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Abstract
In this methodological study, we address the joint modeling of longitudinal data on the
frequency and duration migraine attacks collected from patients in a clinical study in
which patients were repeatedly asked at each hospital visit to report the number of days
of migraine attacks they had in the last 30 days and the corresponding average duration
of attacks. In our motivating data set, the migraine frequency outcome is a count variable
inflated at multiples of 5 and 10 days, whereas the migraine duration outcome is reported
entirely in discrete hours, including 0 for non-migraine days and inflated at multiples of
12 hours. In our study, we propose a joint modeling approach that models each migraine
outcome by a multiple inflated negative binomial model with random effects and assumes
a bivariate normal distribution for the random effects. We estimate the model parameters
under Bayesian inference. We examine the performance of the proposed joint model using
a Monte Carlo simulation study and compare its performance with a separate modeling
approach in which each longitudinal count outcome is modeled separately. Finally, we
present the results of the analysis of migraine data.
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1. Introduction
This study addresses a methodological approach to analyse longitudinal data on the

frequency and duration of migraine attacks collected from migraine patients in a clinical
study at the Department of Neurology, Faculty of Medicine, Mersin University, Turkey. In
the clinical study, migraine specialists were interested in maintaining an electronic migraine
database in the hospital to study the mechanisms of migraine in detail [25]. With this in
mind, migraine patients, who visited the hospital at least once between the years 2004 and
2010, were asked to report the number of days with migraine attacks they had within the
last 30 days and the average duration of these migraine attacks during each hospital visit.
The result of this migraine study is an electronic database consisting of patient-reported
migraine days and duration and other demographic and clinical information collected
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from N = 179 sufferers over several months/years. Thus, the migraine data retrieved
from the database is in a form of longitudinal multivariate data with two count outcomes:
i) migraine frequency (days): an outcome representing the number of days with migraine
within the last 30 days and ii) migraine duration: an outcome augmented with zeros
representing the corresponding average duration of migraine in discrete hours. In this
case, the duration outcome is completely reported in discrete hours including 0 (i.e., if the
frequency outcome is 0, the duration takes the value 0).

In the migraine study, migraine specialists were mainly interested in the co-evolution
of migraine frequency and duration over time, as these two outcomes are biologically
associated [25]. This medical research question led us to consider joint modeling of these
two longitudinal outcomes, as it is known that joint models provide better insights in
the analysis of longitudinal multivariate data with increased efficiency due to information
exchange between outcomes and allow estimation of the association between outcomes
[3, 10–13]. In this sense, following the novel papers of [8] and [16], a joint model can
be constructed as follows: First, separate generalized linear mixed models (GLMMs) can
be used to model each longitudinal outcome under an appropriate distribution from the
exponential family, and then a bivariate GLMM can be constructed by imposing a bivariate
normal distribution on random effects to jointly analyze the longitudinal migraine data
with two count outcomes.

For exploratory analysis, we plotted the distribution of migraine days and migration
duration reported by patients in the migraine study and presented them in Figure 1 and
Figure 2, respectively. However, a closer look at Figure 1 and Figure 2 shows that migraine
days are inflated for numbers that are multiples of 5 and 10, whereas migraine duration
is inflated for numbers that are multiples of 12. More specifically, we found that the
frequency (percentage) of days with migraine that are inflated at 10, 15, 20, 25, and 30
are 72 (9%), 51 (6%), 38 (5%), 22 (3%), and 140 (17%), respectively. Similarly, we found
that the frequency of the average migraine duration that are inflated at 12, 24, 48, 72,
and 96 are 84 (10%), 142 (17%), 45 (5%), 31 (4%), and 7 (1%), respectively.

The Figures 1 and 2 apparently show that migraine patients tend to report the frequency
and duration of attacks by rounding up or down to a nearby number since they were
asked to give precise information retrospectively, but, they could not remember exactly
how many days with migraine they had in the last 30 days and how long the migraine
lasted on average.

Figure 1. The distribution of number of days with migraine reported by patients
in the migraine study.
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Figure 2. The distribution of average duration of migraine (in hours) reported
by patients in the migraine study.

