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Highlights 

• This paper focuses on feature selection and feature selection stability.  

• In the pages that follow, we review supervised feature selection methods.  

• We examine several metrics used to measure the stability of the feature selection algorithms. 
 

Article Info 

 

Abstract 

Feature selection is a dimension reduction technique used to select features that are relevant to 

machine learning tasks. Reducing the dataset size by eliminating redundant and irrelevant features 

plays a pivotal role in increasing the performance of machine learning algorithms, speeding up 

the learning process, and building simple models. The apparent need for feature selection has 

aroused considerable interest amongst researchers and has caused feature selection to find a wide 

range of application domains including text mining, pattern recognition, cybersecurity, 

bioinformatics, and big data. As a result, over the years, a substantial amount of literature has 

been published on feature selection and a wide variety of feature selection methods have been 

proposed. The quality of feature selection algorithms is measured not only by evaluating the 

quality of the models built using the features they select, or by the clustering tendencies of the 

features they select, but also by their stability. Therefore, this study focused on feature selection 

and feature selection stability. In the pages that follow, general concepts and methods of feature 

selection, feature selection stability, stability measures, and reasons and solutions for instability 

are discussed. 
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1. INTRODUCTION 

 

Datasets originating from different disciplines, such as biology, retail, finance, geography, and astrophysics, 

can contain thousands of features for every instance. Some of these features have little or no contribution 

(a.k.a., redundant and irrelevant features) to machine learning models. For this reason, eliminating them 

from the learning process helps to increase learning speed, reduce the risk of overfitting, overcome the 

curse of dimensionality1, decrease computational requirements, create simple models with high 

generalization performance, and facilitate the interpretability of results. Selecting relevant features is an 

indispensable task, and feature selection approaches are used to detect such features. 

 

The primary aim of feature selection is to find the optimal set of relevant features without losing the salient 

characteristics of the data. However, this is an NP-Hard problem [1, 2]. The relevancy of features can be 

classified as weak and strong [1]. Features with weak relevance mostly have a limited contribution to the 

machine learning process. Therefore, excluding these features from the model-building process does not 

always degrade the performance of machine learning algorithms. However, features with strong relevance 

always contribute to the machine learning process, and excluding them from the model-building process 

 
1 The curse of dimensionality means that machine learning algorithms suffer performance degradation as the number 

of features (dimensions) increases. 
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results in performance degradation. Yu and Liu [2] pointed out that “an optimal feature subset should 

include all strongly relevant features, none of the irrelevant features, and a subset of weakly relevant 

features”. Feature selection has been used in a wide range of applications, such as DNA microarray analysis 

[3-6], hard drive failure prediction [7], intrusion detection [8, 9], image classification and retrieval [10, 11], 

text mining [12-14], etc. 

 

Selection stability is an important property of feature selection algorithms. The stability of the feature 

selection algorithm is defined as the variation in the outputs of the selection algorithm due to slight 

differences in the training set (data). Unstable feature selection algorithms significantly change their feature 

preferences when a small amount of change is introduced to the training data. This makes it difficult for the 

user to identify feature subsets and undermines confidence in the algorithm and the overall analysis process. 

Like feature selection, feature selection stability also arouses the interest of researchers. Therefore, there is 

a considerable amount of published resources on this subject. This paper has been organized as follows. 

Section 2 gives a brief description of the feature selection process. Section 3 discusses types of feature 

selection, while Section 4 describes supervised feature selection methods. Section 5 reviews some common 

classification model evaluation metrics. The next two sections formulate the problem of feature selection 

stability and the metrics used to assess stability. Section 8 outlines reasons and solutions for the instability. 

Finally, Section 9 concludes the study. 

 

2. FEATURE SELECTION 

 

Datasets can contain irrelevant and redundant features2 that adversely affect the machine learning process. 

Therefore, features that contribute to the machine learning process should be detected using feature 

selection techniques. Using domain knowledge, common sense, and getting help from domain expertise 

may also help to detect and eliminate redundant features. However, a more systematic approach is needed 

for high-dimensional datasets. Since redundant and irrelevant features have no significant impact on 

machine learning, discarding them from the learning process will help to increase learning speed, reduce 

overfitting, avoid the curse of dimensionality, and create simple models. For a dataset 𝑑, feature selection 

is to select a number of features, 𝑓′ =  {𝑓𝑖
′| 𝑖 = 1,2,3, … , 𝑚}, from the original feature set 𝑓 =  {𝑓𝑖| 𝑖 =

1,2,3, … , 𝑛} by satisfying conditions 𝑚 ⊂ 𝑛 and 𝑎𝑟𝑔𝑚𝑎𝑥𝑓′  (𝑇), i.e., maximizing the value of 𝑇, where 𝑇 

is a target function, such as classification accuracy or the quality of clusters. 

