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ABSTRACT 

This paper focuses on exploring effect of the step length, used in the line search, computation techniques on the 
performance of steepest descent (SD) method in the geometry fitting of the 2D measured profiles. To this end, the 
three step length computation techniques or line search conditions accommodating Weak Wolfe (WWC), Strong 
Wolfe (SWC) and the exact minimizer finder have been implemented during the fitting process. To test the line 
search conditions performances, the 2D primitive geometry test set consisting of five different geometries such as 
circle, square, triangle, ellipse and rectangle have been employed. The 2D profiles of those geometries have been 
extracted using coordinate measuring machine (CMM) with high precision. For performance assessments, the total 
number of function evaluations when the SD method-line search condition combination satisfies the required 
converge tolerance have been used. By means of those data, the performance profiles have been created to conduct 
reliable and efficient assessments on the line search conditions. The results have shown that the step length 
computation technique plays a crucial role for the SD method performance. Based on the performance profiles, it 
has been determined that the fastest line search condition is the WWC. Besides that, it has been revealed that the 
optimum technique is the exact minimizer finder for the geometry fitting process in the study. 
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ÖLÇÜLEN 2B PROFİLLERE GEOMETRİ UYDURULMASINDA 
GRADYAN TEMELLİ DOĞRU BOYUNCA ARAMA ŞARTLARI 
DİKKATE ALINARAK EN DİK İNİŞ YÖNTEMİNİN PERFORMANS 
DEĞERLENDİRMESİ 

ÖZET 

Bu çalışmada ölçülen 2B profillere geometri uydurulmasında doğru boyunca aramada kullanılan adım uzunluğu 
hesaplama yöntemlerinin en dik iniş yönteminin performansına etkisi incelenmiştir. Bu amaçla, zayıf Wolfe, güçlü 
Wolfe ve tam olarak minimize eden adım uzunluğunu bulan olmak üzere üç adım uzunluğu hesaplama yöntemi 
ya da doğru boyunca arama şartları geometri uydurma sürecinde kullanılmıştır. Doğru boyunca arama şartlarının 
performansını test etmek amacıyla, daire, kare, üçgen, elips ve dikdörtgen geometrilerini içeren bir 2B temel 
geometri seti kullanılmıştır. Bu geometrilerin profilleri yüksek hassasiyet ile koordinat ölçme cihazı ile elde 
edilmiştir. Performans değerlendirmeleri için ilgili en dik iniş yöntemi-doğru boyunca arama şartı kombinasyonu 
istenen tolerans değerini sağladığında ortaya çıkan toplam fonksiyon kullanım sayısından yararlanılmıştır.  Doğru 
boyunca arama şartlarının güvenilir ve verimli bir şekilde performans değerlendirilmesini yapmak için bu veriler 
vasıtasıyla performans profilleri oluşturulmuştur. Sonuçlar adım uzunluğu hesaplama tekniklerinin en dik iniş 
yöntemi performansında önemli bir rol oynadığını göstermektedir. Performans profillerine dayanarak, en hızlı 
doğru boyunca arama şartı zayıf Wolfe olarak saptanmıştır. Bunun yanı sıra, çalışmada geometri uydurma süreci 
için optimum yöntemin tam olarak minimize eden adım uzunluğunu bulan yöntem olduğu ortaya çıkarılmıştır. 

Anahtar kelimeler: En dik iniş yöntemi, Performans profilleri, Doğru boyunca arama, Geometri uydurma, 
Optimizasyon
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1. Introduction 

