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Abstract 

In this study, the numerical solutions for the steady-state heat conduction problem with uniform heat source, the steady-

state heat conduction problem with convective heat transfer and the transient heat conduction problem have been 

developed using finite difference method. These numerical solutions have been validated with analytical solutions. 

After observing the good agreements between numerical solutions and analytical solutions, these three different 

problems combined to simulate the tandem welding process. The first objective of this study is to present a numerical 

simulator for the transient heat conduction problem that includes non-uniform moving heat sources and convective heat 

transfer term. This numerical simulator contains explicit and implicit time discretization methods. In this simulator, it is 

possible to change the grid sizes, time step sizes, total simulation time, distance between electrodes, magnitude of the 

sources' power, speed of the sources, etc. Secondly, the temperature distribution of single and twin wire welding 

processes have been compared using proposed numerical simulator to investigate the premature solidification of liquid 

metal in low-temperature zone of molten pool. Thirdly, experimental study was carried out using Fluke Thermal Imager 

to validate numerical results. It was obtained that the maximum temperature of numerical result is very close to the 

maximum temperature of experimental result with 0.248 % error. Finally, the all Matlab codes related to developed 

numerical simulator have been added to Appendix to facilitate other researchers’ work. 

Keywords: Computational fluid dynamics, Finite difference method, Tandem welding. 

 

 

Tandem Kaynak İşleminde Sıcaklık Dağılımının Sayısal Analizi 

 

Öz 

Bu çalışmada, sabit ve homojen ısı kaynağını içeren ve zamana bağlı olmayan ısı iletimi probleminin, taşınım ısı 

transferini içeren ve zamana bağlı olmayan ısı iletimi probleminin ayrıca zamana bağlı ısı iletimi probleminin sayısal 

çözümleri sonlu farklar yöntemi kullanılarak elde edilmiştir. Bu sayısal çözümler analitik çözümlerle doğrulanmıştır. 

Sayısal çözümler ve analitik çözümler arasındaki uyum gözlemlendikten sonra, tandem kaynak sürecini simüle etmek 

için bu üç farklı problem birleştirilmiştir. Bu çalışmanın ilk amacı, homojen olmayan hareketli ısı kaynaklarını ve 

taşınımla ısı transferini içeren bunun yanı sıra zamanın bir fonksiyonu olan ısı iletimi problemi için sayısal bir simülatör 

sunmaktır. Bu sayısal simülatör, açık ve örtük zaman ayrıklaştırma yöntemlerini içerir. Bu simülatörde; ızgara 

boyutlarını, zaman adımı boyutlarını, toplam simülasyon süresini, elektrotlar arasındaki mesafeyi, kaynakların gücünün 

büyüklüğünü, kaynakların hızını değiştirmek mümkündür. İkinci olarak, erimiş havuzun düşük sıcaklık bölgesinde sıvı 

metalin erken katılaşmasını araştırmak için önerilen sayısal simülatör kullanılarak tek ve çift tel kaynak işlemlerinin 

sıcaklık dağılımı karşılaştırılmıştır. Son olarak, geliştirilen sayısal simülatör ile ilgili tüm Matlab kodları, diğer 

araştırmacıların çalışmalarını kolaylaştırmak için makalenin sonuna eklenmiştir. 

Anahtar Kelimeler: Hesaplamalı akışkanlar dinamiği, Sonlu farklar yöntemi, Tandem kaynağı.  
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1. Introduction 

 

Tandem welding is well known for its ability to increase welding productivity, as various 

authors have proved (Chen et al., 2015; Wu et al., 2018; Zhang et al., 2019). Tandem welding technique 

is employed in the heavy and automotive industries because it has a better productivity and 

deposition rate than single wire welding (Zargari et al., 2019). Tandem welding has obtained good 

results in terms of welding speed and deposition rate. Tandem welding can double the rate of 

deposition in steel welding (Michie, 1999; Goecke et al., 2001) and increase the rate of deposition in 

aluminum welding by 55% (Lee et al., 2013). When compared to a single wire method, it requires 

half the welding passes for thick Aluminum plates (Kim et al., 2016). In high speed single-wire 

welding process, the formation of weld appearance defects is observed due to the premature 

solidification of liquid metal in low-temperature zone of molten pool (Qin et al., 2021). Twin-wire 

welding is used to inhibit these defects such as undercut and humping weld (Qin et al., 2015). In this 

study, the numerical solution of a simplify form of the welding process is developed to compare 

temperature distribution of single-wire and twin-wire welding. The numerical solutions of single-

wire and twin-wire processes may be represented by the transient heat conduction equation that 

includes non-uniform moving heat source (s) and convective heat transfer term. The analytical 

solution of this complex problem is not available in literature due to the non-uniform heat sources 

and convective heat transfer term in transient heat conduction equation. Therefore, the numerical 

solution is developed to model this sophisticated problem using finite difference method (Smith et 

al., 1985). The transient heat conduction problem that includes non-uniform moving heat source (s) 

and convective heat transfer term consists of the steady-state heat conduction problem with uniform 

heat source, the steady-state heat conduction problem with convective heat transfer and the transient 

heat conduction problem. These three problems have analytical solution. In this study, once the 

numerical solutions for the steady-state heat conduction problem with uniform heat source, the 

steady-state heat conduction problem with convective heat transfer and the transient heat 

conduction problem were validated with their analytical solutions, these three problems have been 

combined to obtain numerical model of temperature distribution for single-wire and twin-wire 

welding processes.  

