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Abstract. In this paper, we study skew-cyclic codes over the ring S = Z8 + uZ8 + vZ8, where u2 = u, v2 = v,
uv = vu = 0. We consider these codes as left S [x, θ]-submodules and use Gray map on S to obtain their Z8-images.
The generator and parity-check matrices of a free θ-cyclic code of even length over S are determined. Also, these
codes are generalized to double skew-cyclic codes. We give some examples using Magma computational algebra
system.
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1. Introduction

Since the beginning of the coding theory, a great deal of work has been done on cyclic codes, which is a class of
linear codes in coding theory. Cyclic codes are defined over some algebraic structures such as finite fields, finite rings
etc. and are invariant under a cyclic shift of coordinates. Also, these codes are described as ideals of Fq/

〈
xt − 1

〉
.

They are convenient to implement, they have nice algebraic structures, and they have various important generalizations
[4–8, 10]. While initially mostly commutative and finite chain rings were used, in 2007, Boucher and Ulmer [3] gave
a new direction to the study of cyclic codes by defining a generalization thereof in the non-commutative setting of
skew polynomial rings. These codes are known as skew-cyclic codes. The authors studied linear codes using skew-
polynomial rings with automorphism defined on the field Fq. Skew polynomial ring is denoted by Fq[x, θ], where the
addition is defined as the usual one of polynomials and the multiplication is defined by the rule xa = θ(a)x, a ∈ Fq.
Also, they found skew cyclic codes with greater minimum distances than previously well-known codes [2].

Then, the skew-cyclic codes over different rings were presented in [9,11,13,15]. More recently, in [14] skew-cyclic
codes over the ring Z4 + uZ4, where u2 = 1 have been studied. Also, the authors in [12] studied skew-constacyclic
codes over the ring Zq(Zq + uZq), where q = ps for a prime p and u2 = 0. In [7], the structures of cyclic codes over the
ring S = Z8 + uZ8 + vZ8, where u2 = u, v2 = v, uv = vu = 0 were determined.

The aim of this paper is to introduce and study skew-cyclic codes over the ring S = Z8 + uZ8 + vZ8, where u2 = u,
v2 = v, uv = vu = 0. Some structural properties of the skew polynomial ring S [x, θ] are discussed, where θ is an
automorphism of S . We determine the generator and parity-check matrices of these codes. Also, we investigate the
Gray images of the codes and give some examples.
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2. Preliminaries

Consider the ring S = Z8 + uZ8 + vZ8, where u2 = u, v2 = v, uv = vu = 0. It can be also viewed as the quotient
ring Z8[u, v]/

〈
u2 − u, v2 − v, uv − vu

〉
. Let d be any element of S , which can be expressed uniquely as d = a + ub + vc,

where a, b, c ∈ Z8 [6].
The ring S has the following properties:
• It has 512 elements.
• Its units are given by

U = {a + ub + vc | a ∈ {1, 3, 5, 7} , b, c ∈ {0, 2, 4, 6}} .

• It has a total of 64 ideals.
To know more about the ring S , we refer to [6]. Recall that a linear code C of length n over the ring S is an S -submodule
of S n. A codeword is denoted as d = (d0, d1, . . . , dn−1) [6].

A cyclic shift operator is defined as:

σ (d0, d1, . . . , dn−1) = (dn−1, d0, . . . , dn−2) .

Let C be a linear code of length n over S , then C is called cyclic if σ(C) = C.
It is known that the Lee weight wL of any element a of Z8 is

wL(a) = min {|a| , |8 − a|} .

The Lee weight wL(w) of a vector, w ∈ Z3
8 is defined as the rational sum of the Lee weights of its coordinates. In [6]

the Gray map was defined as follows
φ : S → Z3

8

a + ub + vc 7→ (a, a + b, a + c) .
For any element d = a + ub + vc ∈ S , the Gray weight wG(d) of d is defined as wG(d) = wL(φ(d)). That is,

wL(d) = wL (a, a + b, a + c) ,

where a, b, c ∈ Z8 [6].