 

The general procedure of supervised feature selection has four steps (see Figure 1). The first step is to 

explore the feature space using a search technique, e.g., random search, and to generate a candidate feature 

subset. The next step is to measure the goodness of the generated subset using a specified evaluation 

criterion, e.g., distance, mutual information, etc., or an inductive learner. The third step is to control the 

stopping criterion used to limit the run time of the selection process. Some common stopping criteria are: 

obtaining the optimal feature set, reaching the maximum number of iterations or a predefined number of 

features, or no improvement in the accuracy. If the stopping criterion is unsatisfied, the selection process 

returns to the first step. The last step is to validate the selected features. A classifier tries to predict the 

labels of the instances in the testing dataset on the selected features. 

 

Unsupervised feature selection also, takes place in four steps: feature subset generation, feature subset 

evaluation, stopping criterion, and validation. In unsupervised feature selection, datasets are not split into 

training and test sets, and all samples are used in the selection process. As with supervised feature selection, 

feature selection can be independent or dependent on unsupervised learning algorithms. Iteration size or no 

improvement in the clustering quality3 can be set as a stopping criterion. Finally, the results can be validated 

by conducting different experiments. Feature selection and feature extraction are two different approaches 

used for dimension reduction. Feature extraction, or feature construction, approaches construct new 

 
2 Irrelevant features provide no useful information to the machine learning process, and redundant features provide 

duplicate information. 
3 Clustering quality can be measured using an evaluation metric, such as Calinski-Harabasz Index (CH Index) or 

Silhouette Coefficient. 
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features using existing features without losing any information. LDA (Linear Discriminant Analysis) [15] 

is a well-known example of a feature extraction algorithm. 

 

 
Figure 1. Steps of supervised feature selection 

 

3. TYPES OF FEATURE SELECTION 

 

Depending on the label availability, feature selection is classified as supervised, unsupervised, and semi-

supervised. Most of the feature selection algorithms work with either labeled or unlabeled data. However, 

unified feature selection algorithms can work with both types of data [16, 17]. 

 

3.1. Supervised Feature Selection (or Feature Selection for Classification) 

 

Supervised feature selection is performed on labeled data [18, 19]. Thus, the selection algorithms evaluate 

the relation between the features, i.e., independent variables, and the class variable, i.e., dependent variable, 

using an evaluation criterion (see Section 4.1) or a classifier. For supervised feature selection, irrelevant 

features are the ones with low or no association with the dependent variable. Supervised feature selection 

can be used in binary, e.g., the screening test for diseases, multi-class4, e.g., credit rating classification, or 

multi-label5, e.g., classification of movies, classification problems. The Chi-Square test and Neighborhood 

Component Analysis (NCA) [20] are examples of supervised feature selection algorithms. 

 

3.2. Unsupervised Feature Selection (or Feature Selection for Clustering) 

 

Manual data labeling is a costly and laborious task. Automated data labeling6, on the other hand, still needs 

humans to check the accuracy of the labels. In addition to all, it is not always possible to classify instances. 

For this reason, unlabeled data are easily available and abundant. Unsupervised feature selection is 

performed on unlabeled data [19, 21, 22] and is a challenging task, as there are no class labels to guide the 

selection process. The basis for unsupervised feature selection is clustering tendency assessment, i.e., 

clusterability. Clustering tendency assessment is used to determine whether a given dataset contains 

meaningful, i.e., non-random, clusters. Datasets having an inherent grouping structure indeed have clusters 

and are suitable for clustering. Unsupervised feature selection algorithms select features that maximize this 

tendency. Therefore, for unsupervised feature selection, irrelevant features are the noisy ones that do not 

 
4 The term refers to “a classification problem with more than two classes”. 
5 The term refers to “a classification problem where each sample has more than one class label”. 
6 It is an automated data labeling approach that uses machine learning and artificial intelligence. 
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tend to form clusters. PCA [23] and Laplacian Score [24] are examples of unsupervised feature selection 

algorithms. 

