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Abstract

In this study, the numerical solutions for the steady-state heat conduction problem with uniform heat source, the steady-
state heat conduction problem with convective heat transfer and the transient heat conduction problem have been
developed using finite difference method. These numerical solutions have been validated with analytical solutions.
After observing the good agreements between numerical solutions and analytical solutions, these three different
problems combined to simulate the tandem welding process. The first objective of this study is to present a numerical
simulator for the transient heat conduction problem that includes non-uniform moving heat sources and convective heat
transfer term. This numerical simulator contains explicit and implicit time discretization methods. In this simulator, it is
possible to change the grid sizes, time step sizes, total simulation time, distance between electrodes, magnitude of the
sources' power, speed of the sources, etc. Secondly, the temperature distribution of single and twin wire welding
processes have been compared using proposed numerical simulator to investigate the premature solidification of liquid
metal in low-temperature zone of molten pool. Thirdly, experimental study was carried out using Fluke Thermal Imager
to validate numerical results. It was obtained that the maximum temperature of numerical result is very close to the
maximum temperature of experimental result with 0.248 % error. Finally, the all Matlab codes related to developed
numerical simulator have been added to Appendix to facilitate other researchers’ work.
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Tandem Kaynak Isleminde Sicaklik Dagiliminin Sayisal Analizi

Oz

Bu c¢aligmada, sabit ve homojen 1s1 kaynagini i¢eren ve zamana bagli olmayan 1s1 iletimi probleminin, tagmim 1st
transferini igeren ve zamana bagli olmayan 1s1 iletimi probleminin ayrica zamana bagli 1s1 iletimi probleminin sayisal
¢oziimleri sonlu farklar yontemi kullanilarak elde edilmistir. Bu sayisal ¢dziimler analitik ¢dziimlerle dogrulanmstir.
Sayisal ¢oziimler ve analitik ¢dzliimler arasindaki uyum gozlemlendikten sonra, tandem kaynak siirecini simiile etmek
icin bu ii¢ farkli problem birlestirilmistir. Bu ¢aligmanin ilk amaci, homojen olmayan hareketli 1s1 kaynaklarini ve
taginimla 1s1 transferini igeren bunun yani sira zamanin bir fonksiyonu olan 1s1 iletimi problemi i¢in sayisal bir simiilator
sunmaktir. Bu sayisal simiilatdr, agik ve ortiikk zaman ayriklastirma yontemlerini igerir. Bu simiilatdrde; 1zgara
boyutlarini, zaman adimi boyutlarini, toplam simiilasyon siiresini, elektrotlar arasindaki mesafeyi, kaynaklarin giicliniin
biiyiikliigiinii, kaynaklarin hizim degistirmek miimkiindiir. Ikinci olarak, erimis havuzun diisiik sicaklik bélgesinde s1vi
metalin erken katilagmasini arastirmak igin Onerilen sayisal simiilator kullanilarak tek ve ¢ift tel kaynak islemlerinin
sicaklik dagilimi karsilastirilmigtir. Son olarak, gelistirilen sayisal simiilator ile ilgili tiim Matlab kodlari, diger
aragtirmacilarin ¢alismalarini kolaylastirmak i¢in makalenin sonuna eklenmistir.
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1. Introduction