In the statistical literature, rounding a numerical value to a nearby number is referred to
by various terms, such as heaping, coarsening, or misreporting, although we would prefer
the word “heaping” in this paper. Heaping is a very common phenomenon in applied
studies where self-reported data are collected retrospectively. For example, heaping may
occur in count data when reporting the number of cigarettes consumed [22,23], the number
of sexual partners [5], the number of depressed days [15], the number of work disability [2],
and the number of unprotected sexual relationships [14]. On the other hand, heaping in
positive continuous data may occur when age [9], unemployment duration [17,21], income
[6, 26], birth weight [4], etc. are reported. Heitjan and Rubin [9], Wang and Heitjan [22],
Wang et al. [23], Allen et al. [1] have shown that in self-reported retrospective studies,
there is a loss of precision in the data due to recall errors in the true responses, which in
turn affects the true distribution of the data. These authors have shown that statistical
conclusions based on heaped data can be misleading if the heaping in the data has not
been properly accounted for in the data modeling and analysis. For this reason, they
suggest that heaping in data should be seriously considered in data analysis in order to
draw reliable statistical conclusions.

Heitjan and Rubin [9] was the first to discuss heaping in detail and to propose multiple
imputation inference to deal with heaping at reporting age. Then, Wang and Heitjan
[22] used a proportional odds regression modeling approach to model different rounding
behaviors in the self-reported number of cigarettes consumed per day and Wang et al.
[23] extended the same approach to the longitudinal analysis of self-reported cigarette
consumption. Li et al. [14] proposed a multiple inflated Poisson regression model to
analyze cross-sectional count data with multiple inflated values without assuming that all
inflated values are rounded values, which is a more flexible assumption than [9] and [22]
and also results in a less complicated and more interpretable model.

In this study, we would like to propose a bivariate GLMM for analysis of longitudinal
data on the frequency and duration of migraine outcomes with inflated values. Following
[14], our proposed approach models each migraine outcome by a multiple inflated negative
binomial model with random effects and then models both outcomes jointly by imposing
a bivariate normal distribution on the random effects. To our knowledge, this study is the
first work to account for inflation in both outcomes of a bivariate longitudinal data model,
motivated by a real-world problem.

The remainder of the paper is organized as follows. In Section 2, we first give a general
overview of a multiple inflated negative binomial model with random effects. We then
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extend this model to propose a joint model for analyzing longitudinal data on migraine
frequency and duration outcomes with inflated values, and then explain the Bayesian
estimation of the proposed model. Section 3 presents the application of the proposed joint
model to the motivating migraine data. Section 4 provides the results of a simulation
study conducted to investigate the performance of the proposed model and compare it
with alternatives. Finally, Section 5 provides some concluding remarks.

2. Statistical methods
2.1. Multiple inflated negative binomial model with random effects

Consider a longitudinal study with N patients (i = 1, . . . , N) repeatedly observed at
ni number of visits (j = 1, . . . , ni). Let Yij ∈ N denote the jth response of ith patient
and Yi = (Yi1, . . . , Yini)T be the longitudinal count response vector for ith patient. As-
sume further that a total of K positive integer values such as {r0, r1, . . . , rK−1} occur
more frequently in the complete data than those expected under standard count data
distributions. Following [14], we assume that the jth response of ith patient, Yij takes
an integer value of rk (k = 0, . . . , K − 1) with probability πk and any other integer value
∈ N − {r0, . . . , r(K−1)} with probability πK . Then we assume a mixture of K degenerate
distributions with a negative binomial distribution to model Yij as follows:

Yij ∼



r0, with probability π0

r1, with probability π1

. . . . . .

rk, with probability πk

. . . . . .

rK−1, with probability πK−1

NegBin(µij , ϕ), with probability πK ,

(2.1)

where πk is the probability that Yij arises from a degenerate distribution at rk for k =
0, . . . , K−1, and πK is the probability that Yij arises from a negative binomial distribution,
with the restriction that

∑K
k=0 πk = 1. The parameters µij (µij > 0) and ϕ (ϕ > 0) in

Equation (2.1) characterize the mean and the over-dispersion of the negative binomial
distribution, respectively. Hence, the formulation in the Equation (2.1) accommodates
more values from the elements of the set {r0, r1, . . . , rK−1} than expected for the negative
binomial distribution.