 

3.3. Semi-supervised Feature Selection 

 

In semi-supervised feature selection, the relevance of the features is determined using both labeled and 

unlabeled data [19, 25-27]. Different strategies are used for semi-supervised feature selection. One is to 

construct a similarity matrix, i.e., affinity matrix, that uses labeled data to have distinctive information and 

unlabeled data to have complementary information. Another strategy is to use the manifold assumption 

[28]. Relatively little research has been done on semi-supervised feature selection, so this topic remains an 

open field of research. LSDF algorithm [29] is an example of a semi-supervised feature selection algorithm. 

 

4. SUPERVISED FEATURE SELECTION METHODS 

 

Several studies [18, 30, 31] have categorized supervised feature selection methods as filter, wrapper, and 

embedded. In this study, we classified the supervised feature selection methods into five main categories, 

namely, filter, wrapper, embedded, hybrid, and ensemble. Hybrid and ensemble methods use a combination 

of filters, wrappers, and embedded algorithms to make better selections and to avoid being dependent on 

the performance of a single feature selection algorithm or a result set. Both methods perform feature 

selection more than once and achieve selection diversity. For this reason, in this study, they were examined 

as separate categories. A list of some common feature selection algorithms is given in Table 1. 

 

Table 1. List of some common selection algorithms 

Method Algorithms Type/Search Strategy 

Filter 

mRMR 

ReliefF 

Chi-square Test 

Univariate 

 

CFS (Correlation-Based Feature Selection) 

FCBF (Fast Correlation-Based Feature Selection) 

Markov Blanket-Based Filter Selection 

Multivariate 

Wrapper 

SFS (Sequential Forward Selection) 

SBS (Sequential Backward Selection)  

Bidirectional Search 

Deterministic  

Search 

Randomized Hill Climbing 

Genetic Search 

Simulated Annealing 

Randomized  

Search 

Exhaustive Search  

Beam Search 

Branch and Bound 

Exponential 

Search 

Embedded 

Decision Trees 

Random Forest 

Weighted Naïve Bayes 

Tree-Based 

Methods 

Ridge Regression 

LASSO 

Elastic Net 

Regularization 

Methods 

 

4.1. Filter (or Feature Filtering) Methods 

 

Filter methods do not select features, instead, they rank the entire feature set using an evaluation function, 

i.e., evaluation criteria. Feature selection is done by the user considering the rankings (relevancy scores). 

The evaluation function can be distance, information, i.e., entropy, accuracy, correlation, and consistency 

based. Filter methods use statistical and mathematical functions rather than classifiers to assess the 

goodness of features. Filter methods are categorized as univariate and multivariate. Univariate filter 

methods do not assess the relationships between the features (do not assess feature dependencies). This 
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means the relevance of each feature in the feature set is evaluated independently, i.e., performs individual 

evaluation, which causes the features that are useless alone but valuable in combination with other features 

to be ignored. Multivariate filter methods assess the relationships between the features (assess feature 

dependencies) to some extent. Therefore, multivariate filter methods are slower and less scalable than 

univariate methods. 

 

4.2. Wrapper Methods 

 

Wrapper methods have three components: a search strategy, e.g., randomized search, to generate feature 

subsets, a classifier working as a black box7 to assess the generated feature subsets, and a stopping criterion, 

e.g., reaching the maximum number of iterations. Wrappers consider dependencies among features and 

have better generalization ability than filters. For high-dimensional datasets, wrapper methods are 

computationally costly. This is because, for 𝑛 number of features, it is possible to generate 2𝑛 subsets and 

the classification performance of each subset must be validated by the classifier. Calling the classifier 

recurrently also makes wrapper methods prone to overfitting as compared to filter and embedded methods. 

Another disadvantage of this method is that the feature preferences of the wrapper methods depend on the 

classifier used as the black box. 

 

4.3. Embedded Methods 

 

Feature selection in embedded methods occurs whilst the classifier is being trained. Therefore, the feature 

selection process results in both a selected feature subset and a trained classifier. Feature preferences of 

embedded methods are affected by the classifier hypothesis. Embedded methods are computationally less 

intensive, less prone to overfitting, and have faster running time as compared with wrappers. They can also 

capture feature dependencies. The tree-based classification algorithms, such as CART [32] and ID3 [33] 

are examples of embedded methods. 

