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1. Introduction 

We examine the problem with nonstrongly regular boundary conditions [1] as 
 

( ) ( )4 ,  0<t<1, u p t u uλ+ =                                                                                                                        (1)     

( ) ( ) ( ) ( ) ( ) ( )1  1 0 0,   u 1  1 0 0,u u uβ β ʹ− − = − − =                                                                                             (2) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1  1 0 0,   u 1  1 0 0 0,u u u uβ β
αʹ́ ʹ́ ʹ́ʹ ʹ́ʹ− − = − − + =                                                                        (3) 

 
where λ  is spectral parameter; ( ) 0p t ≠  is a complex valued function; 0α ≠  and 0, .β = 1  We deal with 

DTM and ADM to solve the above problem at 0β = . 
Many numerical methods, such as asymptotic formula for eigenfunctions of  the considered boundary value 
problem have been obtained in (Kaya, 2020), the regularized sampling method (Chanane, 2010), the 
extended sampling method (Chanane, 2010), the α-parameterized differential transform method (Mukhtarov, 
Yucel, & Aydemir, 2020) variational iteration methods (Syam, & Siyyam, 2009), Sinc-Galerkin method 
(Alquran, Al-Khaled , 2010), fourth order sturm liouville problem via decomposition method for ( ) 0p t =  

(Attili, & Lesnic, 2006), Magnus Method (Alalyani, 2019), differential transform method for high order 
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Sturm-Liouville problems (Biazar, Dehghan, & Houlari, 2020), lie group method, FDM and the asymptotic 
iteration method etc. are implemented to solve this eigenvalue BVP numerically. 

Some different authors have worked on the development of numerical methods for solving these differential 
equations (Gao, Ismael, & Husien, 2020; Baskonus, Sulaiman, & Bulut, 2018). We use ADM and DTM 
to compare the approximation solutions of the problem that we have suggested as a contribution to the 
literature.

This paper will continue as follows: In part 2 we give the basic process of the ADM and DTM. In part 3 
we present the implementation of the ADM and DTM for computing and comparing the solutions of this 
eigenvalue problem. The figure of eigenfunctions (approximate solutions) for a found l (eigenvalue) is 
plotted. Numerical results are shown in the table.

2. Basic Process of ADM and DTM 

Here we will briefly introduce the ADM and DTM as follows:

In the beginning of the 1980s, ADM has been developed by Adomian (Adomian, & Rach, 1993). In these 
years, the Adomian decomposition method has been implemented for problems arising from physics, 
biology and engineering. Until now, there has been great interest in DTM and ADM applications to solve 
various scientific models, you can refer to the references (Adomian et al., 1993; Zhou, 1986; Ayaz, 2004; 
Abdel-Halim Hassan, 2002; Li et al., 2020; Chakraverty et al., 2019; Adebısı et al., 2021; Çakır et al., 2019; 
Arslan, 2019a; Arslan, 2018b; Peker et al., 2011; Gubes et al., 2015; Peker et al., 2010).

The equation (1) is rewritten as   
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F and L are differential operator and fourth order derivative in Equation (4), respectively. 
R and N are linear and nonlinear terms in Equation (4), respectively. If the integral operator is applied to
each term of Equation (4), we get 

( ) ( ) ( ) ( )1 1 1
 ( ) ,u t L R u L N u L g t− − −= − +  (5) 

where ( )
( )

( ) ( )
4

4... ...dL
dt

= is the differential operator and ( ) ( )1 

0 0 0 0

... ...
t t t t

L dtdtdtdt− = ∫ ∫ ∫ ∫  is integral operator 

(inverse operator) of L . If we operate on both sides of  Equation (5) with the inverse operator of  L−1, we 
obtain 

( ) ( ) ( ) ( )1 1
0  .u t u t L R u L N u− −= − − (6) 

After some calculations, the following iteration system is written: 

( ) ( ) ( ) ( )1 1
1 0  ,   0,1,2,k k ku t u t L R u L N u k− −
+ = − − = (7) 

( ) ( ) ( ) ( )1 1
0

0
 ,k

k
u t u t u L Ru L Nu

∞
− −

=

= = + +∑  (8) 

where 

( ) ( )0 1 
0 0

,   u ... .k k k
k k

Ru u t N A u u u
∞ ∞

= =

= = + + +∑ ∑  

F and L are differential operator and fourth order derivative in Equation (4), respectively. 

R and N are linear and nonlinear terms in Equation (4), respectively. If the integral operator is applied to 
each term of Equation (4), we get
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compare the approximation solutions of the problem that we have suggested as a contribution to the 
literature. 

