

RESEARCH ARTICLE

On localization of the eigenvalues of matrices "close" to triangular ones

Michael Gil

Department of Mathematics, Ben Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel

Abstract

We suggest a new bound for the eigenvalues of a matrix. For matrices which are "close" to triangular ones that bound is sharper than the well-known results, such as the Ostrowski theorem.

Mathematics Subject Classification (2020). 15A18, 15A42

Keywords. matrices, localization of eigenvalues, Ostrowski theorem

1. Introduction and statement of the main result

Let $A = (a_{jk})_{i,k=1}^n$ be a complex $n \times n$ -matrix and

$$U(a;r) = \{ z \in \mathbb{C} : |a - z| \le r \} \ (a \in \mathbb{C}, r > 0).$$

In the paper [10], Ostrowski has proved that each eigenvalue of A is contained in the set $\bigcup_{j=1}^{n} U(a_{jj}; \min\{R_j, Q_j\})$, where

$$R_j = \sum_{i=1, i \neq j}^n |a_{ij}|$$
 and $Q_j = \sum_{i=1, i \neq j}^n |a_{ji}|$.

That result refines the Gershgorin theorem [3]. In [9] and [1], Ostrowski and Brauer independently have obtained an estimate for the eigenvalues by means of the Cassini ovals. For more details about the Gershgorin, Ostrowski and Brauer theorems see [7, Sections III.2.2, III.2.4 and III.2.5]. These theorems have been refined and extended in many works, cf. [2,5,6,8] and the references given therein.

As is well known, the diagonal entries of a triangular matrix are its eigenvalues. At the same time, in the case of triangular matrices the above pointed results are not attained. Namely, for a triangular matrix A they do not give us the equality $\lambda(A) = a_{kk}$ for each eigenvalue $\lambda(A)$ of A and a positive integer $k \leq n$. In this paper we suggest a bound for the eigenvalues which is attained for triangular matrices. To this end introduce the notations.

$$q_{\rm up} := \max_{k=1,\dots,n-1} (\sum_{j=k+1}^n |a_{jk}|^2)^{1/2},$$

Email address: gilmi@bezeqint.net

Received: 15.09.2021; Accepted: 26.01.2022

and

$$M_k = 1 + \left(\sum_{j=1, j \neq k}^n |a_{jk}|^2\right)^{1/2} \ (k = 1, ..., n).$$

Now we are in a position to formulate the main result of the paper.

Theorem 1.1. Let

$$q_{\rm up} < 1. \tag{1.1}$$

Then any eigenvalue of matrix $A = (a_{jk})_{j,k=1}^n$ is located in the set

$$\bigcup_{k=1}^{n} U(a_{kk}; \psi_{\mathrm{up}}(k)), \text{ where } \psi_{\mathrm{up}}(k) := \frac{\sqrt[n]{q_{\mathrm{up}}} M_k}{1 - \sqrt[n]{q_{\mathrm{up}}}}.$$

The proof of this theorem is presented in the next section. Theorem 1.1 is sharp: if A is upper triangular, then $\psi_{up}(k) = 0$ and it implies that any eigenvalue coincides with some diagonal entry.

Combining the Ostrowski theorem and Theorem 1.1, we arrive at

Corollary 1.2. Let condition (1.1) hold. Then any eigenvalue of $A = (a_{jk})_{j,k=1}^n$ is located in the set

$$\cup_{j=1}^{n} U(a_{jj}; \eta_{up}(j)), \text{ where } \eta_{up}(j) := \min\{\psi_{up}(j), R_j, Q_j\}$$

Under condition (1.1) Corollary 1.2 refines the Ostrowski theorem in the case

$$\psi_{\rm up}(j) < \min\{R_j, Q_j\}$$

for at least one $j \leq n$.

