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Abstract 

The detection and classification of power quality events that disturb the voltage and/or current waveforms in the electrical power 

distribution networks is very important to generate electrical energy and to deliver this energy to the end-user equipment at an 

acceptable voltage. Various property extraction methods are used to determine the type of disturbances in the electrical signal. In this 

study, seven power distortions including voltage sag, voltage swell, voltage harmonics, voltage sag with harmonics, voltage swell with 

harmonics, flicker, transient signals and pure sine as a reference signal is used. Synthetic data are produced in MATLAB using 

parametric equations based on TS EN 50160 standard. Four kinds of feature extraction as frequency-amplitude, time-amplitude, 

geometric mean and standard deviation is made with Stockwell Transform (ST), which is one of the methods used for the feature 

extraction of the determined GKB. Detection of voltage distortions is interpreted through these properties. 640 simulation data is 

entered into the classifier by using Support Vector Machines (SVM) and Artificial Neural Networks (ANN) and their classification 

performance is compared. 

Keywords: Power Quality Disturbance, Stockwell Transform, Support Vector Machine, Artificial Neural Network. 

Stockwell Dönüşümü Tabanlı Güç Kalitesi Bozunumlarının Destek Vektör 

Makinası ve Yapay Sinir Ağları ile Sınıflandırılması 

Öz 

Elektrik enerjisi hizmetlerinin kesintisiz bir biçimde tüketiciye ulaştırılması büyük önem taşımaktadır. Sistemdeki bozulmaların tespiti 

ve alınması gereken önlemler bu açıdan önemlidir. Elektrik sinyalindekini bozulmaların türünün belirlenmesi için çeşitli özellik çıkarım 

yöntemleri kullanılmaktadır. Bu çalışmada, elektrik güç sistemlerinde meydana gelen Güç Kalitesi Bozunumlarından(GKB) gerilim 

yükselmesi, gerilim çökmesi, harmonikli gerilim, harmonikli gerilim düşmesi, harmonikli gerilim yükselmesi, flicker ve transient ile 

referans sinyali olarak saf sinüs sinyallerini içeren sekiz işaret toplam on dönem sürecek şekilde TS EN 50160 standartlarına göre 

MATLAB ortamında oluşturulmuştur. Belirlenen GKB’na ait özellik çıkarımı için kullanılan yöntemlerden biri olan Stockwell-

Dönüşümü ile frekans-genlik, zaman-genlik, geometrik ortalama ve standart sapma olmak üzere 4 çeşit özellik çıkarımı yapılmıştır. 

Bu özellikler üzerinden gerilim bozulmalarının tespiti yorumlanmıştır. Toplam 640 benzetim verisi Destek Vektör Makinaları (DVM) 

ve Yapay Sinir Ağları(YSA) ile sınıflandırıcıya sokularak sınıflandırma başarımları karşılaştırılmıştır.  

Keywords: Güç Kalitesi Bozunumları, Stockwell dönüşümü, Destek Vektör Makinaları, Yapay Sinir Ağları.
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1. Introduction 

Today, power quality problems are an important 

issue for electrical energy services. In an electrical 

power system, the power reaching the end consumer 

must be clean. That is, it must be completely sinusoidal 

and the basic parameters of the network must be 

acceptable and within the limits set by the standards 

(Elango et al.,2016). Equipment used in power 

distribution are very sensitive to malfunctions in the 

supply systems (Singh et al., 1999). Power Quality (PQ) 

is vital to the smooth operation of power systems (Singh 

et al.,2017). The majority of the loads in the system are 

non-linear loads and cause system failure. These 

distortions produce results such as system resonance, 

capacitor overload and decrease in efficiency and 

changes in voltage magnitude (Dharavath et al., 2017). 