    This paper will continue as follows: In part 2 we give the basic process of the ADM and DTM.  In part 3 
we present the implementation of the ADM and DTM for computing and comparing the solutions of this 
eigenvalue problem. The figure of eigenfunctions (approximate solutions) for a found λ (eigenvalue) is 
plotted. Numerical results are shown in the table. 

2. Basic Process of ADM and DTM

Here we will briefly introduce the ADM and DTM as follows:
In the beginning of the 1980s, ADM has been developed by Adomian (Adomian, & Rach, 1993). In these 
years, the Adomian decomposition method has been implemented for problems arising from physics, biology 
and engineering. Until now, there has been great interest in DTM and ADM applications to solve various 
scientific models, you can refer to the references (Adomian et al., 1993; Zhou, 1986; Ayaz, 2004; Abdel-
Halim Hassan, 2002; Li et al., 2020; Chakraverty et al., 2019; Adebısı et al., 2021; Çakır et al., 2019; Arslan, 
2019a; Arslan, 2018b; Peker et al., 2011; Gubes et al., 2015; Peker et al., 2010). 
The equation (1) is rewritten as    

      ( ).Fu g Lu Ru Nu g t= ⇒ + + =          (4) 

F and L are differential operator and fourth order derivative in Equation (4), respectively. 
R and N are linear and nonlinear terms in Equation (4), respectively. If the integral operator is applied to
each term of Equation (4), we get 

( ) ( ) ( ) ( )1 1 1
 ( ) ,u t L R u L N u L g t− − −= − +  (5) 

where ( )
( )

( ) ( )
4

4... ...dL
dt

= is the differential operator and ( ) ( )1 

0 0 0 0

... ...
t t t t

L dtdtdtdt− = ∫ ∫ ∫ ∫  is integral operator 

(inverse operator) of L . If we operate on both sides of  Equation (5) with the inverse operator of  L−1, we 
obtain 

( ) ( ) ( ) ( )1 1
0  .u t u t L R u L N u− −= − − (6) 

After some calculations, the following iteration system is written: 

( ) ( ) ( ) ( )1 1
1 0  ,   0,1,2,k k ku t u t L R u L N u k− −
+ = − − = (7) 

( ) ( ) ( ) ( )1 1
0

0
 ,k

k
u t u t u L Ru L Nu

∞
− −

=

= = + +∑  (8) 

where 

( ) ( )0 1 
0 0

,   u ... .k k k
k k

Ru u t N A u u u
∞ ∞

= =

= = + + +∑ ∑  

The first approximation u0(t) can be obtained by using boundary conditions. We have recurrence formula 
Equation (7) for obtaining other components u1(t), u2(t) of the Adomian decomposition Equation (8). 
Finally, we have the serial solution of problem Equation (1).
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The DTM is effective in solving most differential equations. The DTM is derived based on the Taylor 
expansion and was proposed by Zhou for electrical circuits (Zhou, 1986). 
The differential transformation ( )Y k  of function ( )u t  is defined as (Ayaz, 2004), 
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k dt
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where ( )u t is original function and ( )Y k  is the transformed function.  

Differential inverse transform ( )u t  of ( )Y k  is defined as (Ayaz, 2004), 
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!
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k
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If the expansion Equation (11) with Equation (10) is written as follows: 
 

( ) ( )
0

            ,            k

k

u t Y tk
∞

=

=∑                                                                                                                 (12) 

 
then it is called series solution of the differential transformation method (Ayaz, 2004). 
The following theorems will be used in this study, where ( )Y k  is differential transformation of ( )u t  (Ayaz, 

2004): 
 

Teorem 1. ( )
4

4

( )d w mu m
dm

= ,  ( ) ( ) ( )
4 !

4 .
!

h
U W h

h
h

+
= +  

Theorem 2. ( ) ( ),u m w mα=  ( ) ( ),U h hWα=  whereα is a reel constant. 

Theorem 3. ( ) ( ),u m mw m=  ( ) ( ) ( )
 0

=  .1 
h

s
U h h W h sδ

=

− −∑  

3. Approximation Solutions by ADM and DTM 

    By applying ADM and DTM, we will find approximation solutions of eigenvalue problem in series form. 
The advantages and benefits of the proposed methods on an experiment will be presented. 
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u u u
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The DTM is effective in solving most differential equations. The DTM is derived based on the Taylor 
expansion and was proposed by Zhou for electrical circuits (Zhou, 1986).

The differential transformation Y(k) of function u(t) is defined as (Ayaz, 2004),
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Journal of Advanced Research in Natural and Applied Sciences                                                       2020, Vol. 6, Issue 1, Pages: 1-4 
 

3 
 

The first approximation ( )0u t  can be obtained by using boundary conditions. We have recurrence formula 

Equation (7) for obtaining other components ( ) ( )1 2, ,...u t u t  of the Adomian decomposition Equation (8). 