Tandem welding is well known for its ability to increase welding productivity, as various
authors have proved (Chen et al., 2015; Wu et al., 2018; Zhang et al., 2019). Tandem welding technique
is employed in the heavy and automotive industries because it has a better productivity and
deposition rate than single wire welding (Zargari et al., 2019). Tandem welding has obtained good
results in terms of welding speed and deposition rate. Tandem welding can double the rate of
deposition in steel welding (Michie, 1999; Goecke et al., 2001) and increase the rate of deposition in
aluminum welding by 55% (Lee et al., 2013). When compared to a single wire method, it requires
half the welding passes for thick Aluminum plates (Kim et al., 2016). In high speed single-wire
welding process, the formation of weld appearance defects is observed due to the premature
solidification of liquid metal in low-temperature zone of molten pool (Qin et al., 2021). Twin-wire
welding is used to inhibit these defects such as undercut and humping weld (Qin et al., 2015). In this
study, the numerical solution of a simplify form of the welding process is developed to compare
temperature distribution of single-wire and twin-wire welding. The numerical solutions of single-
wire and twin-wire processes may be represented by the transient heat conduction equation that
includes non-uniform moving heat source (s) and convective heat transfer term. The analytical
solution of this complex problem is not available in literature due to the non-uniform heat sources
and convective heat transfer term in transient heat conduction equation. Therefore, the numerical
solution is developed to model this sophisticated problem using finite difference method (Smith et
al., 1985). The transient heat conduction problem that includes non-uniform moving heat source (s)
and convective heat transfer term consists of the steady-state heat conduction problem with uniform
heat source, the steady-state heat conduction problem with convective heat transfer and the transient
heat conduction problem. These three problems have analytical solution. In this study, once the
numerical solutions for the steady-state heat conduction problem with uniform heat source, the
steady-state heat conduction problem with convective heat transfer and the transient heat
conduction problem were validated with their analytical solutions, these three problems have been
combined to obtain numerical model of temperature distribution for single-wire and twin-wire
welding processes.

The governing equations for the steady-state heat conduction problem with uniform heat
source, the steady-state heat conduction problem with convective heat transfer and the transient heat
conduction problem are shown by Equation 1, 2 and 3 (Ozsik, 1993; Grigull and Sandner, 1984),

respectively.

:—x(kZ—Z)+q=O 1)
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The following Equation 4, 5 (Versteeg et al., 2007) and 6 (Ozsik, 1985) indicate the analytical
solutions of Equation 1, 2 and 3 in the literature.

_ Tp—Ta i _
T = [—L +o (L x)] x+ T, (4)
T-To __ cosh[n(L—x)]
Te—Teo - cosh(nL) (5)

T(x H_4 Zn 1( pntt exp [_ k (Znn—n)z t] % CoS [(anL—n) x] (6)

2n—1 pc\ 2L
2. Materials and Methods
2.1. Case 1: Steady-State Heat Conduction Problem with Uniform Heat Source

One of the techniques used to obtain the numerical solution of the steady-state heat
conduction equation involving uniform heat generation is the finite difference method. The general
form of the one dimensional space discretization of Equation 1 using finite difference method is
expressed as following Equation 7 (Strikwerda, 2004).

Tiy1=Ti Ti=Tiy

k=S —t+aq; =0 ()

It’s assumed that, the thermal conductivity (k) in Equation 7 is constant through all nodes.
Figure 1 indicates schematic of space discretization and boundary condition for general heat

conduction problems.
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Figure 1. Space Discretization and Boundary Condition.

The discretized equation for node 1 (Equation 8):

Tp-T1 T1-Ty
k Ax Ax/2
Ax

The discretized equation for node 2 (Equation 9):
T3—T2_T2—T1

kAxAxAx +q2=0

+q,=0

The discretized equation for node i-1 (Equation 10):
Ti—Tiq Ti1-Ti

k Ax v Ax + qi—1 — O

The discretized equation for node i (Equation 11):
Tp-T; Ti-Ti—1
Ax/2 Ax

k Ax

+q;=0

9
1

There are

(8)

©9)

(10)

(11)

equations and there are “i” unknowns (T1, T2, ..., Ti.z and Ti). Therefore, this

system of equations can be solved (Golub, 1965). Following Equation 12 implies numerical solution

of the steady-state heat conduction equation involving uniform heat generation.
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(12)

Figure 2 shows analytical solution and numerical solution for the steady-state heat conduction

equation involving uniform heat generation (case 1).
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Figure 2. Numerical Solution and Analytical Solution for Case 1.

.
o

In Figure 2, it’s assumed that left boundary condition (Ta) is 150°C and right boundary
condition (Tg) is 50°C. According to Figure 2, there is good agreement between numerical and
analytical solutions. The Matlab codes related to case 1 has been added to Appendix A.

