
Avrupa Bilim ve Teknoloji Dergisi

Özel Sayı 28, S. 152-156, Kasım 2021

© Telif hakkı EJOSAT’a aittir

Araştırma Makalesi

www.ejosat.com ISSN:2148-2683

European Journal of Science and Technology

Special Issue 28, pp. 152-156, November 2021

Copyright © 2021 EJOSAT

Research Article

http://dergipark.gov.tr/ejosat 152

Kalman Filter Implementation on Field-programmable Gate Array

for Navigation Applications of Unmanned Aerial Vehicles

Metin Mert Deniz1*,2, Ufuk Sakarya3

1* Turkish Aerospace Industries, İstanbul, Turkey, (ORCID: 0000-0002-6370-4887), metinmert.deniz@tai.com.tr
2 Yıldız Technical University, Graduate School of Science and Engineering, Department of Avionics Engineering, İstanbul, Turkey

3 Yıldız Technical University, Faculty of Applied Sciences, Department of Aviation Electronics, İstanbul, Turkey, (ORCID: 0000-0002-8365-3415),

usakarya@yildiz.edu.tr

(1st International Conference on Applied Engineering and Natural Sciences ICAENS 2021, November 1-3, 2021)

(DOI: 10.31590/ejosat.992118)

ATIF/REFERENCE: Deniz, M. M. & Sakarya, U., (2021). Kalman Filter Implementation on Field-programmable Gate Array for

Navigation Applications of Unmanned Aerial Vehicles. European Journal of Science and Technology, (28), 152-156.

Abstract

In recent years, unmanned aerial vehicle (UAV) applications have been widely used in various manufacturing areas for the purpose of

material handling or monitoring tasks. This situation increased the importance of proper estimation of UAVs’ location. This paper

presents hardware based Kalman Filter implementation for UAVs to accurately locate/detect its positions. To maintain high

performance and compact form factor, Field-programmable Gate Array (FPGA) has been used as a hardware source. However,

Kalman Filter algorithm needs lots of matrix computation and the typical implementation of matrix computations in hardware is

complex and requires more effort than traditional software-based approaches. Matrix inversion computation in the Kalman gain

formula is one of the most difficult matrix calculations in Kalman Filter algorithm and Chebyshev type inversion is used as a matrix

inversion method to simplify hardware implementation. The proposed method simulated on both Matlab and Vivado based on the

same scenario and numerical results of Kalman Filter and Chebyshev algorithm compared between these two simulation platforms.

According to experimental results, the proposed solution serves compact and high performance standalone solution via FPGA for

Kalman Filter implementation for UAVs.

Keywords: Unmanned Aerial Vehicle, Kalman Filter, Chebyshev Inversion, Field-programmable Gate Array, Navigation Application,

Autonomous Systems.

İnsansız Hava Araçlarının Seyrüsefer Uygulamaları İçin Sahada

Programlanabilir Kapı Dizisinde Kalman Filtresi Gerçekleştirmesi

Öz

Son yıllarda insansız hava aracı (İHA) uygulamaları, malzeme taşıma veya izleme görevleri amacıyla çeşitli imalat alanlarında yaygın

olarak kullanılmaktadır. Bu durum İHA'ların yerinin doğru tahmin edilmesinin önemini arttırmıştır. Bu makale, İHA'ların

konumlarının doğru bir şekilde konumlandırılması/tespit edilmesi için donanım tabanlı Kalman Filtresi uygulamasını sunmaktadır.

İHA’ların yüksek performans ve kompakt form faktörünü korumak için, Alanda Programlanabilir Kapı Dizisi (FPGA) donanım

kaynağı olarak kullanılmıştır. Bununla birlikte, Kalman Filtre algoritması çok sayıda matris hesaplamasına ihtiyaç duyar. Matris

hesaplamalarının donanımda tipik uygulaması karmaşıktır ve geleneksel yazılım tabanlı yaklaşımlardan daha fazla çaba gerektirir.

Kalman kazanç formülündeki matris ters çevirme hesaplaması, Kalman Filtre algoritmasındaki en zor matris hesaplamalarından

biridir ve donanım uygulamasını basitleştirmek için bir matris ters çevirme yöntemi olarak Chebyshev tipi ters çevirme metodu

kullanılmıştır. Önerilen yöntem, aynı senaryoya dayalı olarak hem Matlab hem de Vivado üzerinde simülasyonu yapılmıştır ve

Kalman Filtresi ve Chebyshev algoritmasının sayısal sonuçları bu iki simülasyon platformu arasında karşılaştırılmıştır. Deneysel

sonuçlara göre, önerilen çözüm, İHA'lara yönelik Kalman Filtre uygulaması için FPGA üzerinden kompakt ve yüksek performanslı

bağımsız bir çözüm sunmaktadır.

