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Abstract

Let H be an algebra with a distinguished element ey € H* and C, D two coalgebras. Based
on the construction of Brzeziniski’s crossed coproduct, under some suitable conditions, we
introduce a coassociative coalgebra C' x g H g x D which is a more general two-sided coprod-
uct structure including two-sided smash coproduct. Necessary and sufficient conditions for
C x g H I’g x D equipped with two-sided tensor product algebra C® H ® D to be a bialgebra
(Hopf algebra) are provided. On the other hand, we obtain an improved version of the
double crossed biproduct C « “*H? x D in [An extended form of Majid’s double biproduct,
J. Algebra Appl. 16 (4), 1760061, 2017] which induces a description of Cx*H? % D similar
to Majid double biproduct C'x H x D and also present some related structures.
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1. Introduction and preliminary

Let H be a commutative Hopf algebra, C' a cocommutative left H-comodule coalgebra
and a : €' — H ® H a normalized 2-cocycle. Then a coassicitative coalgebra C x“ H
named crossed coproduct was introduced by Lin [4] to develop the cohomology theory.
Here we mainly consider Lin’s crossed coproduct coalgebra C' x* H for the preconditions
that H is a Hopf algebra with a coaction on the coalgebra C' through a linear map « (see
Example 1.3). More generally, if H is a vector space with a distinguished element ey € H*
and C is a coalgebra, then Brzezinski provided a coassociative coalgebra C x% H (here
we call it left Brzezinski crossed coproduct) under some conditions [1]. For the research
of crossed coproduct, see [2,3,5,8,11,14].

Radford biproduct [12] is one of the important objects in the theory of Hopf algebras,
which is also related to Rota-Baxter bialgebras introduced by Ma and Liu in [6]. Majid
realized a categorical interpretation of Radford’s biproduct [10]: C'x H is a (left) Radford
biproduct if and only if C is a bialgebra in the Yetter-Drinfel’d category £YD. In [14],
Wang, Wang and Yao found the necessary and sufficient conditions for crossed coproduct
coalgebra C' x* H and smash product algebra C#H to become a bialgebra generalizing
C x H for the case that « is trivial.

Let C'x H be a left Radford biproduct and H * D a right Radford biproduct. Then
the sufficient condition Eq.(3.28) for a two-sided smash product algebra C#H#D and a
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two-sided smash coproduct coalgebra C x H x D to form a bialgebra, named the Majid
double biproduct and denoted by C'x H D, was given by Majid [10]. Double-bosonization
(more general Majid double biproduct) construction provides a canonical way of building
up quantum groups from smaller ones by repeatedly extending their positive and negative
root spaces by linear braided groups [10].

This paper explores the structure related to Majid double biproduct from the following
two aspects:

(1) If we substitute C' x H and at the same time H x D in C x H x D for left Brzeznski
crossed coproduct C x%" H and H g x D (a special case of right Brzeznski crossed co-
product, see below), respectively, then when the new two-sided coproduct structure is a
coassociative coalgebra? When this coalgebra equipped two-sided tensor product algebra
C ® H ® D turns to be a bialgebra (Hopf algebra)?

(2) When substituting left smash coproduct C' x H and right smash coproduct H x D
in C « H x D for left crossed coproduct C' x® H and right crossed coproduct H? x D,
respectively, the necessary and sufficient conditions for two-sided smash product algebra
C#H+#D and two-sided crossed coproduct coalgebra C x *H? x D to be a bialgebra were
given in [8] which extends Majid double biproduct C x H x D when « and [ are trivial.
But unfortunately, one of the conditions, i.e., Eq.(3.13), is very complicated. Is there a
good substitute for Eq.(3.13)7 And whether the beautiful symmetric condition Eq.(3.28)
in Majid double biproduct should be included?

In this paper, we discuss the above questions. The outline of the paper is as follows.