Thus, the probability mass function of the multiple inflated negative binomial (MINB)
model can be written as follows:

Pr(Yij = rk) = πk + πK

Γ(rk + 1
ϕ)

rk!Γ( 1
ϕ)

(1 + ϕµij)− 1
ϕ

(
1 + 1

ϕµij

)−rk

,

for k = 0, . . . , (K − 1) and

Pr(Yij = r) = πK

Γ(r + 1
ϕ)

r!Γ( 1
ϕ)

(1 + ϕµij)− 1
ϕ

(
1 + 1

ϕµij

)−r

,

for r ∈ N − {r0, . . . , r(K−1)}.
In longitudinal regression modeling, the mean of the jth response of the ith patient

under the negative binomial distribution is associated with a number of covariates and
subject-specific random effects as given below:

g(µij) = XT
ijβ + bi, (2.2)
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where g(.) is a link function that maps the interval (0, ∞) to (−∞, ∞) such as log(.)
link function, Xij is a p × 1 vector of fixed effects covariates, β is the corresponding
p × 1 vector of fixed effects regression coefficients. The term bi is the random intercept
at the subject-level representing heterogeneity between subjects and is assumed to follow
a normal distribution with a mean of 0 and a variance of σ2

b . For simplicity, only models
with random intercepts are considered in this paper.

Furthermore, we assume conditional independence, i.e., given the subject-specific ran-
dom intercepts, repeated measurements within a subject are independent of each other,
and measurements from different subjects are also independent of each other.

Let θ = (β, π0, π1, . . . , π(K−1), πK , ϕ, σ2
b ) be the vector of unknown parameters of the

model. Then the contribution of the ith subject to the marginal likelihood of the observed
data involves integration over the distribution of random intercepts as follows:

L(θ|Yi) =
∫ ni∏

j=1

[ (K−1)∏
k=0

(
πk + πK

Γ(rk + 1
ϕ)

rk!Γ( 1
ϕ)

(1 + ϕµij)− 1
ϕ

(
1 + 1

ϕµij

)−rk
)δijk]

×

[(
πK

Γ(yij + 1
ϕ)

yij !Γ( 1
ϕ)

(1 + ϕµij)− 1
ϕ

(
1 + 1

ϕµij

)−yij
)δijK]

f(bi)dbi
,

where δijk = 1{yij=rk} for k = 0, . . . , (K − 1) and δijK = 1{yij∈N−{r0,...,r(K−1)}} are in-
dicator functions, f(bi) denotes the normal distribution density function of the random
intercept bi, and the regression parameter vector β enters the marginal likelihood of the
data through the Equation (2.2).

2.2. Proposed joint model
In this section, we propose a joint MINB regression model which extends MINB regres-

sion model in Section 2.1 to longitudinal data with bivariate count outcomes.
Following the notation introduced in Section 2.1, let Yi = (YT

i1, YT
i2)T be the bi-

variate response vector for the ith patient (i = 1, . . . , N). In particular, here Yi1 =
(Yi11, . . . , Yi1ni)T is the ni × 1 response vector of the ith patient for the number of days
with migraine over ni visits and Yi2 = (Yi21, . . . , Yi2ni)T is the corresponding ni × 1 re-
sponse vector for the average duration of the migraine. Suppose further that a total of K1
integer values {r10, r11, . . . , r1K1−1} and a total of K2 integer values {r20, r21, . . . , r2K2−1}
are more frequent in migraine frequency and duration, respectively, than expected accord-
ing to the negative binomial distribution.

Then, a joint MINB model for the analysis of longitudinal data on the frequency and du-
ration of migraine outcomes with inflation at {r10, r11, . . . , r1K1−1} and {r20, r21, . . . , r2K2−1},
respectively, can be specified as follows:

Yi1j ∼

r1k1 , with probability π1k1 for k1 = 0, . . . , (K1 − 1)
NegBin(µi1j , ϕ1), with probability π1K1 ,