The steepest descent [1] is a basic optimization method that has been frequently used in many areas such 
as engineering, science, business etc. It has been implemented in many studies along with the various 
line search conditions. For instance, Bento et al. [2] provided an inexact SD method including Armijo’s 
rule for multicriteria optimization. A general application of the SD method on the mechanical systems 
was completed by Haug et al. [3]. Liu and Reynolds [4] derived a multi-objective SD method. They 
performed applications for optimal well control and it was shown that the proposed method is quite 
efficient. In [5], the circularity value of a mechanical part was found using a novel SD algorithm. The 
data measured with CMM was used for the input to the proposed algorithm. Much more applications of 
the SD method can be found in the literature such those in [6-10]. On the other hand, the SD method 
performance or any other optimization algorithm performance may differ from problem-to-problem. 
Thus, researchers have been performing benchmarking studies to make assessments on the particular 
problem set. Those studies can be seen in many areas. Khan and Lobiyal [11], for instance, carried out 
performance analysis on the three different algorithms (i.e., Newton-Raphson, conjugate gradient and 
SD) in application of backbone based wireless networks. Different optimization algorithms were 
compared to each other for the finite element based structural topology optimization by Rojas-Labanda 
and Stolpe [12]. The other significant efforts on the benchmarking of optimization algorithms can be 
found in [13-16]. 

From the point of view given above, this paper focuses on the performance evaluation of the SD 
method considering line search conditions in the nonlinear least squares geometry fitting of 2D measured 
profiles. The primitive geometry set containing circle, square, triangle, ellipse and rectangle have 
manufactured using 3D printer with PLA material. And then, 2D profiles of these geometries are 
extracted using the CMM with high precision. All the scanned profiles are subjected to nonlinear least 
squares fitting process through the SD method along with three different step length computation 
techniques (i.e., WWC, SWC and exact minimizer finder). During the fitting process, the total number 
of function evaluations, when the algorithm converges, are recorded and they are used for performance 
evaluations. Henceforth, the paper is organized as follows: Section 2 provides the primitive test 
geometry set including their mathematical models and their parameters. The nonlinear least squares 
fitting procedure is given in Section 3. In Section 4 a brief mathematical background on the step length 
computation techniques is included. Section 5 shows the experimental setup. Section 6 reports the results 
with discussions. Finally, the conclusions are made in Section 7. 

2. Test Geometries 

The five 2D primitive geometries (i.e., circle, square, triangle, ellipse and rectangle) are chosen for the 
nonlinear least squares geometry fitting process. They are listed in Table 1. that accommodates 
corresponding mathematical models [17] and parameter vectors. 
 

Table 1. Test geometries and their mathematical models 

Geometry 
number 

Mathematical model Parameter vector Geometry 

1 𝑥𝑥 = 𝑟𝑟𝑐𝑐 cos(𝑢𝑢) + 𝑥𝑥𝑐𝑐 
𝑦𝑦 = 𝑟𝑟𝑐𝑐 sin(𝑢𝑢) + 𝑦𝑦𝑐𝑐 𝑝𝑝 = [𝑟𝑟𝑐𝑐 𝑥𝑥𝑐𝑐 𝑦𝑦𝑐𝑐 𝑢𝑢] 

 

rc 
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2 

𝑥𝑥𝑢𝑢 =
𝑤𝑤
2

(|cos (𝑢𝑢)| cos(𝑢𝑢)
+ |sin (𝑢𝑢)| sin(𝑢𝑢)) 

𝑦𝑦𝑢𝑢 =
ℎ
2

(|cos (𝑢𝑢)| cos(𝑢𝑢)
− |sin (𝑢𝑢)| sin(𝑢𝑢)) 

𝑥𝑥 = 𝑥𝑥𝑢𝑢 cos(𝜃𝜃) − 𝑦𝑦𝑢𝑢 sin(𝜃𝜃) + 𝑥𝑥𝑐𝑐 
𝑦𝑦 = 𝑥𝑥𝑢𝑢 sin(𝜃𝜃) + 𝑦𝑦𝑢𝑢 cos(𝜃𝜃) + 𝑦𝑦𝑐𝑐 

𝑝𝑝 = [𝑤𝑤 ℎ 𝑥𝑥𝑐𝑐 𝑦𝑦𝑐𝑐 𝜃𝜃 𝑢𝑢] 

 