In Section 2, we firstly give the right version of Brzezinski crossed coproduct H E x D
(Proposition 2.1). Let H be an algebra with a distinguished elment ey € H* such that
ea(zry) = en(z)en(y) and C, D two coalgerbras. Assume that G:C® H — H® H, T :
C®H —H®C, R: H®D — D®H, : D — H®H are linear maps satisfying some
additional conditions. Then we get the necessary and sufficient conditions for C x %H g x D
to be a coassociative coalgebra with counit ec ® ey ® ep and comultiplication given by
Eq.(2.10) (see Theorem 2.4). This coalgebra contains the two-sided crossed coproduct
C x *HP x D ([8, Lemma 2.1]) and the two-sided twisted tensor coproduct C' x pHp x D
(of course two-sided smash coproduct C'x H x D [10]) as special cases. Also we obtain the
necessary and sufficient conditions for C' x %H Jg X D equipped with the two-sided tensor
product algebra C® H ® D to become a bialgebra (see Theorem 2.9), we call this bialgebra
Brzezinski’s two-sided crossed coproduct bialgebra and denote it by CO%H }goD. We also

present the antipode for C' ¢ %Hﬁ o D (see Proposition 2.12).

In Section 3, similar to Majid double biproduct, we have: Under the assumption of
Lemma 3.1. Suppose that C x® H is a left crossed biprodcut and H? « D is a right
crossed biproduct. Then the two-sided crossed coproduct C' x® H? x D equipped with
the two-sided smash product C#H# D becomes a bialgebra (denoted by C' x *H B x D) if
and only if Eqgs.(3.26)-(3.29) hold (see Proposition 3.6). We note here that based on the
proof of Theorem 3.2 Eqs.(3.26)-(3.29) are the simplified decomposition of Eq.(3.13) in [8]
and Eq.(3.28) in [10] is one of the necessary conditions. And when « and [ are trivial,
C « *HB % D is exactly Majid double biproduct C' x H = D. At last, we list some special
cases.

Throughout this paper, we follow the definitions and terminologies in [12], with all
algebraic systems supposed to be over the field K. Now, let C' be a coalgebra. We use
Sweedler’s notation for the comultiplication: A(c) = ¢1 ® ¢o for any ¢ € C. Denote the
category of left H-comodules by "Mod. For (M, ) € TMod, write: p(z) = 21 ® zo €
H® M, for all z € M. Denote the category of right H-comodules by Mod*’. For (M, ) €
Mod® | write: 1(x) = T) ® () € M @ H, for all z € M. We denote the left-left Yetter-
Drinfel’d category by £YD, and the right-right Yetter-Drinfel’d category by YDH. Given
a K-space M, we write idp; for the identity map on M.
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Let us recall from [1] the left Brzezinski’s crossed coproduct as follows. Here we slightly
modify the description of this general crossed coproduct.

Proposition 1.1. (Left Brzezinski’s crossed coproduct) Let C be a coalgebra, H a vector
space and a distinguished element ey € H*. Let G : C® H — H ® H (write G(c® x) =
cc®z%) and T:C® H — H® C (write T(c® x) = 27 ® cr) be linear maps such that

eg(zr)er = ep(x)e, zre(er) = xe(c). (1.1)
Then C xgH (= C®H as vector space) is a coalgebra with counit ec ey and a coproduct
Alc®z) =01 ®csar @ car @ z¢

if and only if the following conditions hold:

T @ ci7 ® cop = T @ 71 @ C72; (1.2)
caen(29) = 2%(c%) = ze(c); (1.3)

16 ® 2% @ 29 = cogr ® 176 @ 197 (1.4)
car @ 2% @ ey = 16 @ 27 @ cor. (1.5)

forallce C,x e H and g=G,t="1T.
Remark 1.2. When Eq.(1.1) and Eq.(1.3) are interchanged, Proposition 1.1 still holds.

In what follows, we list two special cases of left Brzezinski’s crossed coproduct C xg H,
although it has other very broad examples.