Now put

$$q_{\text{low}} := \max_{k=1,\dots,n-1} (\sum_{j=k+1}^{n} |a_{kj}|^2)^{1/2},$$

and

$$L_k = 1 + (\sum_{j=1, j \neq k}^n |a_{kj}|^2)^{1/2} \ (k = 1, ..., n).$$

Let $\sigma(A)$ denote the spectrum of A and A^* be the matrix adjoint to A. Take into account that for any $\lambda(A) \in \sigma(A)$ we have $\overline{\lambda}(A) \in \sigma(A^*)$ and

$$|\lambda(A^*) - \overline{a}_{kk}| = |\lambda(A) - a_{kk}|.$$

Then, replacing in Theorem 1.1 A by A^* , we get

Corollary 1.3. Let

$$q_{\rm low} < 1. \tag{1.2}$$

Then $\sigma(A)$ is located in the set

$$\bigcup_{k=1}^{n} U(a_{kk}; \psi_{\text{low}}(k)), \text{ where } \psi_{\text{low}}(k) := \frac{\sqrt[n]{q_{\text{low}}} L_k}{1 - \sqrt[n]{q_{\text{low}}}}$$

Combining Theorem 1.1 and Corollary 1.3, we obtain our next result.

Corollary 1.4. Let

$$\max\{q_{\text{low}}, q_{\text{up}}\} < 1.$$
 (1.3)

Then $\sigma(A)$ is located in the set

$$\bigcup_{k=1}^{n} U(a_{kk}; \psi_0(k)), \text{ where } \psi_0(k) := \min\{\psi_{\text{low}}(k), \psi_{\text{up}}(k)\}$$

In Corollary 1.2 we can replace $\psi_{up}(k)$ by $\psi_{low}(k)$, if instead of (1.1) condition (1.2) holds, and by $\psi_0(k)$, if condition (1.3) holds.

1105

2. Proof of Theorem 1.1

Let A_+ be the upper triangular part of A, i.e. $A_+ = (a_{jk}^+)_{j,k=1}^n$, where $a_{jk}^+ = a_{jk}$ for $j \leq k$ and $a_{jk}^+ = 0$ for j > k. Clearly,

$$\det(A_+) = \prod_{j=1}^n a_{jj}.$$

Put

$$t_k^+ := \left(\sum_{j=1}^n |a_{jk} + a_{jk}^+|^2\right)^{1/2} \ (k = 1, ..., n)$$

and

$$t_k^- := (\sum_{j=k+1}^n |a_{jk}|^2)^{1/2} \ (k=1,...,n-1), t_n = 0.$$

In this section for the brevity put $q_{\rm up} = q$. We need the following result proved in [4, Corollary 3.2].

Corollary 2.1. One has

$$|\det A - \prod_{j=1}^{n} a_{jj}| \le \delta(A),$$

where

$$\delta(A) := q \prod_{k=1}^{n} \left(1 + \frac{1}{2} (t_k^- + t_k^+) \right).$$

Take into account that

$$(t_k^+)^2 = 2|a_{kk}|^2 + 2\sum_{j=1}^{k-1} |a_{jk}|^2 + (t_k^-)^2.$$

Hence, due to the inequality $(c_1 + c_2)^2 \le 2(c_1^2 + c_2^2)$ $(c_1, c_2 > 0)$, we get

$$(t_k^+ + t_k^-)^2 \le 2(2|a_{kk}|^2 + 2\sum_{j=1}^{k-1} |a_{jk}|^2 + (t_k^-)^2) + 2(t_k^-)^2 = 4(|a_{kk}|^2 + \sum_{j=1}^{k-1} |a_{jk}|^2 + (t_k^-)^2)$$
$$= 4(|a_{kk}|^2 + \sum_{j=1, j \neq k}^n |a_{jk}|^2) \le 4(|a_{kk}| + [\sum_{j=1, j \neq k}^n |a_{jk}|^2]^{1/2})^2 \quad (k = 1, ..., n).$$

Here $\sum_{j=1}^{0} = 0$. Now Corollary 2.1 implies the inequality

$$|\det A - \prod_{j=1}^{n} a_{jj}| \le q \prod_{k=1}^{n} (|a_{kk}| + M_k).$$

 \mathbf{If}

$$\prod_{j=1}^{n} |a_{jj}| > q \prod_{k=1}^{n} (|a_{kk}| + M_k),$$
(2.1)

then $det(A) \neq 0$, i.e. A is invertible. Assume that

$$|a_{kk}| > \sqrt[n]{q}(|a_{kk}| + M_k)$$
 (2.2)

for all k = 1, ..., n. Then (2.1) holds and therefore A is invertible.