3 

𝑟𝑟 =
ℎ

cos � 2
𝑛𝑛𝑠𝑠
𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 �𝑎𝑎𝑎𝑎𝑛𝑛 �𝑛𝑛𝑠𝑠2 𝑢𝑢���

 

𝑥𝑥𝑢𝑢 = 𝑟𝑟 cos(𝑢𝑢) 
𝑦𝑦𝑢𝑢 = 𝑟𝑟 sin(𝑢𝑢) 

𝑥𝑥 = 𝑥𝑥𝑢𝑢 cos(𝜃𝜃) − 𝑦𝑦𝑢𝑢 sin(𝜃𝜃) + 𝑥𝑥𝑐𝑐 
𝑦𝑦 = 𝑥𝑥𝑢𝑢 sin(𝜃𝜃) + 𝑦𝑦𝑢𝑢 cos(𝜃𝜃) + 𝑦𝑦𝑐𝑐 

𝑝𝑝 = [ℎ 𝑥𝑥𝑐𝑐 𝑦𝑦𝑐𝑐 𝜃𝜃 𝑢𝑢] 

 

4 

𝑥𝑥𝑢𝑢 = 𝑎𝑎 cos(𝑢𝑢) 
𝑦𝑦𝑢𝑢 = 𝑏𝑏 sin(𝑢𝑢) 

𝑥𝑥 = 𝑥𝑥𝑢𝑢 cos(𝜃𝜃) − 𝑦𝑦𝑢𝑢 sin(𝜃𝜃) + 𝑥𝑥𝑐𝑐 
𝑦𝑦 = 𝑥𝑥𝑢𝑢 sin(𝜃𝜃) + 𝑦𝑦𝑢𝑢 cos(𝜃𝜃) + 𝑦𝑦𝑐𝑐 

𝑝𝑝 = [𝑎𝑎 𝑏𝑏 𝑥𝑥𝑐𝑐 𝑦𝑦𝑐𝑐 𝜃𝜃 𝑢𝑢] 

 

5 

𝑥𝑥𝑢𝑢 =
𝑤𝑤
2

(|cos (𝑢𝑢)| cos(𝑢𝑢)
+ |sin (𝑢𝑢)| sin(𝑢𝑢)) 

𝑦𝑦𝑢𝑢 =
ℎ
2

(|cos (𝑢𝑢)| cos(𝑢𝑢)
− |sin (𝑢𝑢)| sin(𝑢𝑢)) 

𝑥𝑥 = 𝑥𝑥𝑢𝑢 cos(𝜃𝜃) − 𝑦𝑦𝑢𝑢 sin(𝜃𝜃) + 𝑥𝑥𝑐𝑐 
𝑦𝑦 = 𝑥𝑥𝑢𝑢 sin(𝜃𝜃) + 𝑦𝑦𝑢𝑢 cos(𝜃𝜃) + 𝑦𝑦𝑐𝑐 

𝑝𝑝 = [𝑤𝑤 ℎ 𝑥𝑥𝑐𝑐 𝑦𝑦𝑐𝑐 𝜃𝜃 𝑢𝑢] 

 

Table 1- Continue 

3. Nonlinear Least Squares Geometry Fitting Procedure 

As well-known, in least squares fitting method, the sum of squared error between the measured and 
modeled data is minimized to find the best parameters that belong to function or the mathematical model. 
The measured data dimensions may vary by depending on the application or problem. In this study we 
deal with 2D profiles acquired via the CMM. Therefore, the measured data is described to be (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) 
that consist of 𝑛𝑛 data points. The sum of squared errors [18] is: 

 𝜖𝜖2(𝑝𝑝) = ��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝)�2 + ��𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝)�2
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 (1) 

where the 𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝) and 𝑦𝑦𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝), which depend upon parameter vector (i.e., 𝑝𝑝), are the data 
computed using the mathematical model of the geometry. To minimize those errors, there are many 
methods in the literature. In this study we use a general one called steepest descent. This method 
progresses with gradient information of the objective function. In other words, the method updates the 
model parameters along with the opposite direction of the objective function gradient. This can be 
mathematically defined as: 