Let H be a Hopf algebra and C a coalgebra. By a left weak coaction of H on C, we
mean a linear map ¢ : C'— H ® C such that, for c € C,

c-1® co1 @ Cp2 = €1-1€2-1 @ €10 ® C20, (1.6)
c_1ec(cp) =ec(c)ly and ep(c_q1)co = c.
By a left coaction of H on C we mean a left weak coaction such that
€11 ®c12 ¥ ¢ = -1 ® o1 @ Coo
holds for all ¢ € C.
Example 1.3. (Left crossed coproduct)[8] Let H be a Hopf algebra with a left weak
coaction ¢ on the coalgebra C and o : C — H ® H a linear map (write a(c) = a(c)! ®

a(c)?). Then C x“ H(=C ® H as vector space) is a coassociative coalgebra with counit
ec ® eg and comultiplication

Alc®z) = c1 ® ca_10(c3) w1 ® co0 @ afes)*aa.

for all ¢ € C, z € H if and only if « satisfies the following conditions (Ve € C):

crr(a(e))al)? = co(e)1n = a(e)lzn(a(0)?); (17
c1_10(e2)! @ aferg)talen)?s @ aleig)alcer)?s

= a(e))'a(e)'1 @ aler)?alea)'s @ aler)?; (1.8)
01—104(02)1 ® C10—1Oé(02)2 ® €100

= a(c1)'ea—11 ® a(er)?ca—12 ® cap. (1.9)

Proof. Let T(c®x) = c_12 ®@ ¢y, G(c®@ ) = a(c)lz; @ alc)®ry in Proposition 1.1. 0

Remark 1.4. (1) If H is commutative and C' is cocommutative and ¢ is a coaction in
Example 1.3, then Eq.(1.9) holds automatically.

(2) Egs.(1.7) and (1.8) imply that « is a normalized 2-cocycle in the sense of Lin’s in
[4].

(3) By (1) and (2), we know that left crossed coproduct here is just Lin’s crossed
coproduct [4] when H is commutative and C' is cocommutative.
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Example 1.5. (Left twisted tensor coproduct)[7] Let H,C be two coalgebras and T :
C®H — H®C be alinear map. Then C xr H is a coassociative coalgebra with counit
ec ® e and comultiplication

Alc®x) =1 @217 ® Cor @ X2
for all c € C, x € H if and only if Egs.(1.1), (1.2) and the following condition hold:
1 ® T2 @ ¢ = T1T ® T2t @ Ot (1.10)
where c€e C, x € H and T = t.
Proof. Let G be trivial, i.e., G(c ® ) = €(¢)z1 ® x2 in Proposition 1.1. O
We recall, from [9, 10], the construction of the so-called double biproduct.
Definition 1.6. (Majid double biproduct) Let C' « H be a left Radford biproduct and

H x D a right Radford biproduct with the left and right actions, left and right coactions
are

HeC —C, zc—z>be, C—HRC, c—c_1® o,
DoH-—D, d®x—d<z, D-—D®H, d—dg®dpy
forallz € H, c € C, d € D. Then the vector space C' ® H ® D becomes an algebra (called
the two-sided smash product, C#H#D) with unit 1¢ ® 1y ® 1p and multiplication
(czed)(d@r'd)=clxi>d) Qe @ (daxh)d (1.11)
and a coalgebra (called the two-sided smash coproduct, C'x H x D) with counit £(c®x®d) =
ec(c)eg(x)ep(d) and comultiplication
Alc®zr®d)=c1 ®ca_171 ® dl(O) X o0 ® CCle(l) ® do. (1.12)
Moreover, assume that Eq.(3.28) holds, it follows that C' ® H ® D with two-sided smash

product algebra and two-sided smash product coalgebra is a bialgebra, called the Majid
double biproduct, denoted by C' x H x D.

Remark 1.7. Majid double biproduct here is actually the case of [10, Theorem A.1] with
a trivial pairing.

2. Brzezinski’s two-sided crossed coproduct

In this section, we will give a class of general two-sided crossed coproduct structure,
named “Brzezinski’s two-sided crossed coproduct". The necessary and sufficient condi-
tions for two-sided tensor product algebra and Brzezinski’s two-sided crossed coproduct
coalgebra to become a bialgebra (Hopf algebra) are provided.