This map is extended componentwise to
Φ : S n → Z3n

8

and the Gray weight wG(d) of d ∈ Z3n
8 is defined as the rational sum of Gray weights of its coordinates.

3. Skew Polynomial Ring over Z8 + uZ8 + vZ8

In this section we study the structure of the non-commutative ring S [x, θ].
Define a map

θ : S → S

a + ub + vc 7→ a + uc + vb,

where a, b, c ∈ Z8.
Let d = a + ub + vc, d′ = a′ + ub′ + vc′ ∈ S .

θ
(
d + d′

)
= θ

(
(a + ub + vc) + (a′ + ub′ + vc′)

)
= θ

(
a + a′ + u(b + b′) + v(c + c′)

)
= a + a′ + u(c + c′) + v(b + b′)
= a + uc + vb + a′ + uc′ + vb′

= θ(d) + θ(d′),

θ
(
dd′

)
= θ

(
(a + ub + vc)(a′ + ub′ + vc′)

)
= θ

(
aa′ + u(ab′ + ba′ + bb′) + v(ac′ + ca′ + cc′)

)
= aa′ + u(ac′ + ca′ + cc′) + v(ab′ + ba′ + bb′),
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θ (d) θ
(
d′

)
= θ (a + ub + vc) θ

(
a′ + ub′ + vc′

)
= (a + uc + vb)(a′ + uc′ + vb′)
= aa′ + u(ac′ + ca′ + cc′) + v(ab′ + ba′ + bb′).

Above discussion shows that θ is a nontrivial automorphism of S . Moreover, since θ2(d) = d for all d ∈ S , the order
of θ is 2. Note that the automorphism θ fixes every element of Z8.

The ring S [x, θ] =
{
a0 + a1x + . . . + an−1xn−1 : ai ∈ S , n ∈ N} is called skew polynomial ring and an element in

S [x, θ] is called a skew polynomial. The addition is defined as the ordinary addition of polynomials and the multipli-
cation is defined by the rule

xd = θ(d)x

for any d ∈ S . The multiplication is extended to all elements in S [x, θ] by associativity and distributivity.

Example 3.1. Let p = ux + 5 and p′ = x + u be in S [x, θ]. Then,

pp′ = (ux + 5)(x + u)
= ux2 + u (θ(u)x) + 5x + 5u

= ux2 + 5x + 5u

and

p′p = (x + u)(ux + 5)
= (θ(u)x) x + 5x + u2x + 5u

= vx2 + (u + 5)x + 5u.

It is clear that the coefficients of the terms x2 and x are different. Therefore, pp′ , p′p. Thus, S [x, θ] is a non-
commutative ring.

Lemma 3.2. Let d ∈ S be a unit in S . Then, θ(d) is a unit in S .

Proof. Let d = a + ub + vc be a unit in S such that a ∈ {1, 3, 5, 7}, b, c ∈ {0, 2, 4, 6}. Then, from the definition of θ, we
have

θ(d) = a + cu + bv.

So, it is clear that θ(d) is a unit in S . �

Lemma 3.3. Let S θ = {α + uβ + vγ|α, β, γ ∈ Z8, β = γ}. Then, S θ is a subring of S fixed by θ.

Proof. Let α + uβ + vγ be an element in ∈ S θ. Then,

θ(α + uβ + cγ) = α + γu + βv

and the element α + uβ + vγ is fixed by θ if and only if β = γ. It is clear that S θ is a subring of S . �

Definition 3.4. A polynomial p(x) ∈ S [x, θ] is said to be a central polynomial if

p(x)r(x) = r(x)p(x)

for all r(x) ∈ S [x, θ] [14]. From now on, the center of S [x, θ] will be denoted by Z (S [x, θ]).

Theorem 3.5. Z (S [x, θ]) =
{∑l

i=0 dix2i|di ∈ S θ
}
.