Finally, we have the serial solution of problem Equation (1). 
 
( ) ( ) ( )0 1 ...u t u t u t= + + .                                                                                                                              (9) 

 
The DTM is effective in solving most differential equations. The DTM is derived based on the Taylor 
expansion and was proposed by Zhou for electrical circuits (Zhou, 1986). 
The differential transformation ( )Y k  of function ( )u t  is defined as (Ayaz, 2004), 

 

( ) ( )
0

1  
!

,
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

k

k
t

d t
Y

k dt
u

k                                                                                                                               (10) 

 
where ( )u t is original function and ( )Y k  is the transformed function.  

Differential inverse transform ( )u t  of ( )Y k  is defined as (Ayaz, 2004), 

 

 ( ) ( )
0

0

 
!

.
∞

=
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑

k

tk
k

k d t
u

dt
utt

k
                                                                                                                          (11) 

 
If the expansion Equation (11) with Equation (10) is written as follows: 
 

( ) ( )
0

            ,            k

k

u t Y tk
∞

=

=∑                                                                                                                 (12) 

 
then it is called series solution of the differential transformation method (Ayaz, 2004). 
The following theorems will be used in this study, where ( )Y k  is differential transformation of ( )u t  (Ayaz, 

2004): 
 

Teorem 1. ( )
4

4

( )d w mu m
dm

= ,  ( ) ( ) ( )
4 !

4 .
!

h
U W h

h
h

+
= +  

Theorem 2. ( ) ( ),u m w mα=  ( ) ( ),U h hWα=  whereα is a reel constant. 

Theorem 3. ( ) ( ),u m mw m=  ( ) ( ) ( )
 0

=  .1 
h

s
U h h W h sδ

=

− −∑  

3. Approximation Solutions by ADM and DTM 

    By applying ADM and DTM, we will find approximation solutions of eigenvalue problem in series form. 
The advantages and benefits of the proposed methods on an experiment will be presented. 

 

 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

4 ,  0<t<1, 
1 0 0,   u 1 0 0,

1 0 0,   u 1 0 0.0 0 0,

u tu u
u u u

u u u u

λ+ =

ʹ ʹ− = − =

ʹ́ ʹ́ ʹ́ʹ ʹ́ʹ− = − + 1 =

                                                                                  (13) 

then it is called series solution of the differential transformation method (Ayaz, 2004).

The following theorems will be used in this study, where Y(k) is differential transformation of u(t) (Ayaz, 
2004):

Journal of Advanced Research in Natural and Applied Sciences                                                       2020, Vol. 6, Issue 1, Pages: 1-4 
 

3 
 

The first approximation ( )0u t  can be obtained by using boundary conditions. We have recurrence formula 

Equation (7) for obtaining other components ( ) ( )1 2, ,...u t u t  of the Adomian decomposition Equation (8). 

Finally, we have the serial solution of problem Equation (1). 
 
( ) ( ) ( )0 1 ...u t u t u t= + + .                                                                                                                              (9) 

 
The DTM is effective in solving most differential equations. The DTM is derived based on the Taylor 
expansion and was proposed by Zhou for electrical circuits (Zhou, 1986). 
The differential transformation ( )Y k  of function ( )u t  is defined as (Ayaz, 2004), 

 

( ) ( )
0

1  
!

,
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

k

k
t

d t
Y

k dt
u

k                                                                                                                               (10) 

 
where ( )u t is original function and ( )Y k  is the transformed function.  

Differential inverse transform ( )u t  of ( )Y k  is defined as (Ayaz, 2004), 

 

 ( ) ( )
0

0

 
!

.
∞

=
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑

k

tk
k

k d t
u

dt
utt

k
                                                                                                                          (11) 

 
If the expansion Equation (11) with Equation (10) is written as follows: 
 

( ) ( )
0

            ,            k

k

u t Y tk
∞

=

=∑                                                                                                                 (12) 

 
then it is called series solution of the differential transformation method (Ayaz, 2004). 
The following theorems will be used in this study, where ( )Y k  is differential transformation of ( )u t  (Ayaz, 

2004): 
 

Teorem 1. ( )
4

4

( )d w mu m
dm

= ,  ( ) ( ) ( )
4 !

4 .
!

h
U W h

h
h

+
= +  

Theorem 2. ( ) ( ),u m w mα=  ( ) ( ),U h hWα=  whereα is a reel constant. 

Theorem 3. ( ) ( ),u m mw m=  ( ) ( ) ( )
 0

=  .1 
h

s
U h h W h sδ

=

− −∑  

3. Approximation Solutions by ADM and DTM 

    By applying ADM and DTM, we will find approximation solutions of eigenvalue problem in series form. 
The advantages and benefits of the proposed methods on an experiment will be presented. 

