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ABSTRACT

This paper focuses on exploring effect of the step length, used in the line search, computation techniques on the
performance of steepest descent (SD) method in the geometry fitting of the 2D measured profiles. To this end, the
three step length computation techniques or line search conditions accommodating Weak Wolfe (WWC), Strong
Wolfe (SWC) and the exact minimizer finder have been implemented during the fitting process. To test the line
search conditions performances, the 2D primitive geometry test set consisting of five different geometries such as
circle, square, triangle, ellipse and rectangle have been employed. The 2D profiles of those geometries have been
extracted using coordinate measuring machine (CMM) with high precision. For performance assessments, the total
number of function evaluations when the SD method-line search condition combination satisfies the required
converge tolerance have been used. By means of those data, the performance profiles have been created to conduct
reliable and efficient assessments on the line search conditions. The results have shown that the step length
computation technique plays a crucial role for the SD method performance. Based on the performance profiles, it
has been determined that the fastest line search condition is the WWC. Besides that, it has been revealed that the
optimum technique is the exact minimizer finder for the geometry fitting process in the study.
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OLCULEN 2B PROFILLERE GEOMETRI UYDURULMASINDA
GRADYAN TEMELLIi DOGRU BOYUNCA ARAMA SARTLARI
DIKKATE ALINARAK EN DiK INiS YONTEMININ PERFORMANS
DEGERLENDIRMESI

OZET

Bu caligmada dlgiilen 2B profillere geometri uydurulmasinda dogru boyunca aramada kullanilan adim uzunlugu
hesaplama yontemlerinin en dik inis yonteminin performansina etkisi incelenmistir. Bu amagla, zay1f Wolfe, giiclii
Wolfe ve tam olarak minimize eden adim uzunlugunu bulan olmak iizere ii¢ adim uzunlugu hesaplama yontemi
ya da dogru boyunca arama sartlari geometri uydurma siirecinde kullanilmistir. Dogru boyunca arama sartlarinin
performansini test etmek amaciyla, daire, kare, iiggen, elips ve dikdortgen geometrilerini igeren bir 2B temel
geometri seti kullanilmistir. Bu geometrilerin profilleri yiiksek hassasiyet ile koordinat 6lgme cihazi ile elde
edilmistir. Performans degerlendirmeleri i¢in ilgili en dik inis yontemi-dogru boyunca arama sarti kombinasyonu
istenen tolerans degerini sagladiginda ortaya ¢ikan toplam fonksiyon kullanim sayisindan yararlanilmistir. Dogru
boyunca arama sartlarinin giivenilir ve verimli bir sekilde performans degerlendirilmesini yapmak i¢in bu veriler
vasitastyla performans profilleri olusturulmustur. Sonuglar adim uzunlugu hesaplama tekniklerinin en dik inis
yontemi performansinda 6nemli bir rol oynadigin1 gostermektedir. Performans profillerine dayanarak, en hizl
dogru boyunca arama sart1 zayif Wolfe olarak saptanmistir. Bunun yani sira, caligmada geometri uydurma siireci
icin optimum ydntemin tam olarak minimize eden adim uzunlugunu bulan yéntem oldugu ortaya ¢ikarilmistir.

Anahtar kelimeler: En dik inis yontemi, Performans profilleri, Dogru boyunca arama, Geometri uydurma,
Optimizasyon
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1. Introduction

The steepest descent [1] is a basic optimization method that has been frequently used in many areas such
as engineering, science, business etc. It has been implemented in many studies along with the various
line search conditions. For instance, Bento et al. [2] provided an inexact SD method including Armijo’s
rule for multicriteria optimization. A general application of the SD method on the mechanical systems
was completed by Haug et al. [3]. Liu and Reynolds [4] derived a multi-objective SD method. They
performed applications for optimal well control and it was shown that the proposed method is quite
efficient. In [5], the circularity value of a mechanical part was found using a novel SD algorithm. The
data measured with CMM was used for the input to the proposed algorithm. Much more applications of
the SD method can be found in the literature such those in [6-10]. On the other hand, the SD method
performance or any other optimization algorithm performance may differ from problem-to-problem.
Thus, researchers have been performing benchmarking studies to make assessments on the particular
problem set. Those studies can be seen in many areas. Khan and Lobiyal [11], for instance, carried out
performance analysis on the three different algorithms (i.e., Newton-Raphson, conjugate gradient and
SD) in application of backbone based wireless networks. Different optimization algorithms were
compared to each other for the finite element based structural topology optimization by Rojas-Labanda
and Stolpe [12]. The other significant efforts on the benchmarking of optimization algorithms can be
found in [13-16].