2.2. Case 2: Steady-State Heat Conduction Problem with Convective Heat Transfer

Term

The general discretized form of Equation 2 is expressed as following Equation 13.

Tit1-Ti Ti-Tiy
- T;hP ToohP
k Ax Ax 4 ! o0 — O 13
Ax A A ( )

The discretized equation for node 1 (Equation 14):

T2-T1 T1-Ty
k Ax Ax/2 T;hP + ToohP —
Ax A A

0 (14)

The discretized equation for node 2 (Equation 15):
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Ts T2 T2 Ts o np  TohP
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The discretized equation for node i-1 (Equation 16):

Ti-Ti—y Ti1-Ti
T;hP = ToohP
ke —2 A+ 2= (16)
Ax A A

The discretized equation for node i (Equation 17):

0=l ppp | onp
Ax _ 4 0 —
k e —t——=0 a7

Since the number of equations is equal to the number of unknowns, unknown temperature
values can be determined. To simplify the solution matrix, a total of four nodes are considered
(Equation 18). In the solution system, it’s assumed that left boundary condition (Tg) is 250°C, right
boundary condition is insulated (the first term is zero in Equation 17 due to the insulation) and

ambient temperature is 45°C.

—3k  hP k 0 0] ~—2Tgk  hPTen
Ax? A Ax2 X T Ax? A
k -2k hP v 0 1 hPT,
Ax? Ax2 A * % | _ 4 (18)
k -2k hP k Ts - hPT,
0 — Ax2 A Ax? T A
Ax 4
0 0 k -2k hP hPT,
L Ax? Ax2 A - L A

In Figure 3, temperature is decreasing due to the convective heat transfer up to the ambient
temperature. Figure 3 indicates the validation of the numerical solution with analytical solution. All

Matlab codes related to Case 2 have been added to Appendix B.
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Figure 3. Numerical Solution and Analytical Solution for Case 2.

2.3. Case 3: Transient Heat Conduction Problem

In the numerical solution of transient heat conduction equation, temperature is a function of
both space and time. Hence, in addition to space discretization, convenient time discretization
technique should be selected to model physical system properly. There are two widely used
techniques to discretize time, namely explicit (Rio et al., 2005) and implicit (Lubich and Ostermann,
1995) methods. Although the explicit technique is the simplest method to solve the transient heat
conduction problem numerically, it leads to unphysical oscillation at large time step sizes. This
technique needs stability requirement to obtain well-posed numerical solution. On the other hand,
implicit technique is unconditionally stable (Peaceman, 2000). The full discretized form of Equation
3 using explicit time discretization method and second derivative space discretization technique is
shown as following Equation 19.

Ax = pc L At l (19)

The discretized equation for node 1 (Equation 20):
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In Equation 20, superscript n and n+1 refer to current time step and next time step,
respectively. Equation 21 is obtained by rearranging Equation 20 to get the temperature value at the

next time step.

1 ko 2l
TR =TI + — oY (21)
The discretized equation for node 2 (Equation 22 and 23):
T8-T% T3-T7 n+i_on
Ax Ax o2 T
k Ax = pc At (22)
T-T% T9-T}
KAt~ pAy " Ax
T2n+1 = Tzn + E# (23)
The discretized equation for node i-1 (Equation 24 and 25):
TP-TE g Tia~Tisp ntl on
Ax Ax — Ti—1 —Tiy
k = = pc—=—= (24)
T?_T?—l T?—l_T?—Z
kAt
TR = T i (25)
The discretized equation for node i (Equation 26 and 27):
BT TR
Ax/2 Ax _ i — 1
k Ax = pe At (26)
TB=T{ Ti-Tiq
KAt “axjz T Ax
Tl-n+1 == Tl-n + ;% (27)

This explicit time discretization technique is a time march method. The next time step values

are calculated using current time step values. Thus, the coefficient of interested temperature at
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current time step (for example the total coefficient of T;* in Equation 27) must be positive in order
to obtain stable numerical solution for explicit time discretization method. The stability requirement

for explicit scheme:

n n
Tiva ~Tiq

n+l _ 7n __ 2kAt KA "ny " Ay
T; =T (1 pchz) + pc Ax (28)

The coefficient of T* in Equation 28 must be positive to provide stability requirement for

explicit time discretization method.