The governing equations for the steady-state heat conduction problem with uniform heat 

source, the steady-state heat conduction problem with convective heat transfer and the transient heat 

conduction problem are shown by Equation 1, 2 and 3 (Ozısık, 1993; Grigull and Sandner, 1984), 

respectively. 

 

𝑑

𝑑𝑥
(𝑘

𝑑𝑇

𝑑𝑥
) + 𝑞 = 0              (1) 
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𝑑

𝑑𝑥
(𝑘

𝑑𝑇

𝑑𝑥
) −

ℎ𝑃(𝑇−𝑇∞)

𝐴
= 0              (2) 

 

𝜌𝑐
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
)              (3) 

 

The following Equation 4, 5 (Versteeg et al., 2007) and 6 (Ozısık, 1985) indicate the analytical 

solutions of Equation 1, 2 and 3 in the literature. 

 

𝑇 = [
𝑇𝐵−𝑇𝐴

𝐿
+

𝑞

2𝑘
(𝐿 − 𝑥)] 𝑥 + 𝑇𝐴              (4) 

 

𝑇−𝑇∞

𝑇𝐵−𝑇∞
=

𝑐𝑜𝑠ℎ[𝑛(𝐿−𝑥)]

𝑐𝑜𝑠ℎ(𝑛𝐿)
               (5) 

 

𝑇(𝑥,𝑡)

𝑇𝑖
=

4

𝜋
∑

(−1)𝑛+1

2𝑛−1
𝑒𝑥𝑝 [−

𝑘

𝜌𝑐
(
2𝑛𝜋−𝜋

2𝐿
)
2

𝑡] × 𝑐𝑜𝑠 [(
2𝑛𝜋−𝜋

2𝐿
) 𝑥]∞

𝑛=1           (6) 

 

2. Materials and Methods 

 

2.1. Case 1: Steady-State Heat Conduction Problem with Uniform Heat Source 

 

One of the techniques used to obtain the numerical solution of the steady-state heat 

conduction equation involving uniform heat generation is the finite difference method. The general 

form of the one dimensional space discretization of Equation 1 using finite difference method is 

expressed as following Equation 7 (Strikwerda, 2004). 

 

𝑘
𝑇𝑖+1−𝑇𝑖

∆𝑥
−

𝑇𝑖−𝑇𝑖−1
∆𝑥

∆𝑥
+ 𝑞𝑖 = 0              (7) 

 

It’s assumed that, the thermal conductivity (k) in Equation 7 is constant through all nodes. 

Figure 1 indicates schematic of space discretization and boundary condition for general heat 

conduction problems. 
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Figure 1. Space Discretization and Boundary Condition. 

 

The discretized equation for node 1 (Equation 8): 

𝑘

𝑇2−𝑇1
∆𝑥

−
𝑇1−𝑇𝐴
∆𝑥/2

∆𝑥
+ 𝑞1 = 0              (8) 

The discretized equation for node 2 (Equation 9): 

𝑘
𝑇3−𝑇2

∆𝑥
−

𝑇2−𝑇1
∆𝑥

∆𝑥
+ 𝑞2 = 0              (9) 

The discretized equation for node i-1 (Equation 10): 

𝑘
𝑇𝑖−𝑇𝑖−1

∆𝑥
−

𝑇𝑖−1−𝑇𝑖−2
∆𝑥

∆𝑥
+ 𝑞𝑖−1 = 0                                       (10) 

The discretized equation for node i (Equation 11): 

𝑘

𝑇𝐵−𝑇𝑖
∆𝑥/2

−
𝑇𝑖−𝑇𝑖−1

∆𝑥

∆𝑥
+ 𝑞𝑖 = 0                                            (11) 

 

There are “i” equations and there are “i” unknowns (T1, T2, …, Ti-1 and Ti). Therefore, this 

system of equations can be solved (Golub, 1965). Following Equation 12 implies numerical solution 

of the steady-state heat conduction equation involving uniform heat generation. 

 

[
 
 
 
 
 
 
−3 1 0
1 −2 1
0 1 −2

⋯
0
1

0 0 0
⋯ 0 0
0 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 0
0 0 ⋯
0 0 0

1
0
⋯

−2 1 0
1 −2 1
0 1 −3]

 
 
 
 
 
 

[
 
 
 
 
 
 

𝑇1

𝑇2

𝑇3

⋮
𝑇𝑖−2

𝑇𝑖−1

𝑇𝑖 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 −

𝑞1∆𝑥2

𝑘
− 2𝑇𝐴

−
𝑞2∆𝑥2

𝑘

−
𝑞3∆𝑥2

𝑘

⋮

−
𝑞𝑖−2∆𝑥2

𝑘

−
𝑞𝑖−1∆𝑥2

𝑘

−
𝑞𝑖∆𝑥2

𝑘
− 2𝑇𝐵]

 
 
 
 
 
 
 
 
 
 

                                          (12) 

 

Figure 2 shows analytical solution and numerical solution for the steady-state heat conduction 

equation involving uniform heat generation (case 1). 
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Figure 2. Numerical Solution and Analytical Solution for Case 1. 