Anahtar Kelimeler: İnsansız Hava Aracı, Kalman Filtresi, Chebyshev Matris Tersi Alma, Sahada Programlanabilir Kapı Dizisi,

Navigasyon Uygulaması, Otonom Sistemler.

* Corresponding Author: metinmert.deniz@tai.com.tr

http://dergipark.gov.tr/ejosat
mailto:metinmert.deniz@tai.com.tr
mailto:usakarya@yildiz.edu.tr

European Journal of Science and Technology

e-ISSN: 2148-2683 153

1. Introduction

The number of UAV implementations increase with the

demand of autonomous systems in production areas that try to

implement Industry 4.0 solutions. Because of that, the fast and

accurate state estimation for UAVs became more necessary and

important for these production areas such as factories. Study of

Khosiawan & Nielsen (2016) can be given as indoor application

for UAVs.

Kalman Filter is much known estimation algorithm and it has

been used in diverse areas for navigation and control purposes

(Kim & Bang, 2019). Hence it is suitable algorithm for state

estimation of UAVs.

There are many software based Kalman Filter implementation

has been in literature; but, UAV applications desires high

performance in a light and compact form and thus, it can be a

problem in software-based approaches (Soh & Wu, 2017).

Hardware implementation approaches offer high performance

over software-based approaches in terms of a power usage and

an execution-time. However, hardware implementation

approaches tend to increase complexity and development time of

overall design. In addition, they decrease the flexibility with its

application specific structure. Field-programmable gate arrays

(FPGAs) are suitable for reducing these disadvantages in

contrast to traditional application-specific-integrated-circuit

(ASIC) approaches. Nevertheless, they still need more

development time than software based approaches (Soh & Wu,

2017).

Kalman Filter algorithm includes lots of matrix computations

such as matrix multiplication and matrix inversion. As the

dimension of matrixes increase, computation complexity

increases. Performing matrix inversion calculation on FPGA is

complex and takes large area. There are two implemented

methods that are frequently used to calculate the inversion of a

matrix in hardware: One of them is CORDIC algorithm (Lu et

al., 2010). The other is QR decomposition (QRD) (Bai et al.,

2012), (Stanislaus & Mohsenin, 2013). However, developing

and implementing these algorithms in FPGA is not easy. Hence,

Chebyshev algorithm have been used to find matrix inverse to

purpose of decreasing complexity and development time (Rico-

Aniles et al., 2014), (Rawal, 2015).

In this paper, Kalman Filter implementation on FPGA for

navigation applications of UAVs is presented for the selected

scenario. The matrix inversion has been implemented on FPGA

with Chebsyhev type matrix inversion method that makes easier

to development process of hardware implementation (Rico-

Aniles et al., 2014), (Rawal, 2015). VHSIC (Very High Speed

Integrated Circuit) Hardware Description Language (VHDL)

design on FPGA is demonstrated by using Xilinx Vivado Design

(WebPack) Program (Xilinx, 2021). The selected scenario is

simulated using Matlab Program (Mathworks, 2021). There are

two input sources for the selected scenario: The position and

velocity values coming from GNSS receiver and the

accelerometer values coming from the inertial measurement unit

(IMU). These are generated by using Matlab and these are given

into the FPGA simulation. The simulation results which are

obtained by using Matlab are accepted as ground truth. The

simulation results which are obtained by using FPGA simulation

are compared with the ground truth results.

The rest of the paper is planned as follows: The next section

presents the related works from literature. In Section 3, the

proposed method is introduced. The selected scenario and the

simulation results are demonstrated in Section 4. Finally, the last

section gives some concluding remarks and future issues.

2. Related Works

Kalman Filter is an estimation method (Kim & Bang, 2019). It

takes series of measurements as inputs and it generates estimates

of unknown variables as outputs. It can be used in several areas

for the purpose of navigation using IMU/GNSS, terrain-

referenced navigation (TRN), battery-range estimation, target

tracking, control systems and much more. In this work, our

interest is Kalman Filter for the navigation application by using

the position and velocity values coming from GNSS receiver and

the accelerometers values coming from the inertial measurement

unit (IMU).