Yi2j ∼

r2k2 , with probability π2k2 for k2 = 0, . . . , (K2 − 1)
NegBin(µi2j , ϕ2), with probability π2K2 ,

and

log(µi1j) = XT
i1jβ1 + bi1, (2.3)

log(µi2j) = XT
i2jβ2 + bi2,

bi = (bi1, bi2) ∼ MV N2(0, Σb),
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where i = 1, . . . , N and j = 1, . . . , ni stand for patients and visits, respectively. The
parameter µi1j is the expected number of days with migraine within the last 30 days for
the ith patient at the jth visit conditional on response and subject-level random intercept
term bi1. It is associated with p1 × 1 vector of covariates XT

i1j by the log(.) link function.
Similarly, µi2j is the expected average duration of migraine within the last 30 days for
the ith patient at the jth visit conditional on the response and subject-level random
intercept bi2. It is associated with p2 × 1 vector of covariates XT

i2j by the log(.) link
function. The parameters β1 and β2 are the corresponding response-specific vectors of the
regression coefficients. The parameters ϕ1 and ϕ2 denote response-specific over-dispersion
parameters. We further assume that the vector of random intercepts for the ith patient,
bi = (bi1, bi2), has a bivariate normal distribution with mean vector 0 and variance-
covariance matrix:

Σb =
[

σ2
b1

ρbσb1σb2

ρbσb1σb2 σ2
b2

]
, (2.4)

where Σb represents the association between two negative binomial outcomes of the pa-
tient. We extend the conditional independence assumptions given in Section 2.1 and
assume that the observations in Yi1j and Yi2j are independent given bi.

Let θ = (β1, β2, π10, π11, . . . , π1(K1−1), π1K1 , π20, π21, . . . , π2(K2−1), π2K2 , ϕ1, ϕ2, Σb) de-
note the vector of unknown parameters in the proposed joint model. Then, the contribu-
tion of the ith subject to the marginal likelihood of the observed data can be expressed as
follows:

L(θ|Yi) =
∫ ni∏

j=1

[ (K1−1)∏
k1=0

(
π1k1 + π1K1

Γ(r1k1 + 1
ϕ1

)
r1k1 !Γ( 1

ϕ1
)

(1 + ϕµi1j)− 1
ϕ1

(
1 + 1

ϕ1µi1j

)−rk1
)δijk1

]

×

[(
π1K1

Γ(yi1j + 1
ϕ1

)
yi1j !Γ( 1

ϕ1
)

(1 + ϕµi1j)− 1
ϕ1

(
1 + 1

ϕ1µi1j

)−yi1j
)δijK1

]

×

[ (K2−1)∏
k2=0

(
π2k2 + π2K2

Γ(r2k2 + 1
ϕ2

)
r2k2 !Γ( 1

ϕ2
)

(1 + ϕ2µi2j)− 1
ϕ2

(
1 + 1

ϕ2µi2j

)−r2k2
)δijk2

]

×

[(
π2K2

Γ(yi2j + 1
ϕ2

)
yi2j !Γ( 1

ϕ2
)

(1 + ϕ2µi2j)− 1
ϕ2

(
1 + 1

ϕ2µi2j

)−yi2j
)δijK2

]
f(bi)dbi ,

where δijk1 = 1{yi1j=r1k1 } for k1 = 0, . . . , (K1 − 1), δijK1 = 1{yi1j∈N−{r10,...,r(1K1−1)}}, δijk2 =
1{yi2j=r2k2 } for k2 = 0, . . . , (K2 − 1), and δijK2 = 1{yi2j∈N−{r20,...,r(2K2−1)}} are indicator
functions, respectively. The vector of parameters β1 and β2 enter the model through
Equation (2.3). The function f(bi) denotes the bivariate normal distribution density for
bi given by Equation (2.4).

2.3. Bayesian inference
We used Bayesian inference to deal with the complexity of the proposed model due to the

large number of random effects involved in the model. The Markov Chain Monte Carlo
(MCMC) algorithm (specifically Gibbs sampling) is used to sample from the posterior
distribution of parameters via JAGS (version 4.3.0) and the R package rjags [18, 19].
As prior distribution, we assigned an independent normal distribution with mean 0 and
large variance 1000 for each element in the vector of regression coefficients β1 and β2,
Dirichlet distribution for degenerate distribution probabilities (π10, π11, . . . , π1(K1−1)) and
(π20, π21, . . . , π2(K2−1)), uniform distribution in interval (0.001, 5) for the over-dispersion
parameters ϕ1 and ϕ2, and Wishart distribution with I scale matrix and 3 degrees of
freedom for the inverse covariance matrix of the random effects Σ−1