From the point of view given above, this paper focuses on the performance evaluation of the SD
method considering line search conditions in the nonlinear least squares geometry fitting of 2D measured
profiles. The primitive geometry set containing circle, square, triangle, ellipse and rectangle have
manufactured using 3D printer with PLA material. And then, 2D profiles of these geometries are
extracted using the CMM with high precision. All the scanned profiles are subjected to nonlinear least
squares fitting process through the SD method along with three different step length computation
techniques (i.e., WWC, SWC and exact minimizer finder). During the fitting process, the total number
of function evaluations, when the algorithm converges, are recorded and they are used for performance
evaluations. Henceforth, the paper is organized as follows: Section 2 provides the primitive test
geometry set including their mathematical models and their parameters. The nonlinear least squares
fitting procedure is given in Section 3. In Section 4 a brief mathematical background on the step length
computation techniques is included. Section 5 shows the experimental setup. Section 6 reports the results
with discussions. Finally, the conclusions are made in Section 7.

2. Test Geometries
The five 2D primitive geometries (i.e., circle, square, triangle, ellipse and rectangle) are chosen for the
nonlinear least squares geometry fitting process. They are listed in Table 1. that accommodates

corresponding mathematical models [17] and parameter vectors.

Table 1. Test geometries and their mathematical models

Geometry Mathematical model Parameter vector Geometry
number

x =1, cos(u) + x,

y=r, sin(w) + Ve p= [rc Xc Ve u]
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Xy = %(|Cos(u)| cos(u) :

+ |si i |

. [sin(w)]| sin(w)) : ’ﬂ@

2 Yu =7 (Icos(w)| cos(u) p=[whx y 0u] xvy) | '
— |sin(uw)| sin(w)) ’

x = x, cos(6) — y, sin(0) + x,

y = x, sin(8) + y, cos(8) + y, w

h

cos (n% arcsin (sin (% u)))
3 x, = 7 cos(u) p=[hx y 0u]
Y, = rsin(u)

x = x, cos(6) — y, sin(0) + x,
y = x, sin(@) + v, cos(8) + y,
X, = acos(u)

v, = b sin(u)

4 x = x, cos(0) — y, sin(0) + x, p=labxy 0ul
vy = x, sin(0) + y,, cos(0) + y,
Xy, = g(lcos(u)l cos(u)
+ |sin(uw)| sin(w))
h
5 Yu =75 (Jcos(w)| cos(u) p=[whx,y.0ul
— |sin(w)| sin(w))
x = x, cos(0) — y, sin(0) + x,

y = x,, sin(@) + y, cos(0) + y, w

Table 1- Continue

3. Nonlinear Least Squares Geometry Fitting Procedure

As well-known, in least squares fitting method, the sum of squared error between the measured and
modeled data is minimized to find the best parameters that belong to function or the mathematical model.
The measured data dimensions may vary by depending on the application or problem. In this study we
deal with 2D profiles acquired via the CMM. Therefore, the measured data is described to be (x;, y;)
that consist of n data points. The sum of squared errors [18] is:

n

) = ) [ =@ + ) [y - yretei )]’ M

i=1

where the x™°%¢!(p) and y™°?¢!(p), which depend upon parameter vector (i.e., p), are the data
computed using the mathematical model of the geometry. To minimize those errors, there are many
methods in the literature. In this study we use a general one called steepest descent. This method
progresses with gradient information of the objective function. In other words, the method updates the
model parameters along with the opposite direction of the objective function gradient. This can be
mathematically defined as:

h=]"D 2

where ] is the Jacobian matrix of the objective function, which is calculated using finite difference
D
approach, D = [ Dx] , Dy = x; — x"°%!(p) and Dy, = y; — y["°?°!(p) . The next parameter vector is
y
then:
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Pi+1 =Ppi + ah (3)

In this equation a > 0 is the step length, which is computed by the line search conditions or other
algorithms. This line search process keeps searching the best model parameters until the inequality is
satisfied as follows:

maximum|JTD| < 0 4)

where the @ = 1073 is the converge tolerance used in this work.