To use a Kalman Filter in GNSS application, first step is

establishing a proper model with state vector and measurement

vector. In established model, the UAV state (position and

velocity) are estimated. Position and velocity (in 3-D) construct

the state vector below that dimension is 6 (Kim & Bang, 2019):

𝑥 = [𝑝𝑇 , 𝑣𝑇]𝑇 Eq. (1)

where p is position vector, v is the velocity vector in 3

dimensional space. Then, state vector in time k can be estimated

by using the previous state vector in time k-1 as;

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝐵𝑎𝑘−1 + 𝑤𝑘−1 Eq. (2)

where B is a matrix (control), F is a matrix (state transition), w

is a noise generated by process.

Measurement vector can be formed as;

𝑧𝑘 = [
𝑝𝑘

𝑣𝑘
] + 𝑣𝑘 Eq. (3)

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 Eq. (4)

where 𝑣𝑘 is measurement noise and H is measurement matrix.

After filter model is established, filter algorithm can be

started. Kalman Filter comprises of two steps that are prediction

and update. In prediction step, estimations are made according to

previous measurement and estimations Eq. (5) and Eq. (6). In

update step, measurement residual and Kalman gain are

calculated according to new measurements Eq. (7) and Eq. (8).

Then, state estimate and error is updated based on Kalman gain

Eq. (9) and Eq. (10). The prediction and update formulas are

below (Kim & Bang, 2019):

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝐵𝑢𝑘−1 Eq. (5)

𝑃𝑘 = 𝐹𝑃𝑘−1𝐹𝑇 + 𝑄 Eq. (6)

𝑦𝑘 = 𝑧𝑘 − 𝐻𝑥𝑘 Eq. (7)

𝐾𝑘 = 𝑃𝑘𝐻𝑇(𝑅 + 𝐻𝑃𝑘𝐻𝑇)−1 Eq. (8)

 𝑥𝑘 = 𝑥𝑘 + 𝐾𝑘𝑦 Eq. (9)

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘 Eq. (10)

where I is identity matrix and R is measurement noise

covariance matrix. In order to obtain detail information for this

issue, can be studied from Kim & Bang (2019).

Matrix inversion implementation on FPGA is not easy. One of

the solution approaches for matrix inversion implementation on

FPGA is Chebyshev algorithm. The Chebyshev-type matrix

inversion method is given by Rico-Aniles et al.(2014) and Rawal

(2015).

𝑁𝑚+1 = 𝑁𝑚(3𝐼 − 𝐴𝑁𝑚(3𝐼 − 𝐴𝑁𝑚)) Eq. (11)

where 𝑁𝑚+1is a next inverse approximation, 𝑁𝑚 is a previous

inverse approximation and A is a matrix to be inverted.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 154

This algorithm starts with an initial guess and continues

iteratively until to make true estimation. Hence it is important to

give a proper initial estimate, otherwise it cannot converge.

Proper initial guess that assures the method’s convergence can

be made with Eq. (12) (Rico-Aniles et al., 2014), (Rawal,

2015) :

𝑁0 =
𝐴𝑇

‖𝐴‖1‖𝐴‖∞
 Eq. (12)

where 𝑁0 is initial guess, 𝐴𝑇 is transpose of A, ‖𝐴‖1 is the

maximum value of the summation of the elements on the each

column, ‖𝐴‖∞ is the maximum value of the summation of the

elements on the each row.

The entire algorithm can be summarized as below (Rico-

Aniles et al., 2014), (Rawal, 2015):

Input: Matrix A

Precondition: 𝑁0 =
𝐴𝑇

‖𝐴‖1‖𝐴‖∞

Iteration:

𝑁𝑚+1 = 𝑁𝑚(3𝐼 − 𝐴𝑁𝑚(3𝐼 − 𝐴𝑁𝑚))
Verification:

If 𝐴 ∗ 𝑁𝑚+1 ≈ 𝐼 stop the algorithm

Else 𝑁𝑚 = 𝑁𝑚+1 continue iterative stage

Output: 𝑁𝑚+1 as 𝐴−1

3. Proposed Method

In this section, the proposed state estimation method for UAV

applications is presented. The proposed method uses Kalman

Filter as an algorithm and uses FPGA as a hardware source.

Fig. 1 System blog diagram

System blog diagram is shown in Fig 1. The main inputs of

the system are measurements z (position and velocity vector)

and u (accelerometer values). The main output of the system is

updated state estimate x_est (position and velocity vectors) that

represents estimation of new state.

 KF Logic refers to Kalman Filter state machine algorithm

that manages prediction and update processes. The main Kalman

filter calculations are done in block that are state estimate

prediction, error covariance prediction, calculation of

measurement residual, calculation of Kalman gain, updating

state estimate and updating error covariance. The multiplier and

inversion sub blocks include matrix calculation algorithms for

KF Logic main block.