 

 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

4 ,  0<t<1, 
1 0 0,   u 1 0 0,

1 0 0,   u 1 0 0.0 0 0,

u tu u
u u u

u u u u

λ+ =

ʹ ʹ− = − =

ʹ́ ʹ́ ʹ́ʹ ʹ́ʹ− = − + 1 =

                                                                                  (13) 

3. Approximation Solutions by ADM and DTM

By applying ADM and DTM, we will find approximation solutions of eigenvalue problem in series 
form. The advantages and benefits of the proposed methods on an experiment will be presented.
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it is taken as b = 0, a = 0,01 in this problem.

ADM solution as follows:
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it is taken as 0, 0.0 β α= = 1  in this problem. 

ADM solution as follows: 

( )4 ,Lu u tuλ= −

According to Equation (6), ( )( ) ( ) ( )41 1 1 ,L u L u L tuλ− − −= −

( ) ( ) ( ) ( )
2 3

1 1 ,
2 6
Ct tu t A Bt D A L u L tuα λ− −= + + + + + −

( )
2 3 3

1 , 0,1,2,...,
2 6 6k k k
Ct t tu A Bt D A L u tu kα λ−

+1 = + + + + + − =     (14)

( )
2 3

0 , 0,
2 6
Ct tu A Bt D A kα= + + + + =  

0u  is obtained with the aid of the following boundary conditions , , , ,A B C D

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
0 ,  1 ,   0 ,  1 ,

0 ,  1 ,   0 1 0.0 0 .

u A u A u B u B

u C u C u u u D

ʹ ʹ= = = =

ʹ́ ʹ́ ʹ́ʹ ʹ́ʹ= = = + 1 =

From the recursive relation Equation (14) for 0,1,2,...k = , we get

( )

( )
( )

2
0

1 
0 0

1 
2

1 
3 2 2

1.000003877 0.001412025487 0.0004168111954 ,

,

,

,
...

u t t
u L u tu

u L u tu

u L u tu

λ

λ

λ
1 1

−
1

−

−

= + −

= −

= −

= −

The solution ( )u t  found by the Adomian decomposition method with seven iterations is obtained as a series

and the formula used to normalize the solution (normalized eigenfunction) ( )u t)  is as:

) ( ) ( )
1 

0

,u t dt u t
−1⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∫

    (u t

with this formula and the ADM method, λ  and ADMu  are as 

0.4899667963,λ =

( ) ( )
0

2

3 4 5

6 7

 1.000003877 0.001412025487 0.0004168111954
0.01305 0.008318308894
0.000007085980934 0.000007119

56804 0.020
09363

40194953
9 .

ADM k
k

u t u t

t t
t t

t t
t

∞

=
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≈ + −

− + −

− −

∑

(15)

.

According to Equation (6),  
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The solution u(t) found by the Adomian decomposition method with seven iterations is obtained as a series 
and the formula used to normalize the solution (normalized eigenfunction) u(t) is as:
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DTM solution as follows:

Applying DTM on Equation (14), we reach the following iteration system
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The Table 1 shows the comparison of Equation (15) with Equation (16) for different values of t. Next, we 
plot these results in the Figure 1 to compare the ADM and DTM solutions. In conclusion, it was found that 
the results obtained by the two methods were in full agreement.

Table 1

Calculated results of the normalized eigenfunctions (uADM and uDMT) Equation (15) and (16)

t uADM uDMT |uADM – uDMT|

0.0 1.0000139000 1.0000038770 0.0000100230

0.1 1.0001375240 1.0001298130 0.0000077110

0.2 1.0002005600 1.0001951460 0.0000054140

0.3 1.0001856760 1.0001825050 0.0000031710

0.4 1.0001045390 1.0001035030 0.0000010360

0.5 0.9999877962 0.9999887352 0.0000000939

0.6 0.9998750542 0.9998777441 0.0000026899

0.7 0.9998048344 0.9998089895 0.0000041551

0.8 0.9998045015 0.9998097741 0.0000052726

0.9 0.9998801774 0.9998861621 0.0000059847

1.0 1.0000066240 1.0000128460 0.0000062220

Figure 1. Comparison of ADM and DTM approximate solutions
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4. Conclusion

We studied efficient and high accuracy methods for solving fourth order eigenvalue problem with  
nonstrongly regular boundary conditions. The solutions are very rapidly convergent by utilizing these 
methods. The numerical results are obtained by mathematics computer programe and are shown in table 
and figure. The numerical values in all tables and figures prove that we achieved an effective approximation.
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