Proof. Let D =
{∑l

i=0 dix2i|di ∈ S θ
}

and p =
∑l

i=0 dix2i ∈ D. Since the order of θ is 2, for any non-negative integer i,
we have

x2idi =
(
θ2

)i
(di)x2i = dix2i

for all di ∈ S θ. This implies x2i ∈ Z (S [x, θ]), and hence all polynomials of the form

p = d0 + d1x2 + d2x4 + · · · + dlx2l

with di ∈ S θ are in the Z (S [x, θ]). Therefore, D ⊆ Z (S [x, θ]).
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Conversely, let p = p0 + p1x + p2x2 + · · · + pk xk ∈ Z (S [x, θ]). We have px = xp which gives that all pi are fixed by
θ, so that pi ∈ S θ. Next, choose d ∈ S such that θ(d) , d. Now it follows from the relation dp(x) = p(x)d that pi = 0
for all indices i not dividing 2. Thus,

p(x) = d0 + d1x2 + d2x4 + · · · + d`x2` ∈ D.

So, Z (S [x, θ]) ⊆ D, and completes the proof. �

Corollary 3.6. Let p(x) = xm − 1. Then, p(x) ∈ Z (S [x, θ]) if and only if 2|m.

The Corollary 3.6 shows that if m is even, then the quotient space S [x, θ]/ 〈xm − 1〉 is a ring and the polynomial
(xm − 1) is in the Z (S [x, θ]) of the ring S [x, θ], hence generates a two-sided ideal if and only if 2 | m. Otherwise, it is
just an S -module.

Example 3.7. Let p(x) = (1 + 7u + 7v)x2 + 5, q(x) = (1 + 7u + 7v)x. Then,

p(x) = xq(x) + 5
p(x) = (1 + 7u + 7v)xq(x) + 5

It is clear that x , (1 + 7u + 7v)x and deg(5) < deg((1 + 7u + 7v)x).

So S [x, θ] is not Euclidean. Therefore, division algorithm does not hold in it. But division algorithm can be applied
on some particular elements of S [x, θ].

Theorem 3.8. [14] Let f (x), g(x) ∈ S [x, θ] be such that the leading coefficient of g(x) is a unit. Then, there exist
q(x), r(x) ∈ S [x, θ] such that

f (x) = q(x)g(x) + r(x),
where r(x) = 0 or deg(r(x)) < deg(g(x)).

4. Skew Cyclic Codes over Z8 + uZ8 + vZ8

In this section we are interested in studying skew-cyclic codes over S , also called θ-cyclic codes.
A code of length n over S is a nonempty subset of S n. A code C is said to be linear if it is a submodule of the

S -module of S n.

Definition 4.1. Let θ be an automorphism in S . A code C is said to be θ-cyclic if C is closed under the θ-cyclic shift:

σθ : S n −→ S n

defined by
σθ (z0, z1, . . . , zn−1) = (θ(zn−1), θ(z0), . . . , θ(zn−2)) .

Let S [x,θ]
〈p(x)〉 , where p(x) is an arbitrary polynomial of degree n over S . In polynomial representation, we can associate

a word z = (z0, z1, . . . , zn−1) to the corresponding polynomial

z(x) = z0 + z1x + . . . + zn−1xn−1.

Moreover S [x,θ]
〈p(x)〉 is a left S [x, θ]-module with respect to the multiplication r(x) (z(x) + 〈p(x)〉) = r(x)z(x) + 〈p(x)〉 .

Theorem 4.2. A code C of length n over S is a θ-cyclic code if and only if C is a left S [x, θ]-submodule of the left
S [x, θ]-module of S n = S [x,θ]

〈xn−1〉 .