(1 - ,,ZCIZA,:) >0 (29)

Equation 30 is obtained by rearranging Equation 29.

pchx?
At <2 (30)

The Equation 30 implies that time step sizes must be lesser than pcAx?/2k = 0.22 to get

stable numerical solution.
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Figure 4. Numerical Solution and Analytical Solution for Case 3 (dt=0.2222 seconds).
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The time step size is greater than 0.22 in Figure 4 (0.2222>0.22). Hence, there are some
undesired and unphysical oscillations (Torabi et al., 2014) in Figure 4. These numerical results are
not stable and reliable. On the other hand, Figure 5 indicates sensible and stable numerical results
due to the using small time step size (0.2<0.22). There are good agreements between numerical and
analytical solutions in Figure 5. It’s important note that all Matlab codes related to Case 3 have been
added to Appendix C.
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Figure 5. Numerical Solution and Analytical Solution for Case 3 (dt=0.2 seconds).

2.4. Case 4: Transient Heat Conduction Problem with Non-uniform Moving Heat

Source (s) and Convective Heat Transfer Term

After validation of numerical solution of Case 1, Case 2 and Case 3 with their analytical
solutions, these three cases were combined to model simplify form of tandem welding process. The
following Equation 31 indicates governing equation of the transient heat conduction problem with

non-uniform moving heat source (s) and convective heat transfer term.

oT _ @ (, 8T _ hP(T-Te)
pcﬁ_ax(kax)-l_q A (31)

The Equation 32 shows numerical solution of Equation 31 using implicit time discretization

and second derivative space discretization technique for node 1.
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n+1_-n+1 n+1_-n+1
Ty " -Tq Ty "—Ty

pc T1n+A1t—T1n — k Ax — Aejz qu+1 . hP(Tfl:—Too) (32)
The discretized equation for interior nodes (Equation 33):
o Tin+A1t_Tin . T?:11A-xT?+1AxT?+1A_xT?_+11 v hp (Tin:—Too) 33)
The discretized equation for last node (Equation 34):

LAl gntl_gnd
pc Tin+A1t‘Tin S -¥7 — Ax n an+1 _ hP(Tin:—Too) (34)

The matrix solution should be calculated for each time steps to get implicit numerical solution
of Equation 31. It’s assumed that there are three nodes to simplify solution matrix (Equation 35).

-3k _pc _hP k 0 —pcT® _ n+1 _ 2kTa _ hPTe
Axz2 At A Ax? T, At t Ax? A
k -2k _ ﬁ _ h_P k % 7—v2 — —pCTin _ n+1 _ hPTe (35)
Ax? Ax2 At A Ax? T At t A
0 L Z3k _pc_hP 3 —pcT' 41 2kTa  hPTe
Ax?2 Ax?2 At A At i Ax?2 A

2.5. Experimental Study

One of the most common arc welding techniques is single wire welding. Because of the
higher current, a smaller diameter wire increases deposition rate at same current. Higher currents
and thus higher deposition rates are involved in the current range for a bigger size. A smaller wire
diameter results in a more deeply penetrating as well as relatively narrow weld bead. The
advantages of tandem welding over single wire welding process are high welding speed, high
performance, and the filling large weld gaps between two work pieces (Tusek et al., 2005). Figure 6

shows schematic views of the single wire welding and tandem welding processes.
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Single Wire Welding Tandem Welding

Figure 6. Schematic views of the single wire and tandem welding processes.