b .
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3. Analysis of migraine data
As mentioned in Section 1, our motivating data set comes from a migraine study con-

ducted at the Neurology Department of Mersin University, one of the leading migraine
research centres in Turkey. The data set consists of longitudinal information on the num-
ber of days with migraine within the last 30 days and the average duration of migraine (in
discrete hours) reported by N = 179 patients who visited the hospital, after the first visit
at least once between 2004 and 2010. As shown in Table 1, of 179 patients, 151 (84%)
are women and 28 (16%) are men. The mean age at baseline is 38.27 years (standard
deviation (SD) 13.69), with the youngest patient 10 years old and the oldest 84 years old.
The total follow-up time per patient ranges from 1 to 57 months with a mean of 13.20
months (SD 11.16) and the total number of visits per patient ranges from 2 to15 with a
mean of 4.68 (SD 2.12). In addition, the mean of frequency outcome for N = 179 patients
is 10.91 days (SD 10.30) and that of duration outcome is 14.18 hours (SD 18.29).

Table 1. Summary statistics for N = 179 patients in the migraine study data.

Variable Range Mean (SD) Frequency
Gender

Females - - 151 (84%)
Males - - 28 (16%)

Age at baseline (in years) 10 − 84 38.27 (13.69) -
Total follow-up time 1 − 56 13.20 (11.16) -
per patient (in months)
Total number of 2 − 15 4.68 (2.12) -
visits per patient
Migraine frequency (in days) 0 − 30 10.91 (10.30) -
Migraine duration (in hours) 0 − 96 14.18 (18.29) -

We are interested in modeling patient-reported longitudinal data on migraine frequency
and duration together by accounting for inflated values in both outcomes. Following the
Figures 1 and 2, we assumed that a total of K1 = 5 integer values {10, 15, 20, 25, 30} in
migraine frequency and a total of K2 = 6 integer values {12, 24, 36, 48, 72, 96} in migraine
duration are observed more frequently than would be expected according to the negative
binomial distribution. In addition, we assumed the following explanatory variables: the
time of hospital visit (in months) since the first visit, gender (male = 0, female = 1), and
the interaction of time and gender. Thus, under the proposed joint model, the expected
number of days with migraine within the last 30 days and the expected average duration
of migraine for the ith patient at the jth visit are associated with the above covariates by
the log(.) link function, respectively, as follows:

log(µi1j) = β10 + β11timeij + β12genderi + β13(timeij ∗ genderi) + bi1, (3.1)
log(µi2j) = β20 + β21timeij + β22genderi + β23(timeij ∗ genderi) + bi2,

where i = 1, . . . , 179, j = 1, . . . , ni, the timeij covariate is standardized over all patients
and time points, and bi = (bi1, bi2) is the vector of subject-level random intercepts coming
from MV N2(0, Σb) (see Equation (2.4)).

For model fitting under Bayesian framework, the first 15, 000 iterations are considered
as the burn-in period. After the burn-in period, 50, 000 iterations are drawn from 2
different chains with a thinning value of 50. The convergence of MCMC chains is checked
using trace and autocorrelation plots and the Geweke Z-score (Z-score < |1.96| for all
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parameters) obtained from the R package coda [20]. The initial values for β1, β2, ϕ1,
ϕ2, σ2

b1
, and σ2

b2
are obtained from the SAS NLMIXED procedure by fitting separate models

to the data, and the initial values for the degenerate probabilities (π10, π11, . . . , π15) and
(π20, π21, . . . , π26) are obtained from the migraine data. The posterior mean estimates,
standard deviations, and 95% credible intervals (CrIs) obtained from the analysis of the
migraine data by the proposed joint model are given in Table 2.

Table 2. Posterior mean estimates, standard deviations, and 95% credible inter-
vals (CrIs) obtained through the analysis of the migraine data with the proposed
joint model.