The main reasons for the deterioration in power quality 

are malfunction, load switching, capacitor switching, 

high switching frequency electronic devices, power 

converters, arc furnaces and transformers. Timely 

reducing of these distortions requires quick and accurate 

classification. It is of great importance to process and 

extract the signals for a successful classification. Some 

popular methods used for feature extraction of power 

quality are Short-Time Fourier Transform 

(STFT)(Azam et al.,2004, Ingale, 2014, Yoo et al., 

2015) , Hilbert-Huang Transform (HHT) (Tao et al., 

2013, Saxena et al., 2014), Wavelet Transform (WT) 

(Poisson et al., 2000, Gaing, 2004) and Stockwell 

Transform (S-transform) (Mahela et al., 2016, Raj et al., 

2016, Zhao et al., 2016, Shamachurn, 2019, Liang et al., 

2021). FT and STFT are not sufficiently successful in 

feature extraction. Although frequency analysis is 

performed well with FT, time information cannot be 

obtained (Zhao et al., 2016). STFT, which allows 

Fourier analysis by windowing in short time intervals 

for time information, is also not successful enough 

(Karasu, 2016). WT has been extensively used in feature 

extraction of power quality impairment. However, this 

method is greatly affected by electrical noise in the 

signal. S-transform is a time-frequency spectral 

localization technique proposed by Stockwell, which 

combines the features of WT and STFT. The S-

transformation uses a window whose width decreases 

with frequency and provides a frequency-dependent 

resolution (Elango et al.,2016).  

For classification, Artificial Neural Networks 

(ANN) (Agarwal et al., 2018), Support Vector Machine 

(SVM) (Ozgonenel et al., 2013, Thirumala et al., 2018, 

Choudhary, 2021), Fuzzy Logic (FL) techniques 

(Chilukuri et al., 2004, Mishra et al., 2021), Deep 

Learning (DP) methods (Wang et al., 2019, Sindi et al., 

2021) are extensively used. 

The aim of this study is to determine and analyze the 

PQDs of power systems in a strong- reliable way with 

the S-transformation, and detect the most suitable 

classifier. For this purpose, firstly, seven different PQDs 

are created in MATLAB environment including voltage 

sag, voltage swell, transient at different amplitude, 

duration and angles, and voltage harmonic, voltage sag 

with harmonic, voltage swell with harmonic and flicker 

at different time and frequency. Sampling frequency is 

taken 25.6 kHz. Pure sine signal is selected as reference. 

The obtained waveform feature extraction is made by S-

transformation. A total of 640 simulation data are 

obtained from the S-transformation of the signals for 

Amplitude-Time, Amplitude-Frequency, Geometric 

Properties, Standard Deviation Properties. Using these 

features, the success of classification of PQD is 

investigated with SVM and ANN. 

The paper is organized in four sections. Section 1 

gives a basic introduction to the topic. Section 2 

describes the S-Transform and feature extraction 

technique according to types of power quality 

disturbances. Section 3 presents the achieved test results 

and discussion. In this section,  classification techniques 

based on SVM and ANN are elaborated. Section 4 

presents conclusion. 

2. Materials and Methods 

2.1. S-Transformation  

First, The S-transform was defined by R. G. 

Stockwell and was derived from the continuous wavelet 

transform. This transformation includes both amplitude 

and phase spectrum information together (Raj et al., 

2016). S-transform is a method that involves both short-

time Fourier transform and wavelet analysis but falls 

into a different category (Cortes et al., 1995). The 

wavelet transform cannot yield significant results in 

noisy 

environments, while the S-transform provides 

successful results in property extraction in the presence 

of noise. This makes S-transformation suitable for 

accurate detection and classification of power quality 

disturbances. 

The S-transform uses an analysis window that 

decreases in width depending on frequency and provides 

a frequency-dependent resolution. The time-frequency 

spectrum of the modulated signal is focused. The time-

frequency analysis technique provides a three-

dimensional graph of a signal in terms of signal energy 

or magnitude of time and frequency (Zhao et al., 2016). 

The general S-transform is defined by Equation (1). 