 

In Figure 2, it’s assumed that left boundary condition (TA) is 150°C and right boundary 

condition (TB) is 50°C. According to Figure 2, there is good agreement between numerical and 

analytical solutions. The Matlab codes related to case 1 has been added to Appendix A. 

 

2.2. Case 2: Steady-State Heat Conduction Problem with Convective Heat Transfer 

Term 

 

The general discretized form of Equation 2 is expressed as following Equation 13. 

 

𝑘
𝑇𝑖+1−𝑇𝑖

∆𝑥
−

𝑇𝑖−𝑇𝑖−1
∆𝑥

∆𝑥
−

𝑇𝑖ℎ𝑃

𝐴
+

𝑇∞ℎ𝑃

𝐴
= 0                                (13) 

 

The discretized equation for node 1 (Equation 14): 

 

𝑘

𝑇2−𝑇1
∆𝑥

−
𝑇1−𝑇𝐴
∆𝑥/2

∆𝑥
−

𝑇𝑖ℎ𝑃

𝐴
+

𝑇∞ℎ𝑃

𝐴
= 0                                (14) 

 

The discretized equation for node 2 (Equation 15): 
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𝑘
𝑇3−𝑇2

∆𝑥
−

𝑇2−𝑇1
∆𝑥

∆𝑥
−

𝑇𝑖ℎ𝑃

𝐴
+

𝑇∞ℎ𝑃

𝐴
= 0                                   (15) 

 

The discretized equation for node i-1 (Equation 16): 

 

𝑘
𝑇𝑖−𝑇𝑖−1

∆𝑥
−

𝑇𝑖−1−𝑇𝑖−2
∆𝑥

∆𝑥
−

𝑇𝑖ℎ𝑃

𝐴
+

𝑇∞ℎ𝑃

𝐴
= 0                           (16) 

 

The discretized equation for node i (Equation 17): 

 

𝑘
0−

𝑇𝑖−𝑇𝑖−1
∆𝑥

∆𝑥
−

𝑇𝑖ℎ𝑃

𝐴
+

𝑇∞ℎ𝑃

𝐴
= 0                                     (17) 

 

Since the number of equations is equal to the number of unknowns, unknown temperature 

values can be determined. To simplify the solution matrix, a total of four nodes are considered 

(Equation 18). In the solution system, it’s assumed that left boundary condition (TB) is 250°C, right 

boundary condition is insulated (the first term is zero in Equation 17 due to the insulation) and 

ambient temperature is 45°C. 

 

[
 
 
 
 
 
−3𝑘

∆𝑥2 −
ℎ𝑃

𝐴

𝑘

∆𝑥2

𝑘

∆𝑥2

−2𝑘

∆𝑥2 −
ℎ𝑃

𝐴

  0             0
𝑘

∆𝑥2          0

0            
𝑘

∆𝑥2

0            0

  
−2𝑘

∆𝑥2 −
ℎ𝑃

𝐴

𝑘

∆𝑥2

  
𝑘

∆𝑥2

−2𝑘

∆𝑥2 −
ℎ𝑃

𝐴 ]
 
 
 
 
 

× [

𝑇1

𝑇2

𝑇3

𝑇4

] =

[
 
 
 
 
 
−2𝑇𝐵𝑘

∆𝑥2 −
ℎ𝑃𝑇𝑒

𝐴

−
ℎ𝑃𝑇𝑒

𝐴

−
ℎ𝑃𝑇𝑒

𝐴

−
ℎ𝑃𝑇𝑒

𝐴 ]
 
 
 
 
 

                                (18) 

 

In Figure 3, temperature is decreasing due to the convective heat transfer up to the ambient 

temperature. Figure 3 indicates the validation of the numerical solution with analytical solution. All 

Matlab codes related to Case 2 have been added to Appendix B. 
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Figure 3. Numerical Solution and Analytical Solution for Case 2. 

 

2.3. Case 3: Transient Heat Conduction Problem 

 

In the numerical solution of transient heat conduction equation, temperature is a function of 

both space and time. Hence, in addition to space discretization, convenient time discretization 

technique should be selected to model physical system properly. There are two widely used 

techniques to discretize time, namely explicit (Rio et al., 2005) and implicit (Lubich and Ostermann, 

1995) methods. Although the explicit technique is the simplest method to solve the transient heat 

conduction problem numerically, it leads to unphysical oscillation at large time step sizes. This 

technique needs stability requirement to obtain well-posed numerical solution. On the other hand, 

implicit technique is unconditionally stable (Peaceman, 2000). The full discretized form of Equation 

3 using explicit time discretization method and second derivative space discretization technique is 

shown as following Equation 19. 