 

4.4. Hybrid Methods 

 

The general idea behind hybrid methods is to combine different feature selection approaches and leverage 

the strengths of selectors to achieve the best, i.e., optimal, results. For instance, a hybrid method can be 

constructed by combining filter and wrapper methods. The feature selection process works as follows. First, 

the entire feature set is ranked by a filter method. Then, the user generates a feature subset usually by 

heuristically setting a relevance threshold or by simply selecting the top n features. Finally, a wrapper 

method is employed to further reduce the generated feature subset. The main issue in hybrid methods is the 

successive use of different feature selection methods increases the computational cost. 

 

4.5. Ensemble Methods 

 

In ensemble methods, feature selection is performed more than once and the generated feature subsets are 

combined into a single subset. There are three different ensemble strategies. In the data diversity strategy, 

first, the original dataset is sampled using a sampling method, e.g., simple random sampling with/without 

replacement, and then a single selection algorithm is applied to each sample. In the functional diversity 

strategy, a set of different selection algorithms are applied to the original dataset without using any 

sampling method. In the hybrid strategy, different selection algorithms are applied to different datasets 

generated from the original dataset by sampling. Aggregating feature subsets have an important role in any 

ensemble scheme. 

 

5. EVALUATING SUPERVISED MODELS 

 

For supervised learning, feature selection quality is expressed by the classification performance, which is 

evaluated using various metrics, such as Accuracy Rate, Error Rate, Sensitivity, Specificity, AUC (Area 

under the Curve), etc. Table 2 summarizes some common evaluation metrics and their formulas. For a 

 
7 The term refers to “without considering the internal workings of the algorithm”. 
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binary classification problem, assume that class A is a positive class and class B is a negative class. True 

positives (TP) are the number of correctly labeled samples belonging to the positive class. True negatives 

(TN) are the number of correctly labeled samples belonging to the negative class. False positives (FP) are 

the number of incorrectly labeled samples belonging to the negative class. False negatives (FN) are the 

number of incorrectly labeled samples belonging to the positive class. See [34] for a detailed brief on model 

evaluation metrics. 

 

Table 2. Supervised model evaluation metrics and their formulas 

Metric Formula 

Accuracy Rate (𝑇𝑃 +  𝑇𝑁)/(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑁 +  𝐹𝑃) 

Error Rate 1 −  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑅𝑎𝑡𝑒 

Sensitivity 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

Specificity 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) 

Positive Prediction Value (PPV) 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

Negative Prediction Value (NPV) 𝑇𝑁/(𝑇𝑁 + 𝐹𝑁) 

Prevalence (𝑇𝑃 + 𝐹𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃) 

F1 Score (2 ∗ 𝑇𝑃)/((2 ∗ 𝑇𝑃) + 𝐹𝑃 + 𝐹𝑁) 

True Positive Rate (TPR) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

False Positive Rate (FPR) 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

 

The performance of binary classification models can be visualized using the ROC curve. The ROC curve 

is plotted in the two-dimensional ROC space, where TPR is on the vertical axis, and FPR is on the horizontal 

axis. Both axes are ranged between 0 and 1. Therefore, the ROC Curve goes through the points (0,0) and 

(1,1). To draw the ROC curve, the cut-off points, i.e., decision thresholds, are first determined by the user, 

and for each cut-off point, the TPR and FPR values are calculated. These values represent a point in the 

ROC space. When all cut-off points are over, the points marked on the ROC space are connected to form 

the ROC curve. The ROC curve is a graphical plot that portrays the performance of the binary classification 

models. For the numerical representation of the performance, the area under the curve (AUC) is calculated. 

The accuracy of the model is directly proportional to the area under the curve. That is, the larger the AUC 

value, the more accurate the model is. The ROC curve can be plotted for multiclass classification models 

using the “one versus one” and “one versus all” strategies [35, 36]. 

 

6. FEATURE SELECTION STABILITY 

 

The stability of feature selection algorithms was first studied by Turney [37]. Slight changes in the training 

data may cause radical differences in the feature preferences of the selection algorithm. Stable feature 

selection algorithms are insensitive to these variations and do not change their feature preferences. On the 

other hand, unstable algorithms are sensitive to training data variations and change their feature preferences. 