4. Step Length Computation Techniques

The step length computation is actually a one-dimensional minimization problem as described in
Equation 5. For a remarkable progress along the given direction (e.g., opposite direction of the objective
function gradient in this study), the one of the exact minimizers of the F(a) is required. However, in
general, it brings high computational cost. Therefore, the approximation methods, called line search
conditions, are employed to overcome this problem in the literature. In this study, to compute step length
during the fitting process, the two well-known line search conditions (i.e., WC and SWC) are used.
Besides, an algorithm is proposed to find one of the exact minimizers because it is only option for the
fitting of some geometries.

minimize,~oF (@) = €(p; + ah) 5)

4.1. Wolfe conditions

The Wolfe conditions are basically a combination of sufficient decrease and curvature conditions [19].
Those conditions are respectively:

€(pi + ah) < e(py) + c;aG™h 6)
G(p; + ah)Th = c,G(p)"h (7
where G = —] TD is the gradient of the objective function, ¢; and c, are the scalars satisfying 0 < ¢; <

c; <1.¢; =107%and c, = 1071 are used in the fitting process. The condition in this form is referred
to as weak Wolfe. To obtain the strong Wolfe condition, we only need to modify the curvature condition
as follows:

|G(p; + ah)Th| < c;|G(p)"h| (®)

These two similar conditions provide step length « that is close to one of the exact minimizers of the
F(a). In general, Wolfe conditions work very well. However, in some cases, it is inevitable to use exact
local minimizer for the minimization algorithm success.

4.2. Exact minimizer finder

To find the one of the exact minimizers of the F(a), an algorithm is proposed. It proceeds as follows:
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e apply sufficient decrease condition, Equation 6, for finding initial a.

e check the slope of the F(«) if it is negative. In case of positive slope, reduce the a until the
slope is negative and set the « as a;,,,.

e increase aj,, to where the slope of the F(a) is being positive and set it as @y,

e employ Golden section method between a4, and a,,, to find local minimizer of the F (a).

5. Experimental Setup

The test geometries were built with 3D printer using PLA material. The 2D profiles of the geometries
were collected via Renishaw Cyclone 2 coordinate measuring machine, as seen in Figure 1.

RENISHAW ¢

: D
I I
o
%

Figure 1. Scanning process with CMM

In the 2D scanning process, 2 mm touch probe was used and the scanning speed was set to 100 mm/min.
All the collected data for CMM were processed with MATLAB.

6. Results and Discussion

All the scanned geometries have been subjected to fitting process with all the SD method-line search
conditions. As an example, a circle fitting is compared with actual and measured geometries in Figure
2. This example belongs to the fitting process completed with exact minimizer algorithm. In addition
to that, the circle fitting parameters (i.e., p = [r. X y.]), the sum of squared error, the norm of the
gradient of objective function and step length are kept track for each iteration, as seen in Figure 3.

ADYU Miihendislik Bilimleri Dergisi 15 (2021) 515-524



K. Kiran 520

224 F T T T — ‘7. — ,,,,‘ T T L—
— Actual
222+ o Measured E
o Center-fit
—Circle-fit
220 -
2181 ¢ -
216} ¢ i
214 ]
212} -
210 -

362 364 366 368 370 372 374 376
X
Figure 2. Comparison of actual, measured and fitted circle geometries
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Figure 3. Fitting progress: Results versus iterations, (a) Circle center x-coordinate (b) Circle center y-
coordinate (c) Circle radius (d) Sum of the squared error (¢) Norm of the gradient of objective function
(f) Step length

As mentioned before, the total number of function evaluations, when SD-line search condition
combination being used converges, are set to be a performance measure. Therefore, the number of
function evaluation at each iteration are also recorded. These results, corresponding to the one in Figure
3, are presented in Figure 4. From those figures, one can notice that even if number of iterations are
quite reasonable, the number of function evaluations are remarkably high. This is due to computation of
the gradient of the objective function at every iteration. As explained in Section 4, the step length
computation methods strictly require to satisfy gradient related conditions during the fitting process so
that the algorithm keeps calculating gradient of the objective function using finite difference approach
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until the condition is met. This is the reason behind those high number of function evaluations in the
gradient related line search conditions.
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Figure 4. Fitting progress: Results versus number of function evaluations, (a) Circle center x-
coordinate (b) Circle center y-coordinate (c) Circle radius (d) Sum of the squared error (¢) Norm of
the gradient of objective function (f) Step length

All above process shown in Figures 2 to 4 have been completed for all the geometries and line search
conditions. The total number of function evaluations for all the line search conditions corresponding to

the geometries are illustrated in Figure 5. Note that co in this figure denotes that the line search condition
fails to converge.

|-Weak wolfe [7]Strong wolfe [l Exact minimizer (Numerical) |

1010 . : . .
o0 o0

il !