Tandem welding is a technique that uses two separate welding systems which are
synchronized. Separate wire feeders with a gas nozzle and isolated contact tips feed the
unconnected wire electrodes into a torch hose pack. The weld pool is created by two arcs. A Twin
Controller can be used to synchronize both wire electrodes. A wire electrode can also be connected
and disconnected. It is possible to weld in both directions. As a result, there is a great deal of
mobility. This method is far more stable, allowing for extremely high welding speeds on thin sheets.
This technique has a high deposition rate for thick sheets, allowing for a much larger weld seam
volume.

All experiments in this study were carried out in Turkish Railway Vehicles Industry
Incorporated (TURASAS). Welding experiment was conducted on the Aluminum alloy sheet with
dimensions of 600 mm x 80 mm x 3 mm. The material used in this study is AI6005 alloy.
Mechanical properties of Al6005 alloy used in this study are Density: 2.70 g/cm® Young's
modulus: 68 GPa, Ultimate tensile strength: 300 MPa, Yield strength: 250 MPa, Thermal
expansion: 23 um/m-K. The chemical composition of AI6005 alloy is 0.40 % Si, 0.175 %, 0.05 %
Cu, 0.05 % Mn, 0.675 % Mg, 0.05 % Cr, 0.05 % Zn, 0.05 % Ti and 98.5 % Al (Bajor et al., 2021).
5356 AlMg5 type electrodes were used in single wire and tandem welding processes in this study.
The welding wire feed rate is 10.4 m/min, weld current is 186 A and weld voltage is 21.8 V. Figure

7 shows tandem welding processes in TURASAS.

becd

Figure 7. Tandem welding processes in TURASAS.



Karadeniz Fen Bilimleri Dergisi 12(1), 1-21, 2022 13

3. Findings and Discussion

The numerical simulator of the transient heat conduction problem with non-uniform moving
heat source (s) and convective heat transfer term has been improved for different number of nodes,
desired time step sizes, single and twin-wire welding processes (see Appendix D). The Figure 8
shows the numerical result of Equation 31 using 200 nodes instead of using 3 nodes.
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Figure 8. Single-Wire Welding Process.

In Figure 8, it’s been assumed that there is a single moving heat source, the ambient
temperature is 20°C, the left and right boundary conditions are 20°C. According to Figure 8, the
temperature decreases rapidly below to melting point of aluminum after welding and it causes weld
appearance defects due to the premature solidification of liquid metal. The Figure 9 indicates the
numerical solution for transient heat conduction problem with non-uniform moving heat sources

and convective heat transfer term. It may represent a simple form of tandem welding process.
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Figure 9. Numerical Solution for Transient Heat Conduction Problem with Non-uniform Moving Heat
Source (s) and Convective Heat Transfer Term (Tandem Welding Process).

In Figure 9, there are two electrodes with different power. The weld appearance defects such
as porosity, poor penetration, undercut, and etc. may be prevented using tandem welding process.
The total time for solidification of liquid metal at low-temperature zone is extended using the
second electrode and weld appearance defects may be inhibited.

Figure 10 shows temperature distribution of aluminum welding process. It was obtained using
Fluke Thermal Imager. Figure 10 includes three experimental results. Experimental errors were
minimized using these three experimental results. The maximum temperature was used to validate
numerical results with experimental study. The maximum temperature of numerical result is
832.527 °C. The maximum temperatures of experimental results are 833.3 °C, 826.3 °C and 831.8
°C. The average temperature of experimental results is 830.467 °C. The numerical result is very
close to the experimental result. These obtained data clearly show that the results of the numerical

method are validated with the results obtained from the experimental study.
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4. Conclusions and Recommendations