Parameter Est. SD 2.5% 97.5%
Migraine frequency outcome
β10 (Int.) 2.0922 0.1394 1.8235 2.3680
β11 (time) -0.3549 0.0839 -0.5261 -0.1936
β12 (gender) 0.1900 0.1490 -0.0986 0.4719
β13 (time*gender) 0.2191 0.0923 0.0406 0.4011
ϕ1 0.5155 0.0344 0.4489 0.5837
σ2

b1
0.3751 0.0616 0.2737 0.5091

Migraine duration outcome
β20 (Int.) 1.9477 0.1981 1.5482 2.3347
β21 (time) -0.2405 0.0968 -0.4338 -0.0586
β22 (gender) 0.4022 0.2121 0.0067 0.8192
β23 (time*gender) 0.0898 0.1050 -0.1209 0.2919
ϕ2 0.7289 0.0446 0.6472 0.8181
σ2

b2
0.8368 0.1202 0.6142 1.1045

ρb -0.0257 0.1000 -0.2131 0.1805

The results in Table 2 first show that in the migraine frequency model, the inter-
action between time and gender is statistically significant at the 5% level

(
95% CrI :

[0.0406, 0.4011]
)
. When bi1 is fixed, for females, the mean number of days with migraine

decreases by 0.87 fold (e.g., exp(β̂11 + exp(β̂13) = exp(−0.3549 + 0.2191) = 0.87) when the
time since the first visit increases by one unit. When bi1 is fixed, the mean number of days
with migraine in males gradually decreases by 0.70 fold (e.g., exp(β̂11) = exp(−0.3549) =
0.70) when the time since the first visit increases by one unit. These results suggest that
patients, regardless of gender, are more likely to report more migraine attacks when the
time to the next visit increases after the first visit. For the migraine duration model,
the interaction between time and gender is not statistically significant at the 5% level(
95% CrI : [−0.1209, 0.2919]

)
. For a given bi2 and time, the mean migraine duration with

gender factor is not statistically significant at the 5% level
(
95% CrI : [−0.0067, 0.8192]

)
.

Similarly, for a given bi2 and gender, expected migraine duration gradually decreases by
a factor of 0.79 fold (e.g., exp(β̂21) = exp(−0.2405) = 0.79) as time since first visit in-
creases by one unit. Parameters ϕ1 and ϕ2 are estimated to be 0.5155 and 0.7289, respec-
tively, indicating over-dispersion in the outcomes. The parameters (π10, π11, π12, π13, π14)
and (π20, π21, π22, π23, π24, π25) are estimated as (0.0867, 0.0611, 0.0460, 0.0267, 0.1685) and
(0.1008, 0.1710, 0.0060, 0.0540, 0.0371, 0.0085).

In our analysis, the correlation between the random-intercept of the migraine frequency
outcome and the migraine duration outcome ρb is estimated to be −0.0257. These results
suggest that the average duration of migraine decreases as the number of patient-reported
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migraine frequencies increases. Because the responses were self-reported, patients may
have had only a rough recollection of the number of migraine attacks in the past 30 days
and little recollection of the exact average duration. Therefore, this behaviour of the
patients may have resulted in an inverse relationship between migraine frequency and
migraine duration. However, as shown in Table 2, the correlation estimate is at the 5%
level

(
95% CrI : [−0.2131, 0.1805]

)
turns out not to be statistically significant, indicating

that migraine frequency and duration outcomes are not correlated. In this sense, we also
fitted the separate models mentioned in Section 2.1 to each migraine outcome. Posterior
mean estimates, standard deviations, and 95% credible intervals are presented in Table 3.
It should be noted here that in the separate modeling, the gamma distribution (i.e.,
Gamma(0.001, 0.001)) is assumed to be the prior distribution for the inverse of the σ2

b1
and

σ2
b2

parameters. The results in Table 2 are consistent with those in Table 3, with slightly
lower standard deviations for the parameter estimates of the joint modeling approach.
To compare the proposed joint model with the separate models, we also used the widely
applicable information criterion (WAIC) [7, 24] in the Appendix. The smaller the WAIC
value, the better the model. The WAIC value of the proposed joint model is 11945.89 and
the sum of the WAIC values of the separate models is 12173.48, indicating that the joint
modeling is better than the separate modeling for this data.

Table 3. Posterior mean estimates, standard deviations, and 95% credible in-
tervals (CrIs) obtained through the analysis of the migraine data with separate
models.