Proof. Assume that, C is a θ-cyclic of length n over S and z, z′ ∈ C. Let z(x) = z0 + z1x + . . . + zn−1xn−1 and
z′(x) = z′0 + z′1x + . . . + z′n−1xn−1. Since C is a linear code, z + z′ ∈ C. Also, all xiz(x) belong to C for all i ∈ N, because
C is cyclic. This means that p(x)z(x) ∈ C for all p(x) ∈ S n. So C is a submodule. Now suppose that C is a submodule
of S n and z, z′ ∈ C. Then, by definition of submodule we have z + z′ ∈ C and xiz(x) ∈ C. So C is a θ-cyclic code over
S . �

Corollary 4.3. If C is a θ-cyclic of even length n over S , then C is an ideal of S n = S [x,θ]
〈xn−1〉 .

Proof. Let n be an even integer. Then, 〈xn − 1〉 is a two sided ideal and so the quotient space S n = S [x,θ]
〈xn−1〉 is a ring. �
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Theorem 4.4. Let C be a cyclic code of length n over S such that C contains a minimum degree polynomial g(x) whose
leading coefficient is a unit. Then C = 〈g(x)〉. Moreover g(x)|(xn − 1) and the set{

g(x), xg(x), . . . , xg(x)n−deg(g(x)−1g(x)
}

forms a basis for C.

Proof. The proof is similar to the proof of Theorem 14 [14]. �

4.1. Generator Matrix. In this subsection we find a set of generators for a free θ-cyclic code of length n over S .
Let C = 〈g(x)〉 be a cyclic code of length n over S generated by a right divisor g(x) of xn − 1. Then, a generator

matrix of C is the (n − k) × n matrix 

g(x)
xg(x)
x2g(x)
...

xn−k−1g(x)


(n−k)×n

,

where g(x) = g0 + g1x + g2x2 + · · · + gk xk. More precisely,

G =



g0 g1 · · · gk 0 · · · 0
0 θ(g1) · · · θ(gk−1) θ(gk) · · · 0
0 0 · · · gk−2 gk−2 · · · 0
· · · · · · · · · · · · · · · · · · · · ·

0 0 · · · θ(g0) θ(g1) · · · θ(gk)


(n−k)×n

.

Example 4.5. Let C be a θ-cyclic code of length 6 over S generated by the right divisor g(x) = (1 + 2u + 2v)x3 + (6 +

6u + 6v)x2 + (2 + 2u + 2v)x + 1 + 4u + 4v of x6 − 1. Then, the set{
g(x), xg(x), x2g(x)

}
=

{
(1 + 2u + 2v)x3 + (6 + 6u + 6v)x2 + (2 + 2u + 2v)x + 1 + 4u + 4v,

(1 + 2u + 2v)x4 + (6 + 6u + 6v)x3 + (2 + 2u + 2v)x2 + (1 + 4u + 4v)x,

(1 + 2u + 2v)x5 + (6 + 6u + 6v)x4 + (2 + 2u + 2v)x3 + (1 + 4u + 4v)x2
}

forms a basis for C. Therefore, C has cardinality 89. The generator matrix of C can be given as 1 + 4u + 4v 2 + 2u + 2v 6 + 6u + 6v 1 + 2u + 2v 0 0
0 1 + 4u + 4v 2 + 2u + 2v 6 + 6u + 6v 1 + 2u + 2v 0
0 0 1 + 4u + 4v 2 + 2u + 2v 6 + 6u + 6v 1 + 2u + 2v

 .
Also the Gray image of the generator matrix of C is, 155 244 644 133 000 000

000 155 244 644 133 000
000 000 155 211 644 133

 .
Using the computational algebra system Magma [1] for computations, we obtain Φ(C) has parameters (18, 89, 2).

5. Duals of θ-Cyclic Codes over S

In this section, we present the structure of the dual of a free θ-cyclic code of even length n over S .

Definition 5.1. Let C be θ-cyclic code of length n over S . Then, the dual of C is defined as

C⊥ = {w | w · z = 0 for all z ∈ C} ,

where w · z denotes the usual inner product of w and z, where w = (w0,w1, . . . ,wn−1) and z = (z0, z1, . . . , zn−1) belong
to S n.