Firstly, the numerical solutions of three different cases related to heat conduction problem
have been modeled and validated with their analytical solutions. Secondly, these three different
cases namely the steady-state heat conduction problem with uniform heat source, the steady-state
heat conduction problem with convective heat transfer and the transient heat conduction problem
have been merged to model numerical solution of transient heat conduction problem with non-
uniform moving heat source (s) and convective heat transfer term. Thirdly, the single and twin-wire
welding processes have been compared to investigate the temperature distribution of low-
temperature zone of molten pool. It’s been observed that rapid decreasing of temperature at low-
temperature zone can be prevented and controlled using second electrode. Fourthly, the temperature
distributions of the aluminum welding process were obtained using the Fluke Thermal Imager.
Three thermal images were taken to minimize experimental errors. The maximum temperature was
taken into consideration to validate numerical results with experimental study. The maximum
temperature of numerical result was obtained as 832.527 °C using numerical simulation. The
average temperature of three experimental results was obtained as 830.467 °C. It is calculated that

the numerical result is very close to the experimental result with 0.248 % error. It clearly shows that
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the results of the numerical method are validated with the results obtained from the experimental
study. Finally, all Matlab codes related to numerical and analytical simulations have been added to
Appendix.
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Symbols

c = specific heat capacity
h = convective heat transfer coefficient
k  =thermal conductivity

P = perimeter

q = heatsource

T  =temperature

p  =density

At = timestep

AXx = space interval

Subscripts
i = index for nodes in the x direction
i—1 = previous node

i+1 = next node
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Superscripts
n  =oldtimestep

n+1 = current timestep

Appendices

Appendix A. Case 1: Steady-State Heat Conduction Problem with Uniform Heat Source.

tic; clc; clearvars;

L=0.02;%Length

I=30; %$Number of nodes at i-direction
dx=L/I;%Space interval

X=[0 dx/2:dx:L-dx/2 L]';%Distance
k=0.5;%Thermal conductivity: W/ (m.°C) = W/ (m.K)
TA=150; TB=50;%Boundary Condition (°C)
g=zeros(I,1);

gq(l:I,1)=10"6;%Heat generation (W/m3)
A=zeros(I,I); B=zeros(I,1l);

%$$Numerical Solution

for i=1:1I

if i==

A(i,i)=-3; A(i,i+1)=1;
B(i,1)=-g(i,1)*dx"2/k-2*TA;

elseif 1<i && 1<I

A(i,i-1)=1; A(i,i)=-2; A(i,i+1)=1;
B(i,1)=-q(i,1)*dx"2/k;

elseif i==

A(i,i-1)=1; A(i,1i)=-3;
B(i,1)=-q(i,1)*dx"2/k-2*TB;

end

end

Tn=sparse (A) \sparse (B) ;

%$set (gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 11);
plot ((dx/2:dx:L-dx/2)/I/dx,Tn, 'rs', 'markerfacecolor','r'");
xlabel ('Dimensionless Distance', 'fontsize',16)
ylabel ('Temperature (°C)', 'fontsize',16)
%$%Analytical Solution

if gradient (q)==

ag=q(l);
Ta=( (TB-TA) /L+q/2/k* (L-X)) . *X+TA;
hold on

plot (X/I/dx,Ta, 'k-',"linewidth',2);

legend ('Numerical Solution', 'Analytical Solution')
end

toc

Appendix B. Case 2: Steady-State Heat Conduction Problem with Convective Heat Transfer

Term.

tic; clc; clearvars;

L=0.02;%Length

I=30; $Number of nodes at i-direction
dx=L/I; dy=dx;%Space interval

X=[0 dx/2:dx:L-dx/2 L]';%Distance

k=0.5;%Thermal conductivity: W/ (m.°C) = W/ (m.K)
h=10; %Convective heat transfer coefficient: W/ (m2.K) = W/ (m2.°C)

H=h*2* (dx+dy) /dx/dy;
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Te=35; $Ambient (environment) temperature (°C)

TB=250; $Boundary Condition (°C)

A=zeros(I,I); B=zeros(I,1l);

$$Numerical Solution

for i=1:I

if i==

A(i,1)=-3*k/dx"2-H; A(i,i+1)=k/dx"2;
B(i,1)=-2*TB*k/dx"2-H*Te;

elseif 1<i && 1i<I

A(i,i-1)=k/dx"2; A(i,i)=-2*k/dx"2-H; A(i,i+1)=k/dx"2;
B(i,1l)=-H*Te;

elseif i==

A(i,i-1)=k/dx"2; A(i,1)=-k/dx"2-H;