 

𝑠(𝜏, 𝑓) = ∫ 𝑥(𝑡)𝑔(𝜏 − 𝑡, 𝑓)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞
 (1) 

 

x (t) is the signal and g (t) is the windowing function. 

The window function is a modulated Gaussian function 

expressed by Equation (2). 

 

𝑔(𝜏) =
|𝑓|

√2𝜋
𝑒−(𝑡

2𝑓2/2) (2) 

 

The general equation is; 
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(𝜏, 𝑓) = ∫ 𝑥(𝑡)
|𝑓|

√2𝜋
𝑒−((𝜏−𝑡)

2𝑓2/2)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞
 (3) 

 

After obtaining the S-transform, four different 

properties are extracted. The first property is the 

amplitude-time property obtained by taking the largest 

values of the lines of the S-transformation. This feature 

provides information about the amplitude of the signal. 

The second feature is the frequency-amplitude property 

obtained by taking the largest value of the columns of 

the S-transformation. This feature provides information 

about the frequency of the signal. The third feature is the 

geometric mean of the S-transformation. This feature 

helps to locate sudden amplitude changes in the signal. 

The last feature is obtained by taking the standard 

deviation. This provides the same information as the 

time-amplitude property, but is additionally used to 

detect the harmonics in the signal. 

2.2. According to Disturbances Types of Signals 

S-Transformation and Feature Extraction 

 The healthy simulation model operates at 1 pu voltage 

amplitude. Sampling frequency is 25.6 kHz. PQD are 

produced as 5120 samples in 10 period’s length. 

2.2.1. Pure Signal 

The pure sine signal and its S-transformation graphs 

are  given in Figure 1. Frequency-amplitude, time-

amplitude, geometric mean and standard deviation 

characteristics obtained from S-transform of pure sine 

signal are given in Figure 2.  

 

 

Figure 1. Pure Sine signal and S-transformation 

The amplitude-time graph, which gives information 

about the amplitude of the signal, shows that the 

amplitude is constant and does not change over time. In 

the amplitude-frequency graph, it is seen that only 50 Hz 

network frequency is available. Since the periodicity of 

the signal is not disturbed, no change is observed in the 

graph of the geometric mean. In the standard deviation 

graph, we obtain information about the amplitude of the 

signal as in the amplitude-time graph, but unlike the first 

feature, we can also observe periodic fluctuations from 

this graph. 

 

Figure 2. Properties derived from S-transformation of 

pure sine 

2.2.2. Voltage Sag 

Voltage sag is defined as the decrease in the mains 

voltage nominal value between 10-90%. The graph and 

S-transform of a 10-period mains voltage signal with a 

50% voltage sag between the 2nd and 6th periods are 

given in Figure 3.  

The frequency-amplitude, time-amplitude, 

geometric mean and standard deviation characteristics 

obtained from the S-transform of the voltage sag signal 

are given in Figure 4.  

 

 

Figure 3. 50% voltage sag signal and S-transform 
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Figure 4. Characteristics obtained from S-transform of 

50% voltage sag signal 

As seen in the amplitude-time graph, which is the 

first feature, the amplitude decreased between the 2nd 

and 6th periods. This decrease is also seen in the 

standard deviation graph. Since there is no change in 

frequency, there is no difference in amplitude-frequency 

graph compared to pure sine. In the geometric mean 

graph, the location of the changes in the original signal 

on the time axis is revealed. The graph has changed at 

the beginning of the 2nd and 6th periods. 

2.2.3. Voltage Swell 

Voltage swell is defined as the increase of the mains 

voltage nominal value to 110-180%. The graph and S-

transform of a 10-period mains voltage signal with a 

150% voltage swell between the 2nd and 6th periods are 

given in Figure-5. The characteristics of the voltage 

swell signal are given in figure 6.  

 

 
Figure 5. 50% voltage swell signal and S-

transform 

 

Figure 6. Characteristics obtained from the S-transform 

of  80% voltage swell signal  

On the amplitude-time graph, the amplitude 

increased between the 2nd and 6th periods. The 

frequency-time graph shows that only a frequency of 50 

Hz is present. On the other hand, the geometric mean 

graph shows the change in the original signal at the 

beginning of the 2nd and 6th periods, which are the 

place of the changes in the time axis. 