We need some lemmas for determining a generator matrix of a free θ-cyclic code C.



B. Çalışkan, K. Balıkçı, Turk. J. Math. Comput. Sci., 15(1)(2023), 96–103 101

Lemma 5.2. For even n, xn − 1 is a central element of S [x, θ], and hence xn − 1 = h(x)g(x) = g(x)h(x) for some
g(x), h(x) ∈ S [x, θ].

Proof. The proof is similar to the proof of Lemma 7 [2]. �

Remark 5.3. If C is a θ-cyclic code generated by a minimum degree polynomial g(x) with its leading coefficient a
unit, then there exists a minimum degree monic polynomial g1(x) in C such that C = 〈g1(x)〉.

Lemma 5.4. Let g(x) be a monic right divisor of xn − 1 and C be a θ-cyclic code of even length n over S generated by
g(x). Then, z(x) ∈ S n is in C if and only if z(x)h(x) = 0 in S n, where xn − 1 = h(x)g(x).

Proof. Assume that, z(x)h(x) = 0 in S n for some z(x) ∈ S n. Then, there exists p(x) ∈ S [x, θ] such that

z(x)h(x) = p(x)(xn − 1)
= p(x)h(x)g(x)
= p(x)g(x)h(x).

So we have z(x) = p(x)g(x), thus z(x) ∈ C.

Conversely, suppose that z(x) ∈ C. Then, z(x) = k(x)g(x) for some k(x) ∈ S n. So

z(x)h(x) = k(x)g(x)h(x) = k(x)h(x)g(x) = 0

in S n (by Lemma 5.2). Hence, the proof is completed. �

Theorem 5.5. Let C be a θ-cyclic code of even length n over S generated by g(x), such that xn − 1 = h(x)g(x) for some
h(x) = h0 + h1x + h2x2 + · · · + hk xk ∈ S [x, θ], where k is odd. Then, the matrix

H =


hk θ(hk−1) · · · h3 θ(h2) · · · 0
0 θ(hk) · · · h4 θ(h3) · · · 0
0 0 · · · h5 θ(h4) · · · 0
· · · · · · · · · · · · · · · · · · · · ·

0 0 · · · · · · · · · · · · θ(h0)


(n−k)×n

is a generator matrix for C⊥.

Proof. Let z(x) ∈ C. Then, by Lemma 5.4, we have z(x)h(x) = 0 in S n,θ. Thus, the coefficients of xk, xk+1, . . . , xn−1 in
[z0 + z1x + z2x2 + · · · + zn−2xn−2 + zn−1xn−1][h0 + h1x + h2x2 + · · · + hk−1xk−1 + hk xk] are all zero. Then,

z0hk + z1θ(hk−1) + z2hk−2 + · · · + zkθ(h0) = 0
z1θ(hk) + z2hk−1 + z3θ(hk−2) · · · + zk+1h0 = 0

z2hk + z3θ(hk−1) + z4hk−2 + · · · + zk+2θ(h0) = 0
...

...

zn−k−1hk + zn−kθ(hk−1) + zn−k+1hk−2 + · · · + zn−1θ(h0) = 0.

It is easy check that for any z ∈ C, zHT = 0, and therefore GHT = 0. Since the rows of H are orthogonal to each z ∈ C,
span(H) ⊆ C⊥. Further, since H is a lower triangular matrix with all diagonal entries units (by Lemma 3.2), it contains
a square sub-matrix of order n − k with non-zero determinant. So we have that all rows of H are linearly independent.
Hence, |S pan(H)| = |S |n−k. Moreover, |C|

∣∣∣C⊥∣∣∣ = |S |n and |C| = |S |k give
∣∣∣C⊥∣∣∣ = |S |n−k. Thus, S pan(H) = C⊥, and so

H is a generator matrix for C⊥. �

When k is even, H can be taken as:

