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