 

𝑘

𝑇𝑖+1
𝑛 −𝑇𝑖

𝑛

∆𝑥
−

𝑇𝑖
𝑛−𝑇𝑖−1

𝑛

∆𝑥

∆𝑥
= 𝜌𝑐

𝑇𝑖
𝑛+1−𝑇𝑖

𝑛

∆𝑡
                                   (19) 

 

The discretized equation for node 1 (Equation 20): 
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𝑘
𝑇2
𝑛−𝑇1

𝑛

∆𝑥
−0

∆𝑥
= 𝜌𝑐

𝑇1
𝑛+1−𝑇1

𝑛

∆𝑡
                                                (20) 

 

In Equation 20, superscript n and n+1 refer to current time step and next time step, 

respectively. Equation 21 is obtained by rearranging Equation 20 to get the temperature value at the 

next time step. 

 

𝑇1
𝑛+1 = 𝑇1

𝑛 +
𝑘∆𝑡

𝜌𝑐

𝑇2
𝑛−𝑇1

𝑛

∆𝑥
−0

∆𝑥
                                             (21) 

 

The discretized equation for node 2 (Equation 22 and 23): 

 

𝑘
𝑇3
𝑛−𝑇2

𝑛

∆𝑥
−

𝑇2
𝑛−𝑇1

𝑛

∆𝑥

∆𝑥
= 𝜌𝑐

𝑇2
𝑛+1−𝑇2

𝑛

∆𝑡
                                            (22) 

 

𝑇2
𝑛+1 = 𝑇2

𝑛 +
𝑘∆𝑡

𝜌𝑐

𝑇3
𝑛−𝑇2

𝑛

∆𝑥
−

𝑇2
𝑛−𝑇1

𝑛

∆𝑥

∆𝑥
                                  (23) 

 

The discretized equation for node i-1 (Equation 24 and 25): 

 

𝑘

𝑇𝑖
𝑛−𝑇𝑖−1

𝑛

∆𝑥
−

𝑇𝑖−1
𝑛 −𝑇𝑖−2

𝑛

∆𝑥

∆𝑥
= 𝜌𝑐

𝑇𝑖−1
𝑛+1−𝑇𝑖−1

𝑛

∆𝑡
                              (24) 

 

𝑇𝑖−1
𝑛+1 = 𝑇𝑖−1

𝑛 +
𝑘∆𝑡

𝜌𝑐

𝑇𝑖
𝑛−𝑇𝑖−1

𝑛

∆𝑥
−

𝑇𝑖−1
𝑛 −𝑇𝑖−2

𝑛

∆𝑥

∆𝑥
                              (25) 

 

The discretized equation for node i (Equation 26 and 27): 

 

𝑘

𝑇𝐵
𝑛−𝑇𝑖

𝑛

∆𝑥/2
−

𝑇𝑖
𝑛−𝑇𝑖−1

𝑛

∆𝑥

∆𝑥
= 𝜌𝑐

𝑇𝑖
𝑛+1−𝑇𝑖

𝑛

∆𝑡
                                    (26) 

 

𝑇𝑖
𝑛+1 = 𝑇𝑖

𝑛 +
𝑘∆𝑡

𝜌𝑐

𝑇𝐵
𝑛−𝑇𝑖

𝑛

∆𝑥/2
−

𝑇𝑖
𝑛−𝑇𝑖−1

𝑛

∆𝑥

∆𝑥
                                     (27) 

 

This explicit time discretization technique is a time march method. The next time step values 

are calculated using current time step values. Thus, the coefficient of interested temperature at 
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current time step (for example the total coefficient of 𝑇𝑖
𝑛 in Equation 27) must be positive in order 

to obtain stable numerical solution for explicit time discretization method. The stability requirement 

for explicit scheme: 

 

𝑇𝑖
𝑛+1 = 𝑇𝑖

𝑛 (1 −
2𝑘∆𝑡

𝜌𝑐∆𝑥2) +
𝑘∆𝑡

𝜌𝑐

𝑇𝑖+1
𝑛

∆𝑥
−

−𝑇𝑖−1
𝑛

∆𝑥

∆𝑥
                       (28) 

 

The coefficient of 𝑇1
𝑛 in Equation 28 must be positive to provide stability requirement for 

explicit time discretization method. 

 

(1 −
2𝑘∆𝑡

𝜌𝑐∆𝑥2) > 0                                                         (29) 

 

Equation 30 is obtained by rearranging Equation 29. 

 

∆𝑡 <
𝜌𝑐∆𝑥2

2𝑘
                                                                   (30) 

 

The Equation 30 implies that time step sizes must be lesser than 𝜌𝑐∆𝑥2/2𝑘 = 0.22 to get 

stable numerical solution. 

 

 

Figure 4. Numerical Solution and Analytical Solution for Case 3 (dt=0.2222 seconds). 
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The time step size is greater than 0.22 in Figure 4 (0.2222>0.22). Hence, there are some 

undesired and unphysical oscillations (Torabi et al., 2014) in Figure 4. These numerical results are 

not stable and reliable. On the other hand, Figure 5 indicates sensible and stable numerical results 

due to the using small time step size (0.2<0.22). There are good agreements between numerical and 

analytical solutions in Figure 5. It’s important note that all Matlab codes related to Case 3 have been 

added to Appendix C. 

 

 

Figure 5. Numerical Solution and Analytical Solution for Case 3 (dt=0.2 seconds). 