Resampling the training set, removing or adding records to the training set, adding noise to records, and 

reordering the records or features are examples of data variation. 

 

Stability is an important issue for feature selection algorithms because it is difficult to verify and interpret 

the results of an unstable algorithm. Factors such as unbalanced class distributions [38, 39], skewed data 

[40], outlier and noisy values in the dataset, features representing similar information and features that are 

closely correlated, i.e., multi-dependency and multicollinearity [41], insufficient number of samples, and 

high dimensionality, e.g., the curse of dimensionality [42], affect the stability of the selection algorithm. In 

addition to these, not choosing the right feature selection technique and incorrectly setting its 

hyperparameters also affect the stability. 

 

Researchers have paid much attention to supervised feature selection and supervised feature selection 

stability. On the other hand, only a few studies have analyzed unsupervised and semi-supervised feature 

selection stability. The remaining part of the paragraph summarizes some studies related to these topics. 
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Wu and Chang [43] introduced a new unsupervised feature selection method that uses Neural Networks to 

score and select relevant features. The authors empirically analyzed the sensitivity of the selection 

algorithm using algorithmic stability analysis. Helleputte and Dupont [44] introduced a semi-supervised 

feature selection method based on regularized linear models. The authors used the Kuncheva’s Index to 

measure the stability of the method and the Balanced Classification Rate to test the performance of the 

model built on selected features. Lai and Garibaldi [45] conducted experiments using four different feature 

selection methods and the Semi-supervised Fuzzy C-Means Classifier (as performance evaluator). The 

stability of the selection methods was quantified using the stability measure proposed by Kalousis et al. 

[46]. 

 

7. STABILITY MEASURES 

 

Feature selection algorithms can represent their results, i.e., feature preferences, in terms of rank, weight, 

and index. Therefore, depending on the representation, stability measures can be classified as stability by 

rank, weight, and index. Stability can be measured in two steps. The first step involves applying different 

amounts of perturbation (e.g., perturbation might be in the form of drawing training samples from the 

original data) into the training data at each iteration and obtaining the selected feature subsets. The second 

step involves using a stability measure to assess the similarities between the feature subsets. The majority 

of the stability measures compare selected feature subsets in pairs. Therefore, for 𝑛 number of feature 

subsets, they perform 𝑛(𝑛 − 1)/2 comparisons and the stability of the feature selection algorithm is simply 

the average of the stability results from each comparison. The greater the similarity between the resulting 

subsets, the greater the stability value. 

 

7.1. Stability by Rank 

 

The stability of the selection algorithms that rank features in terms of relevancy, e.g., Minimum 

Redundancy Maximum Relevance (mRMR) [47], is measured by evaluating the correlation (or similarity 

ratio) between ranking vectors using metrics, such as Spearman's Rank Correlation Coefficient (SRCC or 

Spearman's rho), Kendal’s Rank Correlation Coefficient (KRCC or Kendall's tau), Canberra Distance, and 

Weighted Canberra Distance (see Table 3). In Table 3, 𝑋𝑖 and 𝑌𝑖 represent ith ranked vectors, i.e., feature 

set, 𝑛 is the total number of features, 𝑘 is the top-𝑘 positions of the ranked feature set, 𝐶𝑃 represents the 

number of concordant pairs and 𝐷𝑃 represents the discordant ones. 

 

Table 3. The measures of stability by rank 
Measure Formula Bounds Measures Ref. 

SRCC 

(or Spearman’s ρ) 
𝜌 = 1 −

6 ∑ (𝑋𝑖 − 𝑌𝑖)
2𝑛

𝑖=1

(𝑛3 − 𝑛)
 −1 ≤ 𝜌 ≤ 1 Similarity [46] 

KRCC 

(or Kendall’s τ) 
𝜏 =

# 𝑜𝑓 𝐶𝑃 − # 𝑜𝑓 𝐷𝑃
𝑛2−1

2

 −1 ≤ 𝜏 ≤ 1 Similarity [48] 

Canberra Distance8 𝑑𝐶𝐷 = ∑
|𝑋𝑖 − 𝑌𝑖|

|𝑋𝑖 + 𝑌𝑖|

𝑛

𝑖=1

 [0, ∞] 