H =


hk θ(hk−1) · · · h0 0 · · · 0
0 θ(hk) · · · h1 θ(h0) · · · 0
0 0 · · · h2 θ(h1) · · · 0
· · · · · · · · · · · · · · · · · · · · ·

0 0 · · · · · · θ(hk) · · · h0


(n−k)×n

.
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Example 5.6. Let C be a θ-cyclic code of length 6 generated by the polynomial g(x) = (1 + 2u + 2v)x3 + (6 + 6u +

6v)x2 + (2 + 2u + 2v)x + 1 + 4u + 4v of x6 − 1 such that

x6 − 1 =
(
(1 + 2u + 2v)x3 + (2 + 2u + 2v)x2 + (2 + 2u + 2v)x + 7 + 4u + 4v

)(
(1 + 2u + 2v)x3 + (6 + 6u + 6v)x2 + (2 + 2u + 2v)x + 1 + 4u + 4v

)
.

Let h(x) = (1 + 2u + 2v)x3 + (2 + 2u + 2v)x2 + (2 + 2u + 2v)x + 7 + 4u + 4v. Then, a parity check matrix of C (by
Theorem 5.5) is given by

H =

 1 + 2u + 2v 2 + 2u + 2v 2 + 2u + 2v 7 + 4u + 4v 0 0
0 1 + 2u + 2v 2 + 2u + 2v 2 + 2u + 2v 7 + 4u + 4v 0
0 0 1 + 2u + 2v 2 + 2u + 2v 2 + 2u + 2v 7 + 4u + 4v

 .
It is clear that, GHT = 0 and the rows of H are linearly independent. Thus, H forms a generator matrix for C⊥.

6. Double θ-Cyclic Codes over S

A linear code C is a double θ-linear code if the set of coordinates can be partitioned into two subsets of lengths
s and t such that the set of the first blocks of s symbols and the set of second blocks of t symbols form θ-cyclic
codes of lengths s and t, respectively. Let s and t be non-negative integers such that n = s + t. We consider a
partition of the set of the n coordinates into two subsets of s and t coordinates respectively. For any d ∈ S and
w = (e0, e1, . . . , es−1, f0, f1, . . . , ft−1) ∈ S s+t, we define

dw = (de0, de1, . . . , des−1, d f0, d f1, . . . , d ft−1).

With this multiplication, S s+t is an S -module. A double θ-linear code is an S -submodule of S s+t.

Definition 6.1. For an element w = (e0, e1, . . . , es−1, f0, f1, . . . , ft−1) ∈ S s+t, the σθ(s,t)-cyclic shift of w, denoted by
σθ(s,t)(w), is defined as σθ(s,t)(w) = (θ(es−1), θ(e0), . . . , θ(es−2), θ( ft−1), θ( f0), . . . , θ( ft−2)).

Definition 6.2. A double θ-linear code C is called double θ-cyclic code if C is invariant under the σθ(s,t)-cyclic shift.

Let w = (e0, e1, . . . , es−1, f0, f1, . . . , ft−1) ∈ C. Then, w can be represented with w(x) = (e(x)| f (x)), where e(x) =

e0 + e1x + . . . + es−1xs−1 ∈
S [x,θ]
〈xs−1〉 and f (x) = f0 + f1x + . . . + ft−1xt−1 ∈

S [x,θ]
〈xt−1〉 . This gives a one-to-one correspondence

between S s+t and S s,t = S [x,θ]
〈xs−1〉 ×

S [x,θ]
〈xt−1〉 . The multiplication of any d(x) ∈ S [x, θ] and (p1(x)|p2(x)) ∈ S [x,θ]

〈xs−1〉 ×
S [x,θ]
〈xt−1〉 is

defined as
d(x)(p1(x)|p2(x)) = (d(x)p1(x)|d(x)p2(x)),

where d(x)p1(x) and d(x)p2(x) are the multiplication of polynomials in S [x,θ]
〈xs−1〉 and S [x,θ]

〈xt−1〉 , respectively. With this multi-
plication, S s,t is a left S [x, θ]-module. It is clear that, xw(x) represents the σθ(s,t)-cyclic shift of w.