 ℎ =  𝐽𝐽𝑇𝑇𝐷𝐷 (2) 

where 𝐽𝐽 is the Jacobian matrix of the objective function, which is calculated using finite difference 

approach, 𝐷𝐷 = �
𝐷𝐷𝑥𝑥
𝐷𝐷𝑦𝑦
� , 𝐷𝐷𝑥𝑥 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝)  and 𝐷𝐷𝑦𝑦 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝) . The next parameter vector is 

then: 

θ 

w 

h 
(xc, yc) 

θ 
(xc, yc) h 

θ 
(xc, yc) 
b 

a 

θ 

w 

h 
(xc, yc) 
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 𝑝𝑝𝑖𝑖+1 = 𝑝𝑝𝑖𝑖 + 𝛼𝛼ℎ (3) 

In this equation 𝛼𝛼 > 0 is the step length, which is computed by the line search conditions or other 
algorithms. This line search process keeps searching the best model parameters until the inequality is 
satisfied as follows: 

 𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎𝑚𝑚𝑢𝑢𝑚𝑚|𝐽𝐽𝑇𝑇𝐷𝐷| ≤ 𝜕𝜕 (4) 

where the 𝜕𝜕 = 10−3 is the converge tolerance used in this work. 

4. Step Length Computation Techniques 

The step length computation is actually a one-dimensional minimization problem as described in 
Equation 5. For a remarkable progress along the given direction (e.g., opposite direction of the objective 
function gradient in this study), the one of the exact minimizers of the 𝐹𝐹(𝛼𝛼) is required. However, in 
general, it brings high computational cost. Therefore, the approximation methods, called line search 
conditions, are employed to overcome this problem in the literature. In this study, to compute step length 
during the fitting process, the two well-known line search conditions (i.e., WC and SWC) are used. 
Besides, an algorithm is proposed to find one of the exact minimizers because it is only option for the 
fitting of some geometries. 

 𝑚𝑚𝑎𝑎𝑛𝑛𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝛼𝛼>0𝐹𝐹(𝛼𝛼) ≡ 𝜖𝜖(𝑝𝑝𝑖𝑖 + 𝛼𝛼ℎ) (5) 

4.1. Wolfe conditions 

The Wolfe conditions are basically a combination of sufficient decrease and curvature conditions [19]. 
Those conditions are respectively: 

 𝜖𝜖(𝑝𝑝𝑖𝑖 + 𝛼𝛼ℎ) ≤ 𝜖𝜖(𝑝𝑝𝑖𝑖) + 𝑎𝑎1𝛼𝛼𝐺𝐺𝑇𝑇ℎ (6) 

 𝐺𝐺(𝑝𝑝𝑖𝑖 + 𝛼𝛼ℎ)𝑇𝑇ℎ ≥ 𝑎𝑎2𝐺𝐺(𝑝𝑝𝑖𝑖)𝑇𝑇ℎ (7) 

where 𝐺𝐺 = −𝐽𝐽𝑇𝑇𝐷𝐷 is the gradient of the objective function, 𝑎𝑎1 and 𝑎𝑎2 are the scalars satisfying 0 < 𝑎𝑎1 <
𝑎𝑎2 < 1. 𝑎𝑎1 = 10−4 and 𝑎𝑎2 = 10−1 are used in the fitting process. The condition in this form is referred 
to as weak Wolfe. To obtain the strong Wolfe condition, we only need to modify the curvature condition 
as follows: 

 |𝐺𝐺(𝑝𝑝𝑖𝑖 + 𝛼𝛼ℎ)𝑇𝑇ℎ| ≤ 𝑎𝑎2|𝐺𝐺(𝑝𝑝𝑖𝑖)𝑇𝑇ℎ| (8) 

These two similar conditions provide step length 𝛼𝛼 that is close to one of the exact minimizers of the 
𝐹𝐹(𝛼𝛼). In general, Wolfe conditions work very well. However, in some cases, it is inevitable to use exact 
local minimizer for the minimization algorithm success.  