Dissimilarity [49] 
Weighted Canberra 

Distance8 
𝑑𝑊𝐶𝐷 = ∑

|𝑚𝑖𝑛(𝑋𝑖 , 𝑘 + 1) − 𝑚𝑖𝑛(𝑌𝑖 , 𝑘 + 1)|

𝑚𝑖𝑛(𝑋𝑖 , 𝑘 + 1) + 𝑚𝑖𝑛(𝑌𝑖 , 𝑘 + 1)

𝑛

𝑖=1

 [0, ∞] 

 

7.2. Stability by Weight (or Weight Score) 

 

The stability of the selection algorithms that weight features in terms of relevancy, e.g., ReliefF [50], is 

measured by evaluating the correlation (or similarity ratio) between weight vectors using Pearson’s 

Correlation Coefficient (PCC). PCC (see Table 4) is the only stability measure in this category. Feature 

 
8 For Canberra and Weighted Canberra Distances 1 − 𝑑𝐶𝐷  or 1 − 𝑑𝑊𝐶𝐷  gives similarity. Canberra and Weighted 

Canberra Distances can be bounded in the interval of [0,1] by dividing by the total number of features. 
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weights range from 0 to 1 or -1 to 1, where 1 denotes the most relevant attribute and 0 or -1 denotes the 

least relevant one. In Table 4, 𝑋𝑖 and 𝑌𝑖 represent ith weight vectors, i.e., feature subsets, and �̅� and �̅� 

represent sample means. 

 

Table 4. The measures of stability by weight 
Measure Formula Bounds Measures Ref. 

Pearson’s Correlation Coefficient 

(PCC) 

𝑟 =
∑ (𝑋𝑖 − �̅�)𝑛

𝑖=1 (𝑌𝑖 − �̅�)

√∑ (𝑋𝑖 − �̅�)2 ∑ (𝑌𝑖 − �̅�)2𝑛
𝑖=1

𝑛
𝑖=1

 
−1 ≤ 𝑟 ≤ 1 Similarity [46] 

 

7.3. Stability by Index (or Subset) 

 

Feature selection algorithms, such as SBS (Sequential Backward Selection), represent their output as a 

vector of feature indices, e.g., 𝑓 = {1,3,6,7, … }, or as a binary vector, e.g., 𝑓 = [1,0,1,0,0,1,1,0, … ] 
(selected attributes are represented by 1). Therefore, measures in this category use set-based similarity. 

Some examples of stability by index measures are Sørensen-Dice Coefficient, Kuncheva and Jaccard Index, 

and Hamming Distance (see Table 5). In Table 5, X and Y represent index vectors, i.e., feature indexes, 𝑛 is 

the total number of features, and 𝑐 is the cardinality of feature subsets. 

 

Table 5. The measures of stability by index 
Measure Formula Bounds Measures Ref. 

Jaccard Coefficient 𝐽(𝑋, 𝑌) =
|𝑋 ∩ 𝑌|

|𝑋 ∪ 𝑌|
 

[0,1] 
Similarity 

[51] 

Jaccard Distance 𝑑𝐽 = 1 − 𝐽(𝑋, 𝑌) Dissimilarity 

Sørensen-Dice 

Coefficient 
𝑆𝐷(𝑋, 𝑌) =

2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 [0,1] Similarity [52] 

Jaccard Coefficient 

using Sørensen-Dice 
𝐽(𝑋, 𝑌) =

𝑆𝐷(𝑋, 𝑌)

2 − 𝑆𝐷(𝑋, 𝑌)
 [0,1] 

Similarity  
Sørensen-Dice using 

Jaccard Coefficient 
𝑆𝐷(𝑋, 𝑌) =

2𝐽(𝑋, 𝑌)

1 + 𝐽(𝑋, 𝑌)
 [0,1] 

Kuncheva Index 𝐾𝐼(𝑋, 𝑌) =
|𝑋 ∩ 𝑌|𝑛 − 𝑐2

𝑛𝑐 − 𝑐2
 [−1,1] Similarity [53] 

Hamming Distance 𝑑𝐻 = #(𝑋 ≠ 𝑌) — Dissimilarity 

[54] Normalized 

Hamming Similarity 
𝐻(𝑋, 𝑌) = 1 −

𝑑𝐻

𝑛
 [0,1] Similarity 

Lustgarten’s Measure 𝐿(𝑋, 𝑌) =
|𝑋 ∩ 𝑌| −

|𝑋||𝑌|

𝑛

𝑚𝑖𝑛 (|𝑋|, |𝑌|) − 𝑚𝑎𝑥 (0, |𝑋| + |𝑌| − 𝑛)
 [−1,1] Similarity [55] 