Theorem 6.3. Let C be a θ-linear code of length n = s + t over S . Then, C is a double θ-cyclic code if and only if it is
a left S [x, θ]-submodule of the left-module S [x,θ]

〈xs−1〉 ×
S [x,θ]
〈xt−1〉 .

Proof. Assume that, C is a double θ-cyclic code. Let w(x) be a polynomial representation of w ∈ C. Since xw(x) is
a σθ(s,t)-cyclic shift of w, xw(x) ∈ C. As C is a linear code, d(x)w(x) ∈ C for any d(x) ∈ S [x, θ]. Therefore, C is left
S [x, θ]- submodule of S s,t. Opposite direction of the proof is clear. �

Theorem 6.4. Let g′(x) and g′′(x) be monic polynomials such that g′(x)|xm − 1 and g′′(x)|xn − 1. Let M and N be two
free θ-cyclic codes of lengths m and n over S generated by g′(x) and g′′(x), respectively. Then, a code C generated
by g(x) = (g′(x)|g′′(x)) is a double θ-cyclic code and B =

{
g(x), xg(x), . . . , xk−1g(x)

}
is a spanning set of C, where

k = deg(h(x)) and h(x) is the least left common multiple of h′(x) and h′′(x).

Proof. Let xm − 1 = h′(x)g′(x) and xn − 1 = h′′(x)g′′(x) for some monic polynomials h′(x), h′′(x) ∈ S [x, θ]. Then,
h(x)g(x) = h(x)(g′(x)|g′′(x)) = 0, since h(x)g′(x) = h(x)h′(x)g′(x) = 0 and h(x)g′′(x) = h(x)h′′(x)g′′(x) = 0. Let
z(x) ∈ C be any non-zero codeword. Then, z(x) = k(x)g(x) for some k(x) ∈ S [x, θ]. By the division algorithm, we have
k(x) = q(x)h(x) + r(x), where r(x) = 0 or deg(r(x)) < deg(h(x)). Then, z(x) = k(x)g(x) = r(x)g(x) = 0. Since r(x) = 0
or deg(r(x)) < deg(h(x)). Hence, the proof is completed. �
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Example 6.5. Let C be a double θ-cyclic code of length n = 6(= 4 + 2) over S , which is principally generated
by g(x) = (g1(x)|g2(x)), where g1(x) = (3 + 2u + 2v)x3 + (1 + 6u + 2v)x2 + (3 + 6u + 6v)x + 1 + 2u + 6v and
g2(x) = (7 + 4u + 4v)x + 5 + 2u + 2v such that g1(x)|x4 − 1 and g2(x)|x2 − 1. Now, let h(x) be the least left common
multiple of h1(x) and h2(x). Then, deg h(x) = 2. Therefore, the set {g(x), xg(x)} forms a spanning set for C. Hence a
generator matrix of C is

G =

[
1 + 2u + 6v 3 + 6u + 6v 1 + 6u + 2v 3 + 2u + 2v 5 + 2u + 2v 7 + 4u + 4v
3 + 2u + 2v 1 + 2u + 6v 3 + 6u + 6v 1 + 6u + 2v 7 + 4u + 4v 5 + 2u + 2v

]
.

7. Conclusion

In this paper, skew-cyclic codes over S = Z8 +uZ8 +vZ8, where u2 = u, v2 = v, uv = vu = 0 are introduced. We have
studied these codes as left S [x, θ]-submodules. A Gray map is defined on S . The generator and parity-check matrices
of a free θ-cyclic code of even length over S are obtained. Also, these codes are generalized to double skew-cyclic
codes. One can study skew-cyclic codes over S with derivation if it exists.
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