 

2.4. Case 4: Transient Heat Conduction Problem with Non-uniform Moving Heat 

Source (s) and Convective Heat Transfer Term 

 

After validation of numerical solution of Case 1, Case 2 and Case 3 with their analytical 

solutions, these three cases were combined to model simplify form of tandem welding process. The 

following Equation 31 indicates governing equation of the transient heat conduction problem with 

non-uniform moving heat source (s) and convective heat transfer term. 

 

𝜌𝑐
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
) + 𝑞 −

ℎ𝑃(𝑇−𝑇∞)

𝐴
                               (31) 

 

The Equation 32 shows numerical solution of Equation 31 using implicit time discretization 

and second derivative space discretization technique for node 1. 
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𝜌𝑐
𝑇1

𝑛+1−𝑇1
𝑛

∆𝑡
= 𝑘

𝑇2
𝑛+1−𝑇1

𝑛+1

∆𝑥
−

𝑇1
𝑛+1−𝑇𝐴

𝑛+1

∆𝑥/2

∆𝑥
+ 𝑞1

𝑛+1 −
ℎ𝑃(𝑇1

𝑛+1−𝑇∞)

𝐴
                                                   (32) 

 

The discretized equation for interior nodes (Equation 33): 

 

𝜌𝑐
𝑇𝑖

𝑛+1−𝑇𝑖
𝑛

∆𝑡
= 𝑘

𝑇𝑖+1
𝑛+1−𝑇𝑖

𝑛+1

∆𝑥
−

𝑇𝑖
𝑛+1−𝑇𝑖−1

𝑛+1

∆𝑥

∆𝑥
+ 𝑞𝑖

𝑛+1 −
ℎ𝑃(𝑇𝑖

𝑛+1−𝑇∞)

𝐴
                                                   (33) 

 

The discretized equation for last node (Equation 34): 

 

𝜌𝑐
𝑇𝑖

𝑛+1−𝑇𝑖
𝑛

∆𝑡
= 𝑘

𝑇𝐵
𝑛+1−𝑇𝑖

𝑛+1

∆𝑥/2
−

𝑇𝑖
𝑛+1−𝑇𝑖−1

𝑛+1

∆𝑥

∆𝑥
+ 𝑞𝑖

𝑛+1 −
ℎ𝑃(𝑇𝑖

𝑛+1−𝑇∞)

𝐴
                               (34) 

 

The matrix solution should be calculated for each time steps to get implicit numerical solution 

of Equation 31. It’s assumed that there are three nodes to simplify solution matrix (Equation 35). 

 

[
 
 
 
 
−3𝑘

∆𝑥2 −
𝜌𝑐

∆𝑡
−

ℎ𝑃

𝐴

𝑘

∆𝑥2 0

𝑘

∆𝑥2

−2𝑘

∆𝑥2 −
𝜌𝑐

∆𝑡
−

ℎ𝑃

𝐴

𝑘

∆𝑥2

0
𝑘

∆𝑥2

−3𝑘

∆𝑥2 −
𝜌𝑐

∆𝑡
−

ℎ𝑃

𝐴 ]
 
 
 
 

× [
𝑇1

𝑇2

𝑇3

] =

[
 
 
 
 
−𝜌𝑐𝑇𝑖

𝑛

∆𝑡
− 𝑞𝑖

𝑛+1 −
2𝑘𝑇𝐴

∆𝑥2 −
ℎ𝑃𝑇𝑒

𝐴

−𝜌𝑐𝑇𝑖
𝑛

∆𝑡
− 𝑞𝑖

𝑛+1 −
ℎ𝑃𝑇𝑒

𝐴

−𝜌𝑐𝑇𝑖
𝑛

∆𝑡
− 𝑞𝑖

𝑛+1 −
2𝑘𝑇𝐴

∆𝑥2 −
ℎ𝑃𝑇𝑒

𝐴 ]
 
 
 
 

   (35) 

 

2.5. Experimental Study 

 

One of the most common arc welding techniques is single wire welding. Because of the 

higher current, a smaller diameter wire increases deposition rate at same current. Higher currents 

and thus higher deposition rates are involved in the current range for a bigger size. A smaller wire 

diameter results in a more deeply penetrating as well as relatively narrow weld bead. The 

advantages of tandem welding over single wire welding process are high welding speed, high 

performance, and the filling large weld gaps between two work pieces (Tušek et al., 2005). Figure 6 

shows schematic views of the single wire welding and tandem welding processes. 
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Figure 6. Schematic views of the single wire and tandem welding processes. 

 

Tandem welding is a technique that uses two separate welding systems which are 

synchronized. Separate wire feeders with a gas nozzle and isolated contact tips feed the 

unconnected wire electrodes into a torch hose pack. The weld pool is created by two arcs. A Twin 

Controller can be used to synchronize both wire electrodes. A wire electrode can also be connected 

and disconnected. It is possible to weld in both directions. As a result, there is a great deal of 

mobility. This method is far more stable, allowing for extremely high welding speeds on thin sheets. 

This technique has a high deposition rate for thick sheets, allowing for a much larger weld seam 

volume. 

All experiments in this study were carried out in Turkish Railway Vehicles Industry 

Incorporated (TURASAS). Welding experiment was conducted on the Aluminum alloy sheet with 

dimensions of 600 mm × 80 mm × 3 mm. The material used in this study is Al6005 alloy. 