Parameter Est. SD 2.5% 97.5%
Migraine frequency outcome
β10 (Int.) 2.0903 0.1431 1.7902 2.3776
β11 (time) -0.3598 0.0863 -0.5266 -0.2017
β12 (gender) 0.1927 0.1554 -0.1044 0.4977
β13 (time*gender) 0.2214 0.0928 0.0452 0.4042
ϕ1 0.5138 0.0350 0.4471 0.5817
σ2

b1
0.3784 0.0586 0.2749 0.5062

Migraine duration outcome
β20 (Int.) 1.9416 0.1930 1.5675 2.3183
β21 (time) -0.2438 0.0999 -0.4502 -0.0421
β22 (gender) 0.4068 0.2108 0.0057 0.8292
β23 (time*gender) 0.0958 0.1058 -0.1040 0.3035
ϕ2 0.7283 0.0459 0.6417 0.8234
σ2

b2
0.8251 0.1201 0.6148 1.0876

4. Simulation study
In this section, we conducted a Monte Carlo simulation study to evaluate the perfor-

mance of the proposed joint model and compare its performance with separate models
under two different correlation structures such as weak and strong.

In the simulation study, we closely followed the structure of motivating migraine data
in Table 1. We assumed that the simulation study consisted of N = 200 patients. The
number of repeated measurements ni per patient was independently generated from a
discrete uniform distribution between 3 and 6. The variable timeij was randomly drawn
from the possible values {1, 2, . . . , 56} at each time point of each patient in ascending order.



804 G. İnan

The variable genderi was generated independently for each patient from Ber(0.84). The
vector of random intercepts for the ith patient, bi = (bi1, bi2), was generated from bivariate
normal distribution with mean vector 0 and variance-covariance matrix:

Σb =
[

σ2
b1

= 0.3792 ρbσb1σb2

ρbσb1σb2 σ2
b2

= 0.8324

]
,

with ρb = 0.1 (weak correlation) and 0.80 (strong correlation). Longitudinal bivariate data
with count outcomes Yi1j and Yi2j were generated according to the proposed joint model,
using the parameter estimates obtained from the analysis of migraine data in Table 2 as
the true value for the data generation mechanism. Then, inflation of the Yi1j and Yi2j

outcomes was performed in a similar manner to the analysis of the migraine data. After
generating 100 longitudinal bivariate count data sets with inflated values, we fitted the
proposed joint model and separate models to the generated data sets with similar MCMC
settings as in the migraine data analysis.

While the simulation results for the regression parameters β1 and β2 of the joint model-
ing approach and those of the separate modeling approach when correlation was weak were
presented in Table 4, simulation results when correlation was strong were presented in Ta-
ble 5. To measure performance, for each individual regression coefficient, the mean of the
posterior estimates of the regression parameters over 100 Monte Carlo runs (Mean), the
absolute bias (abs(Bias): absolute value of the difference between mean and true value),
the sample standard deviation of the posterior mean of the parameters over 100 Monte
Carlo runs (SD), and the mean of the posterior standard deviation of the parameters over
100 Monte Carlo runs (MSD) were calculated. Finally, the efficiency gain was calculated as
the mean of the posterior variance of the parameter estimates from the separate modeling
over 100 Monte Carlo runs divided by the mean of the posterior variance of the parameter
estimates from the joint modeling over 100 Monte Carlo runs. Thus, the basic objective
of our simulation study is to examine the efficiency gain of the regression parameters from
the proposed joint model over the separate model when the inherent correlation between
the outcomes is strong.

Table 4. Summary of the performance measures of regression parameters under
weak correlation scenario.

Parameter β10 β11 β12 β13 β20 β21 β22 β23

True value 2.10 -0.35 0.19 0.21 1.90 -0.25 0.40 0.10
Joint model
Mean 2.1152 -0.3554 0.1773 0.2186 1.9072 -0.2466 0.4109 0.0997
abs(Bias) 0.0152 0.0054 0.0127 0.0086 0.0072 0.0034 0.0109 0.0003
SD 0.1238 0.0746 0.1280 0.0773 0.1814 0.1033 0.2061 0.1072
MSD 0.1310 0.0761 0.1424 0.0827 0.1862 0.0948 0.2028 0.1027
Separate model
Mean 2.1148 -0.3551 0.1773 0.2184 1.9054 -0.2463 0.4126 0.0993
abs(Bias) 0.0148 0.0051 0.0127 0.0084 0.0054 0.0037 0.0126 0.0007
SD 0.1221 0.0741 0.1265 0.0766 0.1833 0.1032 0.2081 0.1070
MSD 0.1316 0.0763 0.1432 0.0826 0.1865 0.0950 0.2029 0.1030
Efficiency 1.0116 1.0000 1.0098 1.0000 1.0057 1.0120 1.0024 1.0094