The M from 1 to 3 refers multipliers with different sizes for

matrix multiplications that are 6x6 prod 6x6, 6x6 prod 6x1, 6x3

prod 3x1. Multipliers use DSP48 slices on FPGA. Because of

the DSP48 slice count is limited on FPGA, it is not possible to

calculate all row and columns of matrix multiplication

simultaneously. Hence, for all multiplier sizes, first matrix is

taken row by row and multiplication is performed. In order to

perform a matrix multiplication with two 6x6 matrices, this

module needs to be used 6 times.

In the proposed method, VHDL is used as a hardware

description language and fixed point representation used as a

data type. To avoid overflow of fixed point data while sum and

multiplication calculations, Q16,16 representation is used that

means 16 bits for integer part, 16 bits for fractional part. In this

way, it guarantees the represent our calculations in range without

overflow. Xilinx fixed point library is used to design for fixed

point calculations (Xilinx, 2021).

KFLogic block includes two processes that are predict/update

and Kalman gain calculation. Whereas predict/update process

includes calculation of 𝑥𝑘 (Eq.5), 𝑃𝑘 (Eq.6, Eq.9 and Eq.10);

Kalman gain calculation process includes calculation of y (Eq.7)

and K (Eq. 8). Predict/update process starts with prediction of

state estimate and error covariance. These calculations include

matrix multiplications and to perform these calculations,

multipliers are used in sub-blocks. When the state estimate

prediction is done, Predict/update process sends a signal to

Kalman gain calculation process in order to start measurement

residual and Kalman gain calculation. Matrix inverse calculation

is required for Kalman gain (Eq. 8). In the proposed system

Chebyshev inverse algorithm from Rico-Aniles et al.(2014) is

used to overcome matrix inverse calculation in Kalman gain

formula. The inversion block on Fig. 1 includes this algorithm

implementation. The Chebyshev inverse algorithm is composed

of three parts that are preconditioning, iterative and verification

states. When the Kalman gain calculation process sent to start

signal to the inversion block to calculate inverse of (𝑅 +
𝐻𝑃𝑘𝐻𝑇) in the Kalman gain formula, the Chebyshev algorithm

starts preconditioning process with this flag and firstly performs

its initial guess 𝑁0. This is an iterative algorithm, in each

iteration find an estimation matrix and check estimation matrix

multiply input matrix equals to unit matrix in verification state.

If not equals iteration continues. It is observed that generally it

takes 8-15 cycle to find inverse matrix. When the inverse

calculation is done, it sends a finish signal to KFLogic to

continue its Kalman filter process.

When the Kalman gain is calculated, predict/update process

updates state estimate and error covariance (Eq. 9 and Eq. 10).

One iteration of Kalman filter is completed and the algorithm

waits for new measurements to pass a new iteration.

4. Experimental Simulation Results

In order to test the proposed design, testbench feature of

Xilinx Vivado Design (WebPack) Program is used (Xilinx,

2021). Same scenario is simulated on both Matlab and Vivado

testbench, then compared. In order to simulate the selected

scenario on Matlab, it has been benefited from Introduction to

Kalman Filter and Its Applications website (2021) and the

selected scenario is defined as follows.

European Journal of Science and Technology

e-ISSN: 2148-2683 155

 In the selected scenario, UAV is assumed to operate in

outdoor space in a factory. UAV is moving only in x-axis with

constant speed that is 2m/s and located at (0,0,0) as initial true

position. For the initial state position, UAV is supposed to

located at (1,1,1). Its velocity is 2m/s in x-axis and y-axis, 0m/s

in z-axis that compose the initial system state vector as [1; 1; 1;

2; 2; 0].

 The main inputs, that are accelerometer, GNSS position and

GNSS velocity values, are generated and corrupted with noise

with randn function in Matlab at every step. Standard deviation

value is selected 0.6 m/s2 in three axes for accelerometer,

selected 3m in three axes for GNSS position and selected 0.06

m/s in three axes for GNSS velocity. Then, these input values

are given to Matlab and essential vector values are generated.

Thus, these vectors, i.e. u and z, are given to Vivado simulations.

Estimated position and velocity values on Matlab can be seen

in Fig. 2 and Fig. 3. Also, Vivado simulation of the same values

can be seen in Fig. 4 and Fig.5.