2.2.4. Flicker 

Voltage flickers under the frequency of 50 Hz, which 

are caused by fluctuations in the flicker load and cause 

flickering in lighting. In the standards, flicker intensity 

limit values are given between 0.8 and 1. In Figure 7, 0.8 

flicker voltage signal and S-transform are given.  The 

properties obtained from S-transformation for this 

disturbance are given in Figure-8.  

 

 
Figure 7. Voltage signal and S-transform with 

flicker intensity limit value 0.8 
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Figure 8. Properties of the S-transform of the voltage 

signal with a flicker intensity limit value of 0.8 

The amplitude time graph shows the decrease in the 

voltage caused by the flicker. The amplitude frequency 

graph shows a 50 Hz sine signal. In the feature graph 

extracted from the geometric mean, the times when 

flicker is realized become apparent in the 3rd and 8th 

Periods. Since there are no different frequencies in the 

signal, only the voltage variation is observed in the 

standard deviation graph. 

2.2.5. Transient 

This is called a temporary change in the power 

system that takes place from 50 ns up to 50 ms. The 

distortion voltage of 4 kHz in the 3rd and 6th periods 

and the S-transform are given in Figure-9. Figure-10 

shows the properties extracted from the S-

transformation of this signal. 

 

 

Figure 9. Transient signal and S-transform of power 

quality disturbance 

 

Figure 10. Features derived from S-transformation of 

transient power quality disturbance 

The amplitude time graph shows the parts where the 

voltage rises. The 50 Hz signal and the transient signal 

present in the signal are plotted on the amplitude-

frequency graph. The geometric mean graph gives the 

starting points of the transient signals. Finally, the 

standard deviation graph shows the change along the 

transient along with the amplitude change. 

2.2.6. Voltage with Harmonics 

It is the distortion of the voltage or current waveform 

from the ideal sine. The signal containing the 3rd and 

5th harmonics in the 10-period signal and the S-

transformation of this signal are given in Figure-11. 

S-transformed properties of harmonic voltage are 

given in Figure-12.  

 

 
Figure 11. The 3rd and 5th harmonic added voltage 

signal and S-transform 
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Figure 12. Properties obtained from S-transform of the 

3rd and 5th harmonic added voltage signal 

The amplitude-time plot is constant since no voltage 

decrease or increase in the periodic signal occurs. In the 

amplitude-frequency graph, the 3rd and 5th harmonics 

in the signal are seen as 150 kHz and 250 kHz. On the 

other hand, since the amplitude changes due to the 3rd 

and 5th harmonics are small, no significant change was 

observed in the geometric feature graph. In the standard 

deviation feature, fluctuations due to harmonic can be 

observed. 

2.2.7. Voltage Sag with Harmonics 

The 10-period signal contains the 3rd and 5th 

harmonics, as well as the voltage sag during the 2nd and 

6th periods and the S-transform is given in Figure-13. 

 

 
Figure 13. voltage sag signal with the  3rd and 5th 

harmonic added and S-transform 

The properties of the voltage sag with harmonics 

signal derived from the S-transform are given in Figure 

14. From this amplitude-time graph, the range in which 

the voltage drops are observed. The presence of 

harmonics of 150 Hz. and 250 Hz. is obtained from the 

frequency time graph. The range in which voltage starts 

to drop and ends is seen from the graph of the geometric 

property. In the standard deviation graph, which is the 

prominent feature in the detection of harmonics, 

harmonics can be observed. 

Based on these properties, the range in which the 

voltage rises are clearly seen on the amplitude time 

graph. The frequency values in the signal are determined 

as 50 Hz, 150 Hz and 250 Hz in the frequency time 

graph. 