4.2. Exact minimizer finder 

To find the one of the exact minimizers of the 𝐹𝐹(𝛼𝛼), an algorithm is proposed. It proceeds as follows: 
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• apply sufficient decrease condition, Equation 6, for finding initial 𝛼𝛼. 

• check the slope of the 𝐹𝐹(𝛼𝛼) if it is negative. In case of positive slope, reduce the 𝛼𝛼 until the 
slope is negative and set the 𝛼𝛼 as 𝛼𝛼𝑚𝑚𝑚𝑚𝑙𝑙. 

• increase 𝛼𝛼𝑚𝑚𝑚𝑚𝑙𝑙 to where the slope of the 𝐹𝐹(𝛼𝛼) is being positive and set it as 𝛼𝛼𝑢𝑢𝑢𝑢. 

• employ Golden section method between 𝛼𝛼𝑚𝑚𝑚𝑚𝑙𝑙 and 𝛼𝛼𝑢𝑢𝑢𝑢 to find local minimizer of the 𝐹𝐹(𝛼𝛼). 

5. Experimental Setup  

The test geometries were built with 3D printer using PLA material. The 2D profiles of the geometries 
were collected via Renishaw Cyclone 2 coordinate measuring machine, as seen in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Scanning process with CMM 

In the 2D scanning process, 2 mm touch probe was used and the scanning speed was set to 100 mm/min. 
All the collected data for CMM were processed with MATLAB. 

6. Results and Discussion 

All the scanned geometries have been subjected to fitting process with all the SD method-line search 
conditions. As an example, a circle fitting is compared with actual and measured geometries in Figure 
2.  This example belongs to the fitting process completed with exact minimizer algorithm. In addition 
to that, the circle fitting parameters (i.e., 𝑝𝑝 = [𝑟𝑟𝑐𝑐  𝑥𝑥𝑐𝑐  𝑦𝑦𝑐𝑐]), the sum of squared error, the norm of the 
gradient of objective function and step length are kept track for each iteration, as seen in Figure 3. 
 

Test 
geometries  

2 mm  
probe  
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Figure 2. Comparison of actual, measured and fitted circle geometries 

 
Figure 3. Fitting progress: Results versus iterations, (a) Circle center 𝑥𝑥-coordinate (b) Circle center 𝑦𝑦-
coordinate (c) Circle radius (d) Sum of the squared error (e) Norm of the gradient of objective function 

(f) Step length 

As mentioned before, the total number of function evaluations, when SD-line search condition 
combination being used converges, are set to be a performance measure. Therefore, the number of 
function evaluation at each iteration are also recorded. These results, corresponding to the one in Figure 
3, are presented in Figure 4. From those figures, one can notice that even if number of iterations are 
quite reasonable, the number of function evaluations are remarkably high. This is due to computation of 
the gradient of the objective function at every iteration. As explained in Section 4, the step length 
computation methods strictly require to satisfy gradient related conditions during the fitting process so 
that the algorithm keeps calculating gradient of the objective function using finite difference approach 

(a)
(b)

(c) (d)

(f)(e)
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until the condition is met. This is the reason behind those high number of function evaluations in the 
gradient related line search conditions. 

Figure 4. Fitting progress: Results versus number of function evaluations, (a) Circle center 𝑥𝑥-
coordinate (b) Circle center 𝑦𝑦-coordinate (c) Circle radius (d) Sum of the squared error (e) Norm of 

the gradient of objective function (f) Step length 

All above process shown in Figures 2 to 4 have been completed for all the geometries and line search 
conditions. The total number of function evaluations for all the line search conditions corresponding to 
the geometries are illustrated in Figure 5. Note that ∞ in this figure denotes that the line search condition 
fails to converge. 