Proposition 2.1. (Right Brzezinski’s crossed coproduct) Let H be a vector space and a
distinguished element ey € H* and D a coalgebra. Let F : H® D — H ® H (write
Fa®d =rrp@d’)and R: H® D — D ® H (write R(x ® d) = dg ® xg) be linear
maps such that

ED(dR)xR = €D(d)l‘, dRé‘H(IR) = dEH(x) (2.1)

holds. Then H5 x D (= H® D as a vector space) is a coalgebra with counit ey ® ep and
comultiplication

Az®d) =2p @dop @ diF' p ® ds3

foralld € D,z € H if and only if the following conditions hold (r = R, f = F):
dr1 ® dp2 @ TR = d1r @ doy @ TRy; (2.2)
dFeH(xF) = xps(dF) = ze(d);

TR ®d27°F ®d1fr =Ty ®d1fF ®d2F§
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dory ® 2pr @ di' g = dig ® xpp @ dy”. (2.5)

Example 2.2. (Right crossed coproduct) Let H be a Hopf algebra with a right weak
coaction ¢ on the coalgebra D. Let §: D — H ® H be a linear map (write 8(d) =
B(d)' ® B(d)?). Then HP x D(=H ® D as a vector space) is a coassociative coalgebra with
counit ey ® ep and comultiplication

Az @ d) = 18(d1)" ® dy) ® 226(d2)*dy1) ® d3
for all d € D, x € H if and only if g satisfies the following conditions:

en(B(d)*)B(d)' = en(B(d)")B(d)* = ep(d)ly; (2.6)
B(d1)"1B(da0))" ® B(d1)"2B(do(g))* @ B(d1)?dogr)

= B(d1)' @ B(d1)*18(d2)" @ B(d1)*2B(d2)*; (2.7)
B(d1) daoy1) ® B(d1)>da(1) @ daoy (o)

= dl(l)lﬁ(dQ)l ® d1(1)25(d2)2 ® dy(g)- (2.8)

Proof. Let R(z ®d) = d) ® zd(y), F(z ®d) = 218(d)' ® 228(d)? in Proposition 2.1. [

Example 2.3. (Right twisted tensor coproduct) Let H, D be two coalgebras and R :
H®D — D® H be a linear map. Then Hr x D(= H ® D as a vector space) with counit
eg ® ep and comultiplication
A(m@d) =21 ®dir ® ror ® do

for all d € D, x € H, is a coassociative coalgebra if and only if Egs.(2.1), (2.2) and the
following condition hold (d € D, z € H and R = r):

drr ® T1R ® Tor = dRr @ TR1 @ TRa. (2.9)
Proof. Let F be trivial, i.e., F(z ® d) = x1 ® x2e(d) in Proposition 2.1. O

Theorem 2.4. Let H be an algebra and C, D two coalgebras and a distinguished elment
eg € H* such that ey(xy) = eg(v)en(y). Assume that G : C® H — H® H, T :
C®H —H®C,R-H®D — D®H, B:D — H®H are linear maps such that
Eqs.(1.1)-(1.3),(2.1),(2.2),(2.6) hold. Then C x gﬂg x D(=C ® H® D as vector space)

i a coassociative coalgebra with counit ec ® e ® ep and comultiplication:
Alc®z®d) =c1 @ (c3aB(d1)Y)r @ dar @ cor @ (296(d1)?) g ® d3 (2.10)
forallce C,x € H, d € D if and only if the following conditions hold:

c1B(dar)" @ (c298(d1)') B(d2r)? @ (278(d1)*)R (2.11)
= (c29B(d1)") 7 @ 179 B(do)' @ (29 B(d1)*) B (d2)%;

(c2aB(d) ) @ (29B8(d)*): ® crre = c1eB(d)" @ 279 B(d)* ® car; (2.12)

dir ® caB(d2)' ® 2REB(da)? = dagr ® (caB(d1)")r @ (zaB(d1)*)R;  (2:13)

TrT ® ¢ ® dr = 7R @ cr @ dR. (2.14)

Proof. We only check the coassociativity as follows, and the rest are direct. For all
ceC,x € H,de D, we have