 Fig. 2 Estimated position on Matlab

 Fig. 3 Estimated velocity on Matlab

 Fig. 4 Estimated position on Vivado

 Fig. 5 Estimated velocity on Vivado

 Fig. 6 Vivado testbench simulation of estimated position

On both Matlab and Vivado, estimated values are consistent

with true values. Hence, it can be said that the Kalman Filter is

working properly on both simulations.

Table 1 Comparison table between Matlab and Vivado

Also, when estimated position and velocity values on both

simulations are compared to each other (Table 1), it can be

understood that, hardware solution on FPGA works with high

precision.

In addition to entire Kalman Filter simulation, Chebyshev

algorithm is tested individually on Matlab and its iteration count

to find inverse matrix are nearly the same in FPGA approach.

However; because of hardware is faster than software, this

FPGA implementation saves a huge amount of time as the

iteration count increase. In Fig. 7 Inverse of matrix A that size is

6x6 is calculated in Matlab in 12 iterations. In Fig. 8, inverse of

same matrix is calculated in Vivado testbench.

Avrupa Bilim ve Teknoloji Dergisi

e-ISSN: 2148-2683 156

Fig. 7 Chebyshev method tested on Matlab

 Fig. 8 Chebyshev method tested on Vivado testbench

5. Conclusion

In this paper, Kalman Filter implementation on FPGA for

navigation applications of UAVs is demonstrated. Synthesizable

VHDL design on FPGA is presented. The selected scenario is

simulated and then it is examined on FPGA simulation.

Experimental simulation results show that VHDL design on

FPGA is validated. On the other hand, there is a future issue that

the proposed method can be examined on the hardware by using

implementation of the proposed VHDL design.

References

Bai, L., Maechler, P., Muehlberghuber, M., & Kaeslin, H.

(2012). High- speed compressed sensing reconstruction on

FPGA using OMP and AMP. 2012 19th IEEE International

Conference on Electronics, Circuits, and Systems (ICECS

2012). doi:10.1109/icecs.2012.6463559

Introduction to Kalman Filter and Its Applications website.

(2021).

Mathworks.https://www.mathworks.com/matlabcentral/filee

xchange/68262-introduction-to-kalman-filter-and-its-

applications

ISE WebPACK Design Software website. (2021). Xilinx.

https://www.xilinx.com/products/design-tools/ise-design-

suite/ise-webpack.html

Khosiawan, Y., & Nielsen, I. (2016). A system of UAV

application in indoor environment. Production &

Manufacturing Research, 4(1), 2-22.

doi:10.1080/21693277.2016.1195304

Kim, Y., & Bang, H. (2019). Introduction to Kalman Filter and

Its Applications. Introduction and Implementations of the

Kalman Filter. doi:10.5772/intechopen.80600

Lu, J., Zhang, H., & Meng, H. (2010). Novel hardware

architecture of sparse recovery based on FPGAs. 2010 2nd

International Conference on Signal Processing Systems.

doi:10.1109/icsps.2010.5555628

Mathworks website. (2021). https://www.mathworks.com/

Rawal, N. (2015). HDL implementation of Kalman Filter for

GNSS receiver. 2015 IEEE International Advance

Computing Conference (IACC).

doi:10.1109/iadcc.2015.7154717

Rico-Aniles, H. D., Ramirez-Cortes, J. M., & Rangel-

Magdaleno, J. D. (2014). FPGA-based matrix inversion

using an iterative Chebyshev-type method in the context of

compressed sensing. 2014 IEEE International

Instrumentation and Measurement Technology Conference

(I2MTC) Proceedings. doi:10.1109/i2mtc.2014.6860890

Soh, J., & Wu, X. (2017). An FPGA-Based Unscented Kalman

Filter for System-On-Chip Applications. IEEE Transactions

on Circuits and Systems II: Express Briefs, 64(4), 447-451.

doi:10.1109/tcsii.2016.2565730

Stanislaus, J. L., & Mohsenin, T. (2013). Low-complexity

FPGA implementation of compressive sensing

reconstruction. 2013 International Conference on

Computing, Networking and Communications (ICNC).

doi:10.1109/iccnc.2013.6504167

https://www.mathworks.com/matlabcentral/fileexchange/68262-introduction-to-kalman-filter-and-its-applications
https://www.mathworks.com/matlabcentral/fileexchange/68262-introduction-to-kalman-filter-and-its-applications
https://www.mathworks.com/matlabcentral/fileexchange/68262-introduction-to-kalman-filter-and-its-applications
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.xilinx.com/products/design-tools/ise-design-suite/ise-webpack.html
https://www.mathworks.com/