Figure 5. Total number of function evaluations for all the geometries and line search conditions 

By a closer look at Figure 5, it must be stated that the line search condition has a considerable influence 
on the number of function evaluations. The WWC has the lowest number of function evaluations for 
geometries 1, 3 and 4. However, it fails on fitting of two geometries (i.e., 2 and 5). The same is also true 

(a)
(b)

(c) (d)

(e) (f)

∞ ∞
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for the SWC. On the other hand, the exact minimizer is the only one that is successful on all the 
geometries. All those interpretations seem a general evaluation of the effect of line search conditions on 
the SD method performance. However, the end-users might need more statistical evaluation results to 
choose an optimal line search condition for geometry fitting. Thus, we employ performance profiles 
[20] to perform reliable and efficient assessments and to determine the fastest, slowest and most robust 
line search conditions. Figure 6(a). shows the performance profiles of line search conditions. Those 
profiles are generated using the total number of function evaluations reported in Figure 5. In this study, 
the performance profiles, 𝑃𝑃(𝜐𝜐), basically provides the success probability of the line search conditions 
within the factor 𝜐𝜐 of the fastest line search condition. In other words, they give how many geometry 
fitting is completed within the factor 𝜐𝜐 of the fastest line search condition. For further details about the 
mathematical background of the performance profiles, the reader is referred to [20]. 
 

 
Figure 6. Performance profiles: (a) Step-1 (b) Step-2 

From Figure 6(a)., by just looking at 𝑃𝑃(100) values, it can be determined that the WWC is the fastest 
line search condition with the probability 𝑃𝑃(100) = 60%. More specifically, the WWC is successful on 
3 out of 5 geometries with the lowest number of function evaluations. Besides, it preserves being fastest 
one until 𝜐𝜐 ≤ 3.35. At that factor, the exact minimizer comes out with the probability 𝑃𝑃(3.35) =

(a) 

(b) 
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60%. As the 𝜐𝜐 rises the success rate of the exact minimizer continuously increases and finally it reaches 
maximum probability, 𝑃𝑃(𝜐𝜐) = 100%, at the factor  𝜐𝜐 = 10.66 of the fastest one. On the other hand, the 
SWC is slowest one and it is able to be successful on 60% of geometries (i.e., geometry number 1, 3 
and 4) at the factor 𝜐𝜐 = 8.27. In addition to these, we may rank the line search conditions with a 
successive excluding procedure. More clearly, by excluding first fastest line search condition, the WWC, 
we can determine the second fastest one which is the exact minimizer. This can be seen from Figure 
6(b) (i.e., 𝑃𝑃(100) = 80%.). Also, this figure shows that the SWC is the slowest one as mentioned before. 
From all those results, it is determined that the exact minimizer is the optimal choice for step length 
computation for geometry fitting in this study. 

7. Conclusions 

This paper has dealt with a performance evaluation of steepest descent method considering three well-
known gradient related line search conditions in nonlinear least squares geometry fitting of 2D 
geometries. The CMM was used to obtain the 2D profiles of the primitive geometries. The geometry 
fitting processes for all those scanned data have been completed with three different line search 
conditions. This has provided us the best model parameters that represent the measured data. The total 
number of function evaluations to complete the fitting have been recorded for all the SD method-line 
search conditions combinations. By using these data, the performance profiles have generated for 
reliable and efficient assessment. From these profiles, the fastest and slowest line search conditions have 
been identified to be the WWC and SWC, respectively. For an optimal choice, it is determined that the 
exact minimizer is a great candidate. Considering all the evaluation results, the effect of the line search 
conditions on the SD method success and performance is significant in the geometry fitting procedure. 
Even if the approximation methods (i.e., the WWC and the SWC) are the first choices for calculating 
step length in general, because they might provide lower computational cost, the exact minimizer has 
proved itself to be an optimal choice for the geometry fitting process. This also shows that the line search 
conditions performance may differ from problem-to-problem. The approximation methods 
underperform in this study. The end-users might consider this fact. It is also noteworthy that the WWC 
and SWC parameters (i.e., 𝑎𝑎1 and 𝑎𝑎2) may affect the performance of the line search conditions. For 
future study, this could be elaborated. 
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