Mechanical properties of Al6005 alloy used in this study are Density: 2.70 g/cm3, Young's 

modulus: 68 GPa, Ultimate tensile strength: 300 MPa, Yield strength: 250 MPa, Thermal 

expansion: 23 μm/m-K. The chemical composition of Al6005 alloy is 0.40 % Si, 0.175 %, 0.05 % 

Cu, 0.05 % Mn, 0.675 % Mg, 0.05 % Cr, 0.05 % Zn, 0.05 % Ti and 98.5 % Al (Bajor et al., 2021). 

5356 AlMg5 type electrodes were used in single wire and tandem welding processes in this study. 

The welding wire feed rate is 10.4 m/min, weld current is 186 A and weld voltage is 21.8 V. Figure 

7 shows tandem welding processes in TURASAS. 

 

 

Figure 7. Tandem welding processes in TURASAS. 
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3. Findings and Discussion 

 

The numerical simulator of the transient heat conduction problem with non-uniform moving 

heat source (s) and convective heat transfer term has been improved for different number of nodes, 

desired time step sizes, single  and twin-wire welding processes (see Appendix D). The Figure 8 

shows the numerical result of Equation 31 using 200 nodes instead of using 3 nodes.  

 

 

Figure 8. Single-Wire Welding Process. 

 

In Figure 8, it’s been assumed that there is a single moving heat source, the ambient 

temperature is 20°C, the left and right boundary conditions are 20°C. According to Figure 8, the 

temperature decreases rapidly below to melting point of aluminum after welding and it causes weld 

appearance defects due to the premature solidification of liquid metal. The Figure 9 indicates the 

numerical solution for transient heat conduction problem with non-uniform moving heat sources 

and convective heat transfer term. It may represent a simple form of tandem welding process.  
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Figure 9. Numerical Solution for Transient Heat Conduction Problem with Non-uniform Moving Heat 

Source (s) and Convective Heat Transfer Term (Tandem Welding Process). 
 

In Figure 9, there are two electrodes with different power. The weld appearance defects such 

as porosity, poor penetration, undercut, and etc. may be prevented using tandem welding process. 

The total time for solidification of liquid metal at low-temperature zone is extended using the 

second electrode and weld appearance defects may be inhibited. 

Figure 10 shows temperature distribution of aluminum welding process. It was obtained using 

Fluke Thermal Imager. Figure 10 includes three experimental results. Experimental errors were 

minimized using these three experimental results. The maximum temperature was used to validate 

numerical results with experimental study. The maximum temperature of numerical result is 

832.527 °C. The maximum temperatures of experimental results are 833.3 °C, 826.3 °C and 831.8 

°C. The average temperature of experimental results is 830.467 °C. The numerical result is very 

close to the experimental result. These obtained data clearly show that the results of the numerical 

method are validated with the results obtained from the experimental study. 
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Figure 10. Temperature distributions of aluminum welding process (°C). 

 

4. Conclusions and Recommendations 

 

Firstly, the numerical solutions of three different cases related to heat conduction problem 

have been modeled and validated with their analytical solutions. Secondly, these three different 

cases namely the steady-state heat conduction problem with uniform heat source, the steady-state 

heat conduction problem with convective heat transfer and the transient heat conduction problem 

have been merged to model numerical solution of transient heat conduction problem with non-

uniform moving heat source (s) and convective heat transfer term. Thirdly, the single and twin-wire 

welding processes have been compared to investigate the temperature distribution of low-

temperature zone of molten pool. It’s been observed that rapid decreasing of temperature at low-

temperature zone can be prevented and controlled using second electrode. Fourthly, the temperature 

distributions of the aluminum welding process were obtained using the Fluke Thermal Imager. 

Three thermal images were taken to minimize experimental errors. The maximum temperature was 

taken into consideration to validate numerical results with experimental study. The maximum 

temperature of numerical result was obtained as 832.527 °C using numerical simulation. The 

average temperature of three experimental results was obtained as 830.467 °C. It is calculated that 

the numerical result is very close to the experimental result with 0.248 % error. It clearly shows that 
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the results of the numerical method are validated with the results obtained from the experimental 

study. Finally, all Matlab codes related to numerical and analytical simulations have been added to 

Appendix. 
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Symbols 
 

c  = specific heat capacity 

h  = convective heat transfer coefficient 

k  = thermal conductivity 

P  = perimeter 

q  = heat source 

T  = temperature 

  = density 

t  = timestep 

x  = space interval 

Subscripts 

i  = index for nodes in the x direction 

1−i  = previous node 

1+i  = next node 
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Superscripts 

n  = old timestep 

1+n  = current timestep 

 

Appendices 

Appendix A. Case 1: Steady-State Heat Conduction Problem with Uniform Heat Source. 

tic; clc; clearvars; 

L=0.02;%Length 

I=30;%Number of nodes at i-direction 

dx=L/I;%Space interval 

X=[0 dx/2:dx:L-dx/2 L]';%Distance 

k=0.5;%Thermal conductivity: W/(m.°C) = W/(m.K) 

TA=150; TB=50;%Boundary Condition(°C) 

q=zeros(I,1); 

q(1:I,1)=10^6;%Heat generation(W/m3) 

A=zeros(I,I); B=zeros(I,1); 