As it can be seen in the graph of the geometric 

feature that helps us to determine the interval where the 

voltage starts to rise and ends, it started in the 3rd period 

and ended in the 6th Period. In the standard deviation 

graph, the observed fluctuations reveal the presence of 

harmonics in the signal. 

 

 

Figure 14. Properties obtained from the S-transform of 

the 3rd and 5th harmonic added voltage sag signal 

2.2.7. Voltage Swell with Harmonics 

The 10-period signal contains the 3rd and 5th 

harmonics, as well as the voltage swell during the 2nd 

and 6th periods and the S-transform is given in Figure-

15. 

The characteristics of the voltage swell with 

harmonics signal are given in Figure-16. Based on these 

properties, the range in which the voltage rises are 

clearly seen on the amplitude time graph. The frequency 

values in the signal are determined as 50 Hz, 150 Hz and 

250 Hz in the frequency time graph. As it can be seen in 

the graph of the geometric feature that helps us to 

determine the interval where the voltage starts to rise 

and ends, it started in the 3rd period and ended in the 6th 

Period. In the standard deviation graph, the observed 
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fluctuations reveal the presence of harmonics in the 

signal. 

 

 
Figure 15. Voltage swell signal with the  3rd and 

5th harmonic added and S-transform 

 

 

Figure 16. Properties obtained from the S-transform of 

the 3rd and 5th harmonic added voltage swell signal 

As it can be seen in the graph of the geometric 

feature that helps us to determine the interval where the 

voltage starts to rise and ends, it started in the 3rd period 

and ended in the 6th Period. 

In the standard deviation graph, the observed 

fluctuations reveal the presence of harmonics in the 

signal. 

3. Test and Discussion 

3.1. Classification of Signals with Support Vector 

Machines 

Eight types of signal whose properties are obtained 

by using S-transform is classified with support vector 

machines. Classification is made using the Quadratic 

SVM and one-to-one method in the Classification 

Learner Toolbox in MATLAB. Table 1 shows the labels 

of the disturbances. 

Table 1. Class of PQ Events  

PQD  Class Label 
Pure Sine Distrubance1 
Voltage Sag Distrubance2 
Voltage Swell Distrubance3 
Flicker Distrubance4 
Transient Distrubance5 
Voltage with Harmonics Distrubance6 
Voltage Sag with Harmonics Distrubance7 
Voltage Swell with Harmonics Distrubance8 

 

In Table 2, the success numbers and success 

percentages of the classification test data performed 

with SVM are given. Confusion matrix is given in 

Figure 17. 

 

 

Figure 17. Confusion matrix for SVM.

 
Table 2. Numbers and percentages of success as a result of training 

Classes Total Tested Successful Unsuccessful Performance Percentage 
Distrubance1 16 16 0 %100 
Distrubance2 16 16 0 %100 
Distrubance3 16 15 1 %94 
Distrubance4 16 16 0 %100 
Distrubance5 16 16 0 %100 
Distrubance6 16 16 0 %100 
Distrubance7 16 16 0 %100 
Distrubance8 16 16 0 %100 



 

Journal of Intelligent Systems: Theory and Applications 5(1) (2022) 75-84   82 

 

Total performance was 99.2%. Pure sine, voltage 

sag, flicker, voltage with harmonics, voltage sag with 

harmonics and voltage swell with harmonics can be 

estimated as 100%. Only one of the test data is perceived 

as voltage with harmonics while voltage swell. 

 

3.2. Classification of Signals with Artificial Neural 

Networks 

In this study, the architecture of the proposed ANN 

is selected from the MATLAB-Neural Network 

Toolbox and consists of an input layer with 900 inputs, 

a hidden layer with 10 neurons, and an output layer with 

a neuron as shown in Figure 18. The number of neurons 

and hidden layers depends on the problem and is 

determined by trial and error until a target performance 

is achieved (Greche et al., 2017). 