Ochiai Similarity 𝑂(𝑋, 𝑌) =
|𝑋 ∩ 𝑌|

√|𝑋|√|𝑌|
 [0,1] Similarity [56] 

POG9 𝑃𝑂𝐺(𝑋, 𝑌) =
|𝑋 ∩ 𝑌|

|𝑋|
 [0,1] Similarity [57] 

nPOG10 𝑛𝑃𝑂𝐺(𝑋, 𝑌) =
|𝑋 ∩ 𝑌| −

|𝑋||𝑌|

𝑛

|𝑋| −
|𝑋||𝑌|

𝑛

 [1 − 𝑛, 1] Similarity [58] 

Wald’s Measure 𝐿(𝑋, 𝑌) =
|𝑋 ∩ 𝑌| −

|𝑋||𝑌|

𝑛

𝑚𝑖𝑛 (|𝑋|, |𝑌|) −
|𝑋||𝑌|

𝑛

 [1 − 𝑛, 1] Similarity [59] 

 

 

 
9 POG is the acronym for the “Percentage of Overlapping Genes/Features”. 
10 nPOG is the acronym for the “Normalized Percentage of Overlapping Genes/Features”. 
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7.4. Other Types of Stability Measures 

 

Gulgezen et al. [60] proposed a stability evaluation measure that uses a weighted bipartite graph and 

Symmetrical Uncertainty. The authors used Symmetric Uncertainty to assign weights to selected feature 

subsets. Unlike other stability measurement methods, the proposed approach assesses the similarity 

between feature values instead of feature indices. Symmetrical Uncertainty is an entropy-based nonlinear 

correlation that returns results in the range of 0 and 1 and can measure the association between dependent 

(features) and independent (class) variables. Therefore, it can also be used as a filter method. In Table 6, 𝑋 

and 𝑌 represent selected feature vectors, and IG and E are the information gain and the entropy, 

respectively. 

 

Table 6. The formula of Symmetrical Uncertainty 
Measure Formula Bounds Measures Ref. 

Symmetrical  

Uncertainty 

𝑆𝑈(𝑋, 𝑌) = 2 [
𝐼𝐺(𝑋|𝑌)

𝐸(𝑋) + 𝐸(𝑌)
] 

 

𝑤ℎ𝑒𝑟𝑒 𝐼𝐺(𝑋|𝑌) = 𝐸(𝑋) − 𝐸(𝑋|𝑌) 𝑎𝑛𝑑 

𝐸(𝑋) = − ∑ 𝑃(𝑥𝑖) 𝑙𝑜𝑔2(𝑃(𝑥𝑖))
𝑖

 

𝐸(𝑋|𝑌) = − ∑ 𝑃(𝑦𝑗) ∑ 𝑃(𝑥𝑖|𝑦𝑗)

𝑖

𝑙𝑜𝑔2(𝑃(𝑥𝑖|𝑦𝑗))

𝑗

 

[0,1] Similarity [60] 

 

The stability measures mentioned above evaluate the amount of overlap between the result sets by using 

pairwise comparisons. Frequency-based stability metrics use the occurrence or occurrence frequency of an 

attribute or set of attributes. For the measures in this category, selected feature subsets should be represented 

as a binary matrix (where 1 means the feature is selected), where each row represents a subset and each 

column represents the selection of a particular feature. Some examples of frequency-based stability methods 

are Nogueira’s measure [61], Lausser’s measure [62], Entropy-based stability measure [63], Jensen-

Shannon Divergence-based stability measure [64], corrected frequency of selection [65], and average 

frequency of selection [66]. Formulas and explanations of these metrics can be found in Nogueira’s related 

work [61]. 

 

7.5. The Properties of Stability Measures 

 

Kuncheva [53] identified the properties of a stability measure should have as monotonicity, limits, and 

correction for chance. In their study, Nogueira and Brown [67] summarized the desirable properties of a 

stability measure and presented which stability measure satisfies which property in a tabular form. These 

properties are: 

1. Monotonicity: The stability result should increase as the similarity between the selected feature 

subsets increases. 