108 - T -
| ‘ I ‘ \ ‘ |
104 JHI || || || ||

1

2 3 4 5
Geometry numbers
Figure 5. Total number of function evaluations for all the geometries and line search conditions

Nfe

By a closer look at Figure 5, it must be stated that the line search condition has a considerable influence
on the number of function evaluations. The WWC has the lowest number of function evaluations for
geometries 1, 3 and 4. However, it fails on fitting of two geometries (i.e., 2 and 5). The same is also true
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for the SWC. On the other hand, the exact minimizer is the only one that is successful on all the
geometries. All those interpretations seem a general evaluation of the effect of line search conditions on
the SD method performance. However, the end-users might need more statistical evaluation results to
choose an optimal line search condition for geometry fitting. Thus, we employ performance profiles
[20] to perform reliable and efficient assessments and to determine the fastest, slowest and most robust
line search conditions. Figure 6(a). shows the performance profiles of line search conditions. Those
profiles are generated using the total number of function evaluations reported in Figure 5. In this study,
the performance profiles, P(v), basically provides the success probability of the line search conditions
within the factor v of the fastest line search condition. In other words, they give how many geometry
fitting is completed within the factor v of the fastest line search condition. For further details about the
mathematical background of the performance profiles, the reader is referred to [20].

100 + o e =
1
j @
80 | !-—-—' .
'
~~ !
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3 |
=~ 1
AU} — H .
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100 + |-----—--------I-—-—---------—-—-I -------------- —
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=
40l _
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O 1 1
10° 10t 102 103

v

Figure 6. Performance profiles: (a) Step-1 (b) Step-2
From Figure 6(a)., by just looking at P(10°) values, it can be determined that the WWC is the fastest
line search condition with the probability P(1 09) = 60%. More specifically, the WWC is successful on

3 out of 5 geometries with the lowest number of function evaluations. Besides, it preserves being fastest
one until v < 3.35. At that factor, the exact minimizer comes out with the probability P(3.35) =
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60%. As the v rises the success rate of the exact minimizer continuously increases and finally it reaches
maximum probability, P(v) = 100%, at the factor v = 10.66 of the fastest one. On the other hand, the
SWC is slowest one and it is able to be successful on 60% of geometries (i.e., geometry number 1, 3
and 4) at the factor v = 8.27. In addition to these, we may rank the line search conditions with a
successive excluding procedure. More clearly, by excluding first fastest line search condition, the WWC,
we can determine the second fastest one which is the exact minimizer. This can be seen from Figure
6(b) (i.e., P(10°%) = 80%.). Also, this figure shows that the SWC is the slowest one as mentioned before.
From all those results, it is determined that the exact minimizer is the optimal choice for step length
computation for geometry fitting in this study.

7. Conclusions

This paper has dealt with a performance evaluation of steepest descent method considering three well-
known gradient related line search conditions in nonlinear least squares geometry fitting of 2D
geometries. The CMM was used to obtain the 2D profiles of the primitive geometries. The geometry
fitting processes for all those scanned data have been completed with three different line search
conditions. This has provided us the best model parameters that represent the measured data. The total
number of function evaluations to complete the fitting have been recorded for all the SD method-line
search conditions combinations. By using these data, the performance profiles have generated for
reliable and efficient assessment. From these profiles, the fastest and slowest line search conditions have
been identified to be the WWC and SWC, respectively. For an optimal choice, it is determined that the
exact minimizer is a great candidate. Considering all the evaluation results, the effect of the line search
conditions on the SD method success and performance is significant in the geometry fitting procedure.
Even if the approximation methods (i.e., the WWC and the SWC) are the first choices for calculating
step length in general, because they might provide lower computational cost, the exact minimizer has
proved itself to be an optimal choice for the geometry fitting process. This also shows that the line search
conditions performance may differ from problem-to-problem. The approximation methods
underperform in this study. The end-users might consider this fact. It is also noteworthy that the WWC
and SWC parameters (i.e., ¢; and c¢,) may affect the performance of the line search conditions. For
future study, this could be elaborated.