B(i,1)=-H*Te;

end

end

Tn=sparse (A) \sparse (B) ;

%set (gcf, 'Units', 'Normalized', 'OuterPosition', [0 O 1 17);
plot ((dx/2:dx:L-dx/2)/I/dx,Tn, 'bo', 'markerfacecolor','b');
xlabel ('Dimensionless Distance', 'fontsize',16)

ylabel ('Temperature (°C)', 'fontsize',16)

%$%Analytical Solution

n=sqgrt (h*2* (dx+dy) /k/dx/dy) ;

Ta=Te+ (TB-Te) *cosh (n* (L-X) ) ./cosh (n*L) ;

hold on

plot (X/I/dx,Ta, "k-','linewidth',2);

legend ('Numerical Solution', 'Analytical Solution')
toc

Appendix C. Case 3: Transient Heat Conduction Problem.

tic; clc; clearvars;

L=0.02;%m (2cm)

k=10; %W/ (m.K)

rc=1le7;%J/ (m3K)

N=30; $Number of space nodes

t0=0; %second, initial time

tf=120;%second, final time

dt=2/9;%Time step interval

$Note:To get 3 different graphics, tf/dt should be divided into three.
T0=350;%Initial Condition, oC

T L=0;%Boundary Condition, oC

tr=tf/dt+1;%Time resolution of analytical solution
sr=101; %Space resolution of analytical solution

sumr=100; $Sum resolution of analytical solution

dx=L/N; %Space interval

x=dx/2:dx:L-dx/2;%Node location

n=(tf-t0) /dt+1;$Number of time steps

T=zeros (N, n) ;

T(:,1)=T0;%K (2000C) :Initial Condition

$Stability condition of explicit method:

fprintf ('Stability condition: dt<%.2f \n',rc*dx"2/(2*k));
for t=1:n-1 %$time loop

for i=1:N %space loop

if i==

T(i,t+1)=T(i,t)+k*dt/ (rc*dx"2)*(T(i+1,t)-T(i,t));

elseif 1<i && i<N

T(i,t+1)=T(i,t)+k*dt/ (rc*dx"2)*(T(i+1,t)-2*T(i,t)+T(i-1,t));
elseif i==
T(i,t+1)=T(i,t)+k*dt/ (rc*dx"2)* (2*T L-3*T(i,t)+T(i-1,t));
end

end

end
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%Analytical Solution: Ozisik (1985)

T a=zeros(sr,tr);

o=1;

for t a=linspace(t0,tf, tr)

p=1;

for x a=linspace(0,L, sr)

sum=0;

for m=1:sumr

sum=sum+ (-1) * (m+1) / (2*m-1) *exp (-k/rc* ((2*m-1) *pi/ (2*L) ) "2*t_a) *cos ( ( (2*m-
1) *pi/ (2*L)) *x_a);

end

T a(p,0)=T0*4/pi*sum;

p=p+1;

end

o=0+1;

end

t a=linspace (t0,tf,tr);

x_a=linspace (0, L, sr);

plot(x a,T a(:, (tf/3)/dt+l), 'k-', "linewidth', 2)

hold on

plot (x,T(:, (tf£/3)/dt+1), 'rs-")
plot(X_a,T_a(:,(tf*2/3)/dt+l),'k——','linewidth',2)
plot(x,T(:, (E£*¥2/3)/dt+1), 'g"-")

plot(x a,T a(:,end),'k.','linewidth',2)
plot(x,T(:,end), 'bo-")

xlabel ('Distance (m)', 'fontsize',16)

ylabel ('Temperature (%oC)', 'fontsize',16)
title(sprintf ('T L=%d"oC Mesh=%d dt=%.2fs
SC:dt<%.2f',T L,N,dt,rc*dx"2/(2*k)), 'fontsize',16)
legend ({sprintf ('Exact t=%ds',tf/3),sprintf('Explicit
=%ds',tf/3),sprintf ('Exact t=%ds',tf*2/3),sprintf ('Explicit
t=%ds',tf*2/3),sprintf ('Exact t=%ds',tf),sprintf('Explicit
=%ds',tf)}, 'FontSize',14, 'Location', 'Best')