%%Numerical Solution 

for i=1:I 

if i==1 

A(i,i)=-3; A(i,i+1)=1; 

B(i,1)=-q(i,1)*dx^2/k-2*TA; 

elseif 1<i && i<I 

A(i,i-1)=1; A(i,i)=-2; A(i,i+1)=1; 

B(i,1)=-q(i,1)*dx^2/k; 

elseif i==I 

A(i,i-1)=1; A(i,i)=-3; 

B(i,1)=-q(i,1)*dx^2/k-2*TB; 

end 

end 

Tn=sparse(A)\sparse(B); 

%set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]); 

plot((dx/2:dx:L-dx/2)/I/dx,Tn,'rs','markerfacecolor','r'); 

xlabel('Dimensionless Distance','fontsize',16) 

ylabel('Temperature (°C)','fontsize',16) 

%%Analytical Solution 

if gradient(q)==0 

q=q(1); 

Ta=((TB-TA)/L+q/2/k*(L-X)).*X+TA; 

hold on 

plot(X/I/dx,Ta,'k-','linewidth',2); 

legend('Numerical Solution','Analytical Solution') 

end 

toc 

 

Appendix B. Case 2: Steady-State Heat Conduction Problem with Convective Heat Transfer 

Term. 

tic; clc; clearvars; 

L=0.02;%Length 

I=30;%Number of nodes at i-direction 

dx=L/I; dy=dx;%Space interval 

X=[0 dx/2:dx:L-dx/2 L]';%Distance 

k=0.5;%Thermal conductivity: W/(m.°C) = W/(m.K) 

h=10;%Convective heat transfer coefficient: W/(m2.K) = W/(m2.°C) 

H=h*2*(dx+dy)/dx/dy; 
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Te=35;%Ambient(environment) temperature(°C) 

TB=250;%Boundary Condition(°C) 

A=zeros(I,I); B=zeros(I,1); 

%%Numerical Solution 

for i=1:I 

if i==1 

A(i,i)=-3*k/dx^2-H; A(i,i+1)=k/dx^2; 

B(i,1)=-2*TB*k/dx^2-H*Te; 

elseif 1<i && i<I 

A(i,i-1)=k/dx^2; A(i,i)=-2*k/dx^2-H; A(i,i+1)=k/dx^2; 

B(i,1)=-H*Te; 

elseif i==I 

A(i,i-1)=k/dx^2; A(i,i)=-k/dx^2-H; 

B(i,1)=-H*Te; 

end 

end 

Tn=sparse(A)\sparse(B); 

%set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]); 

plot((dx/2:dx:L-dx/2)/I/dx,Tn,'bo','markerfacecolor','b'); 

xlabel('Dimensionless Distance','fontsize',16) 

ylabel('Temperature (°C)','fontsize',16) 

%%Analytical Solution 

n=sqrt(h*2*(dx+dy)/k/dx/dy); 

Ta=Te+(TB-Te)*cosh(n*(L-X))./cosh(n*L); 

hold on 

plot(X/I/dx,Ta,'k-','linewidth',2); 

legend('Numerical Solution','Analytical Solution') 

toc 

 

Appendix C. Case 3: Transient Heat Conduction Problem. 

tic; clc; clearvars; 

L=0.02;%m (2cm) 

k=10;%W/(m.K) 

rc=1e7;%J/(m3K) 

N=30;%Number of space nodes 

t0=0;%second, initial time 

tf=120;%second, final time 

dt=2/9;%Time step interval 

%Note:To get 3 different graphics, tf/dt should be divided into three. 

T0=350;%Initial Condition, oC 

T_L=0;%Boundary Condition, oC 

tr=tf/dt+1;%Time resolution of analytical solution 

sr=101;%Space resolution of analytical solution 

sumr=100;%Sum resolution of analytical solution 

dx=L/N;%Space interval 

x=dx/2:dx:L-dx/2;%Node location 

n=(tf-t0)/dt+1;%Number of time steps 

T=zeros(N,n); 

T(:,1)=T0;%K (200oC):Initial Condition 

%Stability condition of explicit method: 

fprintf('Stability condition: dt<%.2f \n',rc*dx^2/(2*k)); 

for t=1:n-1 %time loop 

for i=1:N %space loop 

if i==1 

T(i,t+1)=T(i,t)+k*dt/(rc*dx^2)*(T(i+1,t)-T(i,t)); 

elseif 1<i && i<N 

T(i,t+1)=T(i,t)+k*dt/(rc*dx^2)*(T(i+1,t)-2*T(i,t)+T(i-1,t)); 

elseif i==N 

T(i,t+1)=T(i,t)+k*dt/(rc*dx^2)*(2*T_L-3*T(i,t)+T(i-1,t)); 

end 

end 

end 
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%Analytical Solution: Özisik (1985) 