Acknowledgements

The author acknowledges Design and Manufacturing Technologies Research Laboratory, Innovative
Technologies Application and Research Center, Suleyman Demirel University where the experimental
work in this study was performed.

References

[1] Cauchy A. Methode generale pour la resolution des systemes d’equations simultanees.
Comp. Rend. Sci. Paris 1847; 25(2): 536-538.

[2] Bento G., da Cruz Neto J.X., Santos P. An inexact steepest descent method for
multicriteria optimization on riemannian manifolds. Journal of Optimization Theory
and Applications 2013; 159(1): 108-124.

[3] Haug E., Arora J., Matsui K. A steepest-descent method for optimization of mechanical systems.
Journal of Optimization Theory and Applications 1976; 19(3): 401-424.

[4] Liu X., Reynolds A.C. A multiobjective steepest descent method with applications to
optimal well control. Computational Geosciences 2016; 20(2): 355-374.

[5] Zhu L.M., Ding H., Xiong Y.L. A steepest descent algorithm for circularity evaluation.
Computer-Aided Design 2003; 35(3): 255-265.

ADYU Miihendislik Bilimleri Dergisi 15 (2021) 515-524



K. Kiran 524

[6] Quiroz E.P., Quispe E., Oliveira P.R. Steepest descent method with a generalized armijo search for
quasiconvex functions on riemannian manifolds. Journal of mathematical analysis and applications
2008; 341(1): 467-477.

[7] Samir C., Absil, P.A., Srivastava, A., Klassen, E. A gradient-descent method for curve
fitting on riemannian manifolds. Foundations of Computational Mathematics 2012; 12(1):
49-73.

[8] George S., Sabari M. Convergence rate results for steepest descent type method for nonlinear ill-
posed equations. Applied Mathematics and Computation 2017; 294: 169-179.

[9] Anjidani M., Effati S. Steepest descent method for solving zero-one nonlinear programming
problems. Applied Mathematics and Computation 2007; 193: 197-202.

[10] Abbasbandy S., Jafarian A. Steepest descent method for solving fuzzy nonlinear equations.
Applied Mathematics and Computation 2006; 174: 669-675.

[11] Khan K., Lobiyal D. Performance evaluation of different optimization techniques for
coverage and connectivity control in backbone based wireless networks. Wireless Personal
Communications 2017; 96(3): 4329-4345.

[12] Rojas-Labanda S., Stolpe M. Benchmarking optimization solvers for structural topology
optimization. Structural and Multidisciplinary Optimization 2015; 52(3): 527-547.

[13] Tangherloni A., Spolaor S., Cazzaniga P., Besozzi D., Rundo L., Mauri G., Nobile
M.S. Biochemical parameter estimation vs. benchmark functions: A comparative study
of optimization performance and representation design. Applied Soft Computing 2019; 81:
105494,

[14] Villaverde A.F., Frohlich F., Weindl D., Hasenauer J., Banga J.R. Benchmarking
optimization methods for parameter estimation in large kinetic models. Bioinformatics
2019; 35(5): 830-838.

[15] Diachin L.F., Knupp P., Munson T., Shontz S. A comparison of two optimization
methods for mesh quality improvement. Engineering with Computers 2006; 22(2): 61-74.

[16] Arsenault R., Poulin A., Cote P., Brissette F. Comparison of stochastic optimization
algorithms in hydrological model calibration. Journal of Hydrologic Engineering 2014; 19(7):
1374-1384.

[17] https://www.desmos.com (Access date:16.05.2021)

[18] Jia P. Fitting a parametric model to a cloud of points via optimization methods. Ph.D. thesis. New
York: Syracuse University; 2017.

[19] Nocedal J., Wright S.J. Numerical optimization. 2nd ed. New York: Springer Science & Business
Media; 2006

[20] Dolan E.D., More J.J. Benchmarking optimization software with performance profiles.
Mathematical programming 2002; 91(2): 201-213.

ADYU Miihendislik Bilimleri Dergisi 15 (2021) 515-524


https://www.desmos.com/