Let condition (1.1) hold. Then (2.2) is equivalent to the inequality

$$|a_{kk}| > \frac{\sqrt[n]{q_{\rm up}}M_k}{1 - \sqrt[n]{q_{\rm up}}} = \psi_{\rm up}(k).$$
(2.3)

Hence we arrive at the following result

Lemma 2.2. Matrix A is invertible, provided conditions (1.1) and (2.3) hold for all k = 1, ..., n.

Proof of Theorem 1.1: For a $z \in \mathbb{C}$, let $|a_{jj} - z| > \psi_{up}(k)$ for all j = 1, 2, ..., n. Then by Lemma 2.2 A - zI is invertible, where I is the unit matrix. So for any eigenvalue μ of A, there is at least one index $m \leq n$, such that $|a_{mm} - \mu| \leq \psi_{up}(m)$. This proves the theorem. \Box

3. Example

Let

$$A = \left(\begin{array}{rrrr} 2 & 6 & 3 \\ 0 & 5 & 4 \\ 0.008 & 0 & 7 \end{array}\right).$$

Then $q_{\rm up} = 0.008$. So condition (1.1) holds. Besides, $q_{\rm low} > 1$, $M_1 = 1.008$, $M_2 = 7$, $M_3 = 6$. On the other hand $R_1 = 0.008$, $R_2 = 6$, $R_3 = 7$, $Q_1 = 9$, $Q_2 = 4$, $Q_3 = 0.008$. Simple calculations show that $\min\{R_1, Q_1\} = 0.008 < \psi_{\rm up}(1)$ and $\min\{R_3, Q_3\} = 0.008 < \psi_{\rm up}(3)$, but $\min\{R_2, Q_2\} = 4 > \psi_{\rm up}(2) = 1.75$. Due to Corollary 1.2, the following the discs contains the eigenvalues: U(2; 0.008), U(5; 1.75) and U(7; 0.008). So in the considered case Corollary 1.2 improves the Ostrowski theorem.

Acknowledgment. I am very grateful to the referee of this paper for his (her) helpful remarks.

References

- A. Brauer, Limits for the characteristic roots of a matrix. II: Applications to stochastic matrices, Duke Math. J. 14 (1), 21-26, 1947.
- M. Fiedler, F.J. Hall and R. Marsli, *Gershgorin discs revisited*, Linear Algebra Appl. 438 (1), 598-603, 2013.
- [3] S.A. Gershgorin. Uber die abgrenzung der eigenwerte einer matrix, Bull. Acad. des Sci. URSS 6, 749-754, 1931.
- [4] M.I. Gil, Perturbations of determinants of matrices, Linear Algebra and its Appl. 590, 235–242, 2020.
- [5] Ch.R. Johnson, J.M. Peña and T. Szulc, Optimal Gershgorin style estimation of the largest singular value, II, Electron. J. Linear Algebra, 31, 679-685, 2016.
- [6] C.K. Li and F. Zhang, Eigenvalue continuity and Gershgorin's theorem, Electron. J. Linear Algebra 35, 619-625, 2019.
- [7] M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston 1964.
- [8] S. Milicević, V.R. Kostić, Lj. Cvetković and A. Miedlar, An implicit algorithm for computing the minimal Gershgorin set, Filomat, 33 (13), 4229-4238, 2019.
- [9] A. Ostrowski, Uber die determinanten mit überwiegender hauptdiagonale, Comment. Math. Helv. 10, 69-96, 1937.
- [10] A. Ostrowski. Uber das nichtverschwinden einer klasse von determinanten und die lokalisierung der charakteristischen wurzeln von matrizen, Compositio Mathematica, 9, 209–226, 1951.