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Abstract
We suggest a new bound for the eigenvalues of a matrix. For matrices which are "close" to
triangular ones that bound is sharper than the well-known results, such as the Ostrowski
theorem.
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1. Introduction and statement of the main result
Let A = (ajk)n

j,k=1 be a complex n× n-matrix and

U(a; r) = {z ∈ C : |a− z| ≤ r} (a ∈ C, r > 0).
In the paper [10], Ostrowski has proved that each eigenvalue of A is contained in the

set ∪n
j=1U(ajj ; min{Rj , Qj}), where

Rj =
n∑

i=1,i ̸=j

|aij | and Qj =
n∑

i=1,i ̸=j

|aji|.

That result refines the Gershgorin theorem [3]. In [9] and [1], Ostrowski and Brauer
independently have obtained an estimate for the eigenvalues by means of the Cassini ovals.
For more details about the Gershgorin, Ostrowski and Brauer theorems see [7, Sections
III.2.2, III.2.4 and III.2.5 ]. These theorems have been refined and extended in many
works, cf. [2, 5, 6, 8] and the references given therein.

As is well known, the diagonal entries of a triangular matrix are its eigenvalues. At the
same time, in the case of triangular matrices the above pointed results are not attained.
Namely, for a triangular matrix A they do not give us the equality λ(A) = akk for each
eigenvalue λ(A) of A and a positive integer k ≤ n. In this paper we suggest a bound
for the eigenvalues which is attained for triangular matrices. To this end introduce the
notations.

qup := max
k=1,...,n−1

(
n∑

j=k+1
|ajk|2)1/2,
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and

Mk = 1 + (
n∑

j=1,j ̸=k

|ajk|2)1/2 (k = 1, ..., n).

Now we are in a position to formulate the main result of the paper.

Theorem 1.1. Let
qup < 1. (1.1)

Then any eigenvalue of matrix A = (ajk)n
j,k=1 is located in the set

∪n
k=1U(akk;ψup(k)), where ψup(k) :=

n
√
qup Mk

1 − n
√
qup

.

The proof of this theorem is presented in the next section. Theorem 1.1 is sharp: if A is
upper triangular, then ψup(k) = 0 and it implies that any eigenvalue coincides with some
diagonal entry.

Combining the Ostrowski theorem and Theorem 1.1, we arrive at

Corollary 1.2. Let condition (1.1) hold. Then any eigenvalue of A = (ajk)n
j,k=1 is located

in the set
∪n

j=1U(ajj ; ηup(j)), where ηup(j) := min{ψup(j), Rj , Qj}.

Under condition (1.1) Corollary 1.2 refines the Ostrowski theorem in the case

ψup(j) < min{Rj , Qj}

for at least one j ≤ n.
Now put

qlow := max
k=1,...,n−1

(
n∑

j=k+1
|akj |2)1/2,

and

Lk = 1 + (
n∑

j=1,j ̸=k

|akj |2)1/2 (k = 1, ..., n).

Let σ(A) denote the spectrum of A and A∗ be the matrix adjoint to A. Take into account
that for any λ(A) ∈ σ(A) we have λ(A) ∈ σ(A∗) and

|λ(A∗) − akk| = |λ(A) − akk|.

Then, replacing in Theorem 1.1 A by A∗, we get

Corollary 1.3. Let
qlow < 1. (1.2)

Then σ(A) is located in the set

∪n
k=1U(akk;ψlow(k)), where ψlow(k) :=

n
√
qlow Lk

1 − n
√
qlow

.

Combining Theorem 1.1 and Corollary 1.3, we obtain our next result.

Corollary 1.4. Let
max{qlow, qup} < 1. (1.3)

Then σ(A) is located in the set

∪n
k=1U(akk;ψ0(k)), where ψ0(k) := min{ψlow(k), ψup(k)}.

In Corollary 1.2 we can replace ψup(k) by ψlow(k), if instead of (1.1) condition (1.2)
holds, and by ψ0(k), if condition (1.3) holds.
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2. Proof of Theorem 1.1
Let A+ be the upper triangular part of A, i.e. A+ = (a+

jk)n
j,k=1, where a+

jk = ajk for
j ≤ k and a+

jk = 0 for j > k. Clearly,

det(A+) =
n∏

j=1
ajj .

Put

t+k := (
n∑

j=1
|ajk + a+

jk|2)1/2 (k = 1, ..., n)

and

t−k := (
n∑

j=k+1
|ajk|2)1/2 (k = 1, ..., n− 1), tn = 0.

In this section for the brevity put qup = q. We need the following result proved in
[4, Corollary 3.2].

Corollary 2.1. One has

| detA−
n∏

j=1
ajj | ≤ δ(A),

where

δ(A) := q
n∏

k=1

(
1 + 1

2
(t−k + t+k )

)
.

Take into account that

(t+k )2 = 2|akk|2 + 2
k−1∑
j=1

|ajk|2 + (t−k )2.

Hence, due to the inequality (c1 + c2)2 ≤ 2(c2
1 + c2

2) (c1, c2 > 0), we get

(t+k + t−k )2 ≤ 2(2|akk|2 + 2
k−1∑
j=1

|ajk|2 + (t−k )2) + 2(t−k )2 = 4(|akk|2 +
k−1∑
j=1

|ajk|2 + (t−k )2)

= 4(|akk|2 +
n∑

j=1,j ̸=k

|ajk|2) ≤ 4(|akk| + [
n∑

j=1,j ̸=k

|ajk|2]1/2)2 (k = 1, ..., n).

Here
∑0

j=1 = 0. Now Corollary 2.1 implies the inequality

| detA−
n∏

j=1
ajj | ≤ q

n∏
k=1

(|akk| +Mk).

If
n∏

j=1
|ajj | > q

n∏
k=1

(|akk| +Mk), (2.1)

then det(A) ̸= 0, i.e. A is invertible. Assume that
|akk| > n

√
q(|akk| +Mk) (2.2)

for all k = 1, ..., n. Then (2.1) holds and therefore A is invertible.
Let condition (1.1) hold. Then (2.2) is equivalent to the inequality

|akk| >
n
√
qupMk

1 − n
√
qup

= ψup(k). (2.3)

Hence we arrive at the following result
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Lemma 2.2. Matrix A is invertible, provided conditions (1.1) and (2.3) hold for all
k = 1, ..., n.

Proof of Theorem 1.1: For a z ∈ C, let |ajj − z| > ψup(k) for all j = 1, 2, ..., n. Then
by Lemma 2.2 A − zI is invertible, where I is the unit matrix. So for any eigenvalue µ
of A, there is at least one index m ≤ n, such that |amm − µ| ≤ ψup(m). This proves the
theorem. 2

3. Example
Let

A =

 2 6 3
0 5 4

0.008 0 7

 .

Then qup = 0.008. So condition (1.1) holds. Besides, qlow > 1, M1 = 1.008,M2 = 7,M3 =
6. On the other hand R1 = 0.008, R2 = 6, R3 = 7, Q1 = 9, Q2 = 4, Q3 = 0.008. Simple
calculations show that min{R1, Q1} = 0.008 < ψup(1) and min{R3, Q3} = 0.008 < ψup(3),
but min{R2, Q2} = 4 > ψup(2) = 1.75. Due to Corollary 1.2, the following the discs con-
tains the eigenvalues: U(2; 0.008), U(5; 1.75) and U(7; 0.008). So in the considered case
Corollary 1.2 improves the Ostrowski theorem.

Acknowledgment. I am very grateful to the referee of this paper for his (her) helpful
remarks.
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