2. Having limits: The result of the stability metric should be bounded between constants, e.g., the 

results of most stability metrics are in the range of [0,1] or [−1,1]. 
3. Correction for chance: In her study, Kuncheva [53] stated that “the index should have a constant 

value for independently drawn subsets of features of the same cardinality”. As the cardinality of 

the selected feature subsets increases, the amount of overlap between the sets increases as well. 

This is called an intersection by chance. In such a case, the stability metric should have a constant 

that corrects the result. For example, Kuncheva Index satisfies this property. 

4. Symmetry: Let 𝑓1 and 𝑓2 denote two different selected feature subsets, and 𝑠 denote a stability 

measure. The stability value of 𝑠(𝑓1, 𝑓2) should be equal to 𝑠(𝑓2, 𝑓1). 

5. Independent of cardinality: The stability metric should be used with subsets of selected features 

of different sizes. 

6. Maximum and minimum: The stability metric should reach its maximum if the selected feature 

subsets are the same, and its minimum if the selected feature subsets are completely different. 
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8. REASONS AND SOLUTIONS FOR INSTABILITY 

 

Data characteristics (quality) and bias-variance decomposition influence the stability of feature selection 

algorithms. Bias-variance decomposition is a method used to analyze expected generalization errors in 

supervised learning. In supervised learning, i.e., classification and regression, bias and variance are two 

sources of error that cause the performance deterioration of machine learning algorithms. Sometimes 

learners are failing to capture the relevant associations between the predictors, i.e., features, and the outputs, 

i.e., class variable or output, due to erroneous assumptions. This is known as a bias error. Variance error is 

the measure of the variability of the learner against training data perturbations. A better tradeoff between 

the bias and the variance can increase the stability of feature selection algorithms [68]. Besides bias and 

variance, another factor that badly influences the performance of the learners is an irreducible error. 

Irreducible error is the random noise (error) in the problem itself (data-dependent) and cannot be reduced 

at all. 

 

Several studies have argued that data-dependent issues such as distribution, imbalanced datasets, sparse 

data, sample size, and the number of features (high dimension-low sample size) play an important role in 

stability [61, 69-72]. Therefore, the characteristics of data can be summarized using descriptive statistics, 

which include central tendency and variability measures, to detect and avert any negative effects. Central 

tendency is measured using mean, median, and mode, whereas standard deviation, variance, the value range 

(minimum and maximum) of the variables, kurtosis, and skewness are used to measure variability, i.e., 

dispersion. Another reason for instability is the algorithms themselves. Stability can be maintained by data 

variance reduction [73], ensemble (see Section 4.5) and group-based feature selection approaches [74-76]. 

Group-based feature selection approaches use highly correlated features and selects features in a grouped 

manner to improve both the stability and prediction performance of models. 

 

9. CONCLUSION 

 

The present research reviews the literature on feature selection and feature selection stability. Problems 

caused by high-dimensional datasets have raised interest in dimension, i.e., data, reduction approaches, like 

feature selection. For this reason, over the years, a large pool of feature selection techniques has emerged. 

Since these techniques use different strategies to select relevant features, choosing the appropriate method 

has a pivotal role in feature selection process. Various studies have proved that eliminating irrelevant and 

redundant features helps to improve the performance of machine learning algorithms and the quality of the 

data analysis. However, feature selection adds extra complexity to the learning process, and it is not always 

feasible to select an optimal feature set, especially when they are closely related. 

 

The quality of selection algorithms is determined by the models built using the feature subsets they select, 

as well as their stability. Stability refers to the robustness, i.e., insensitivity, of the selection algorithm to 

the minor changes in the training set. Stable feature selection methods produce repetitive results. The 

stability of the selection algorithm is an important issue because unstable algorithms mislead the user in 

selecting the resulting subset of attributes and undermine confidence in the algorithm and analysis process. 

In this study, we also addressed different sources of instability and metrics used to assess the stability of 

the feature selection algorithms. 

 

Supervised feature selection and supervised feature selection stability are major areas of interest within the 

field of feature selection. A limited number of studies in the literature have analyzed unsupervised and 

semi-supervised feature selection stability. Thus, these topics constitute an open research field for 

researchers. This study is mostly based on supervised feature selection and selection stability. 

Unfortunately, we were unable to encompass other types of feature selection in detail due to the wide scope 

of the subject. For this reason, we refer the readers to the cited studies to obtain an understanding of the 

topics that were not covered in detail. 
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