T_a=zeros(sr,tr); 

o=1; 

for t_a=linspace(t0,tf,tr) 

p=1; 

for x_a=linspace(0,L,sr) 

sum=0; 

for m=1:sumr 

sum=sum+(-1)^(m+1)/(2*m-1)*exp(-k/rc*((2*m-1)*pi/(2*L))^2*t_a)*cos(((2*m-

1)*pi/(2*L))*x_a); 

end 

T_a(p,o)=T0*4/pi*sum; 

p=p+1; 

end 

o=o+1; 

end 

t_a=linspace(t0,tf,tr); 

x_a=linspace(0,L,sr); 

plot(x_a,T_a(:,(tf/3)/dt+1),'k-','linewidth',2) 

hold on 

plot(x,T(:,(tf/3)/dt+1),'rs-') 

plot(x_a,T_a(:,(tf*2/3)/dt+1),'k--','linewidth',2) 

plot(x,T(:,(tf*2/3)/dt+1),'g^-') 

plot(x_a,T_a(:,end),'k.','linewidth',2) 

plot(x,T(:,end),'bo-') 

xlabel('Distance (m)','fontsize',16) 

ylabel('Temperature (^oC)','fontsize',16) 

title(sprintf('T_L=%d^oC  Mesh=%d dt=%.2fs 

SC:dt<%.2f',T_L,N,dt,rc*dx^2/(2*k)),'fontsize',16) 

legend({sprintf('Exact t=%ds',tf/3),sprintf('Explicit 

t=%ds',tf/3),sprintf('Exact t=%ds',tf*2/3),sprintf('Explicit 

t=%ds',tf*2/3),sprintf('Exact t=%ds',tf),sprintf('Explicit 

t=%ds',tf)},'FontSize',14,'Location', 'Best') 

 

Appendix D. Transient Heat Conduction Problem with Non-uniform Moving Heat Source (s) 

and Convective Heat Transfer Term. 

tic; clc; clearvars; 

tt=15;%Total simulation time(second) 

dt=0.1;%Time interval(second) 

thickness=0.003;%(meter) 

dr=0.027;%Row interval(meter) 

cn=200;%Column number 

dc=0.003;%Column interval(meter) 

C=dc/2:dc:cn*dc-dc/2;%Column distance 

k=167;%Thermal conductivity: W/(m.°C) = W/(m.K) 

rc=2.7*10^6*0.9; %g/m3 * J/(g.K) = J/(m3.K) 

h=425;%Convective heat transfer coefficient: W/(m2.K) = W/(m2.°C) 

H=h*2*(dc+dr)/dc/dr; 

Te=20;%Ambient(environment) temperature(°C) 

Tp(1:cn,1)=20;%Initial Condition(°C) 

TA=20; TB=20;%Boundary Condition(°C) 

VI1=21*230;%Volt*Amper 

E1=VI1/thickness/dr/dc;%Heat generation(W/m3) 

VI2=11*110;%Volt*Amper 

E2=VI2/thickness/dr/dc;%Heat generation(W/m3) 

Q=1;%Explicit(Q=0) & Implicit(Q=1) 

%%Numerical Solution 

Tn(1:cn)=NaN; 

A=zeros(cn,cn); B=zeros(cn,1); 

for t=1:tt/dt%Time iteration 

q=zeros(cn,1); 
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q(cn/20-1+t,1)=E2; q(cn/20+20-1+t,1)=E1; 

for i=1:cn 

if i==1 && Q==0 

Tn(i)=Tp(i)+dt/rc*(k/dc^2*(2*TA-3*Tp(i)+Tp(i+1))+q(i,1)-H*(Tp(i)-Te)); 

elseif i==1 && Q==1 

A(i,i)=-3*k/dc^2-rc/dt-H; A(i,i+1)=k/dc^2; 

B(i,1)=-rc*Tp(i)/dt-q(i,1)-k*2*TA/dc^2-H*Te; 

elseif 1<i && i<cn && Q==0 

Tn(i)=Tp(i)+dt/rc*(k/dc^2*(Tp(i-1)-2*Tp(i)+Tp(i+1))+q(i,1)-H*(Tp(i)-Te)); 

elseif 1<i && i<cn && Q==1 

A(i,i-1)=k/dc^2; A(i,i)=-2*k/dc^2-rc/dt-H; A(i,i+1)=k/dc^2; 

B(i,1)=-rc*Tp(i)/dt-q(i,1)-H*Te; 

elseif i==cn && Q==0 

Tn(i)=Tp(i)+dt/rc*(k/dc^2*(Tp(i-1)-3*Tp(i)+2*TB)+q(i,1)-H*(Tp(i)-Te)); 

elseif i==cn && Q==1 

A(i,i-1)=k/dc^2; A(i,i)=-3*k/dc^2-rc/dt-H; 

B(i,1)=-rc*Tp(i)/dt-q(i,1)-k*2*TB/dc^2-H*Te; 

end 

end 

if Q==1; Tn=sparse(A)\sparse(B); end 

Tp=Tn; 

%set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1]); 

plot(dc/2:dc:cn*dc-dc/2,Tn,'go-','markerfacecolor','g','markersize',1.5); 

hold on 

plot([dc/2 cn*dc-dc/2],[660.3 660.3],'r-','linewidth',2); 

xlabel('Distance (meter)','fontsize',16) 

ylabel('Temperature (°C)','fontsize',16) 

legend('Numerical Solution','Melting Point of Aluminum') 

title(sprintf('1D Sim: time=%1.1f second',t*dt),'fontsize',16) 

hold off 

pause(0.001) 

end 

toc 