 

 

Figure 18. Two-layer feed-forward neural network 

architecture 

The formulated network is trained with a total of 640 

samples of 80 different samples per 8 disturbance 

classes. The number of samples of the ANN classifier 

for training, validation and testing is randomly selected 

and is given in Table 3.

Table 3. Number of samples for training, validation and 

testing 

Method %Samples Sample number 

Training 70 448 

Validation 15 96 

Testing 15 96 

Method %Samples Sample number 

 

As the training algorithm, Scaled Conjugate 

Gradient back propagation training algorithm is chosen. 

The reason is that this algorithm takes up less memory. 

The training automatically stops when generalization 

stops healing, as shown by the increase in error (MSE) 

in the mean square root of validation samples.  

In Figure 19, 100% recognition performance in the 

confusion matrix of training, validation and test 

indicates that training performs well. ANN is trained 

with 100% accuracy and tested with 100% accuracy. 

This ratio is considered to be quite successful and 

sensitive. When the effectiveness of the applied method 

and the success of the results are taken into 

consideration, it can be concluded that the aim of this 

study has been achieved. 

If the results are obtained less than 100%, during the 

training process, each layer’s weight can be updated by 

a function called optimizer. The optimizer shows better 

performance in computational efficiency with 

advantages such as aigh precision solution and quick 

convergence (Ruder, 2016). 

 

Figure 19. Confusion Matrix for ANN 
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4. Conclusions 

In this study, seven signal distortions have been 

produced in MATLAB environment such as voltage sag, 

voltage swell, voltage with harmonics, transient, flicker,  

voltage sag with harmonics, voltage swell with 

harmonics  for 1 signal of amplitude and frequency of 

50 Hz. The stockwell transform of a total of 8 signals 

was taken with the pure sine signal. A total of 4 different 

properties were obtained from these signals from the 

Stockwell transform. These; time-dependent amplitude 

changes of the signal, amplitude of frequency 

components, geometric mean and standard deviation. 

The graphs of these features are presented and their roles 

in determining each signal type are interpreted. Changes 

in the amplitudes of the signals are determined from the 

time dependent amplitude property. The frequencies of 

the different components in the signal are determined 

from the frequency amplitudes. The properties of the 

changes in the amplitude of the signal are determined by 

using the geometric mean. In the standard deviation 

feature, periodic distortions such as harmonics are 

observed.  

In the case of voltage sag and voltage swell 

disturbances, inferences are made from the amplitude-

time graph about the voltage sag and swell. In addition, 

the geometric mean graph makes inferences about the 

time when fall and rise begin and end. In the flicker 

disturbance signal, the 10 Hz component is determined 

from the amplitude frequency graph. In addition, the 

voltage drops at the points where the flicker occurs can 

be observed from the amplitude time graph. When 

flicker occurs, it is determined by the geometric mean. 

In the transient distortion signal, besides the 50 Hz 

signal, the 4 kHz signal can be observed on the 

amplitude-frequency graph. As with other signals, the 

voltage variation of the signal and the location of the 

change can be observed in the amplitude-time and 

geometric average graphs. Unlike other disturbances in 

the voltage with harmonics signal, there is a fluctuation 

in the standard deviation graph, which is used to detect 

the harmonics in the signal. In addition, 50 Hz signal and 

150 Hz and 250 Hz harmonic frequencies can be 

observed in the amplitude frequency graph. In contrast 

to the voltage with harmonic signal, the voltage 

decreases or increase in the amplitude-time graph and 

the points where the voltage starts to decrease and starts 

to increase in the voltage sag with harmonics and 

voltage swell with harmonics are determined. 

High quality results can be obtained if training and 

testing is performed by using the classification methods 

obtained from this transformation. These properties are 

classified with SVM and ANN. As a result of the 

classification, decays can be estimated with 99.54% 

SVM and 100% ANN. Thus, both methods are 

successful for a strong feature extraction, and ANN 

gives a much better result. 

Compared to other feature extraction methods, S-

Transform contains both frequency and time 

information. This offers a great advantage in the feature 

extraction of the signals. 
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