The results in Table 4 show that with weak correlation, there is no significant difference
between the joint and separate modeling approaches in the estimates of the regression
parameters in terms of bias. The bias is much smaller for the parameter estimates of the
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duration outcome because the range of the duration outcome is larger than the range of
the migraine frequency outcome. The SD and the MSD of the regression parameter esti-
mates are slightly smaller for the joint modeling approach than for the separate modeling
approach. On the other hand, the results in Table 5 show that when the correlation is
strong, the bias of the parameter estimates in the joint modeling approach decreases signif-
icantly, leading to larger biases in the separate modeling approach. Moreover, an increase
in correlation leads to higher efficiency of the parameter estimates of the joint modeling
approach compared to the parameter estimates of the separate modeling approach.

Table 5. Summary of the performance measures of regression parameters under
strong correlation scenario.

Parameter β10 β11 β12 β13 β20 β21 β22 β23

True value 2.10 -0.35 0.19 0.21 1.90 -0.25 0.40 0.10
Joint model
Mean 2.1150 -0.3470 0.1859 0.2091 1.9039 -0.2329 0.4074 0.0809
abs(Bias) 0.0150 0.0030 0.0041 0.0009 0.0039 0.0171 0.0074 0.0191
SD 0.1336 0.0711 0.1421 0.0776 0.1976 0.0976 0.1943 0.1063
MSD 0.1335 0.0721 0.1425 0.0832 0.1877 0.0943 0.2040 0.1021
Separate model
Mean 2.1127 -0.3462 0.1877 0.2079 1.9030 -0.2341 0.4088 0.0821
abs(Bias) 0.0127 0.0038 0.0023 0.0021 0.0030 0.0159 0.0088 0.0179
SD 0.1348 0.0755 0.1469 0.0784 0.1983 0.0997 0.1944 0.1080
MSD 0.1347 0.0774 0.1461 0.0838 0.1866 0.0954 0.2024 0.1031
Efficiency 1.1222 1.1167 1.0142 1.1143 1.0888 1.1232 1.0857 1.1190

5. Conclusion
According to the Migraine Research Foundation (MRF), migraine is the 3rd most com-

mon and the 6th most disabling disease in the world, affecting 39 million people in the
United States and 1 billion worldwide. The MRF also believes that migraine is a public
health problem, such that the annual health care and lost productivity costs associated
with migraine in the U.S. are estimated to be approximately 36 billion. These descrip-
tive statistics highlight the importance of developing new statistical models for migraine
studies to provide reliable statistical inference for better medical and health decisions.

In this paper, we proposed a joint modeling strategy to analyze longitudinal patient-
reported data on frequency and duration of migraine with inflated values under a Bayesian
estimation framework. Our simulation study showed that when the correlation between
outcomes are strong, the joint modeling of the outcomes results in efficiency gain over the
separate modeling of each outcome. Broadly speaking, note that the elements of the set
{r0, r1, . . . , rK−1} can be treated as ordinal variables and their cumulative probabilities
Pr(Yij ≤ rk) =

∑k
0 Pr(Yij = rk) =

∑k
0 πijk

can be associated with a set of covariates,
which can be a follow-up study.
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Appendix
The widely available (or Watanable-Akaike) information criterion (WAIC) is calculated

as follows:
WAIC = −2(lppd − pWAIC),

where “lppd” is the log-pointwise predictive density and is computed as:

lppd =
N∑

i=1

ni∑
j=1

log
[ 1
S

S∑
s=1

f(yij ; θs)
]
,

with θs denoting the sth (s = 1, . . . , 1000) sample value from the posterior predictive
distribution. The effective number of parameters is computed as:

pWAIC =
N∑

i=1

ni∑
j=1

V S
s=1(log(f(yij ; θs)).