Appendix D. Transient Heat Conduction Problem with Non-uniform Moving Heat Source (s)

and Convective Heat Transfer Term.

tic; clc; clearvars;

tt=15;%Total simulation time (second)
dt=0.1;%Time interval (second)
thickness=0.003;% (meter)

dr=0.027; %SRow interval (meter)

cn=200; %Column number
dc=0.003;%Column interval (meter)
C=dc/2:dc:cn*dc-dc/2;%Column distance

k=167; %Thermal conductivity: W/ (m.°C) = W/ (m.K)
rc=2.7*1076*0.9; %g/m3 * J/(g.K) = J/(m3.K)
h=425; %Convective heat transfer coefficient: W/ (m2.K) = W/ (m2.°C)

H=h*2* (dc+dr) /dc/dr;

Te=20; %Ambient (environment) temperature (°C)
Tp(l:cn,1)=20;%Initial Condition (°C)

TA=20; TB=20;%Boundary Condition (°C)
VI1=21*230;%Volt*Amper
E1=VI1l/thickness/dr/dc; $Heat generation (W/m3)
VI2=11*110;%Volt*Amper
E2=VI2/thickness/dr/dc; $Heat generation (W/m3)
Q=1;%Explicit (Q=0) & Implicit (Q=1)
$$Numerical Solution

Tn (1l:cn)=NaN;

A=zeros (cn,cn); B=zeros(cn,1l);

for t=1:tt/dt%Time iteration

g=zeros(cn,1l);
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q(cn/20-1+t,1)=E2; g(cn/20+20-1+t,1)=E1;

for i=1l:cn

if i==1 && Q==

Tn (i)=Tp (i) +dt/rc* (k/dc"2* (2*TA-3*Tp (i) +Tp (i+1))+g(i,1)-H* (Tp(i)-Te)) ;
elseif i==1 && Q==

A(i,1)=-3*k/dc"2-rc/dt-H; A(i,i+1)=k/dc"2;
B(i,1)=-rc*Tp(i)/dt-g(i,1)-k*2*TA/dc"2-H*Te;

elseif 1<i && i<cn && Q==

Tn (i)=Tp (i) +dt/rc* (k/dc"2* (Tp (i-1) -2*Tp (1) +Tp (i+1))+g(i, 1) -H* (Tp (i) -Te));
elseif 1<i && i<cn && Q==

A(i,i-1)=k/dc”2; A(i,i)=-2*k/dc*2-rc/dt-H; A(i,i+1)=k/dc’2;
B(i,1)=-rc*Tp(i)/dt-g(i,1)-H*Te;

elseif i==cn && Q==

Tn (i)=Tp (i) +dt/rc* (k/dc"2* (Tp (i-1)-3*Tp (1) +2*TB)+g(i,1)-H* (Tp(i)-Te)) ;
elseif i==cn && Q==

A(i,i-1)=k/dc™2; A(i,i)=-3*k/dc”2-rc/dt-H;
B(i,1)=-rc*Tp(i)/dt-g(i,1)-k*2*TB/dc"2-H*Te;

end

end

if Q==1; Tn=sparse (A)\sparse(B); end

Tp=Tn;

%set (gcf, 'Units', 'Normalized', 'OuterPosition', [0 O 1 17]);

plot (dc/2:dc:cn*dc-dc/2,Tn, "go-', 'markerfacecolor', 'g', 'markersize',1.5);
hold on

plot ([dc/2 cn*dc-dc/2],[660.3 660.3],'r-"',"'linewidth',2);

xlabel ('Distance (meter)', 'fontsize',16)

ylabel ('Temperature (°C)', 'fontsize',16)

legend ('Numerical Solution', 'Melting Point of Aluminum')
title(sprintf('1lD Sim: time=%1.1f second',t*dt), 'fontsize',16)

hold off

pause (0.001)

end

toc