(A@idA(c®z®d) = 1@ (c3¢B(dor))r @ dorar ® cor @ (c5,8(d1) ¢ B(dor1)?) R
®dars ® car ® (296(d1)?), ® ds

=" 1 ® (c36B(dar) )T @ drr @ cor @ (c5B(dr) % B(d2r)) R
®d4§ ® cqt & (xgﬂ(dl)z)rﬁF ® d5

= 01 ® (cacBldar) ) @ dirr @ cor @ (e3B(d1) C B(dar) g



1126 T. Ma, B. Li

®d 5 @ cp @ (298(d1)?) .55 ® ds

2.14
(219 1 ® (cacB(dar))gr ® dsrr ® cor ® (ngﬁ(dl)lGﬁ(d2r1)2)RT

©dyg © Cyp ® (298(d1)?) 55 ® ds.
and
([deA)A(c®z®d) = o ® (c38(di)") ® dor @ cont ® (carsaB(ds)')r

®dyp ® coor @ ((296(d1)?),%B(d3)?)r @ ds

=" 1 @ (cagB(dr)") ;7 ® dor ® co7 @ (c368(ds) ) r
®dir @ cant @ ((296(d1)*),.“B(d3)?)r @ ds

=7 01 ® (cagB(dr)) g ® darr @ cop ® (ear268(d2) )rr
®dir @ csr @ (298(d1)?)C B(da1)?)rr @ ds

= o1 ® (e5gB(d1)) 7 @ diy7 ® o7 @ (carB(do)')rr
®d3r @ cqpp @ ((298(d1)?)B(d2)?)rr @ ds

G
=7 1 @ (cagB(dor) g @ drr ® e @ (e5gB(dr)' Bdor)?)er
@dar ® cypp ® (295(d1)*) g ® ds,
finishing the proof. ]
Example 2.5. (Two-sided crossed coproduct)([8, Lemma 2.1]) Let H be a bialgebra with
a left weak coaction on the coalgebra C' and a right weak coaction on the coalgebra D.
Assume that C' x® H is a left crossed coproduct and H x? D is a right crossed coproduct.

Then C x “HP x D (=C ® H ® D as a vector space) is a coassociative coalgebra with
counit ¢ ® ey ® ep and comultiplication

Alc®z®d) =c1 ® ca_r1a(cs) 18(d1)" ® dag) ® ca0 @ alcs)?w2f(d1)dr—1 @ ds
forallce C,x € H and d € D.

Proof. Let G(c® ) = a(c)tz1 ® ac)®22,T(c @ x) = c_12 ® co, R(z @ d) = d(g) @ zd(y)
in Theorem 2.4. Then by Examples 1.3 and 2.2, we finish the proof. O

Remark 2.6. If o and j are trivial in C' x “H? x D, then we can get two-sided smash
coproduct C' x H x D.

Example 2.7. (Two-sided twisted tensor coproduct) Let H, C, D be three coalgebras.
Let R: H®D — D H,T: C®H — H®C be linear maps and C x7 H left twisted tensor
coproduct, Hg x D right twisted tensor coproduct. Then C' x pHg X D is a coassociative
coalgebra with counit ec ® ey ® ep and comultiplication:

Alc®@z®d) =c1 ® 217 @ diR @ Cor ® T2R @ da,
forall ce C, x € H, d € D if and only if Eq.(2.14) holds.

Proof. Let G and 3 be trivial in Theorem 2.4. Then the proof is completed by Examples
1.5 and 2.3. O

Remark 2.8. Let H be a Hopf algebra with a left coaction on the coalgebra C' and with
a right coaction on the coalgebra D. Then the two-sided smash coproduct C x H x D can
be obtained by letting T(c® z) = c_17 ® ¢y and R(z ® d) = d(g) ® xd(y) in C x 7HR X D.
In this case Eq.(2.14) holds automatically.

Next we give a class of bialgebra structure on Brzezinski’s crossed coproduct.
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Theorem 2.9. Let H, C, D be bialgebras. Let G: CQH — HRH,T :C®H — HRC,

R:H®D —-D®H, f:D— H®H be linear maps such that f(1p) = 1y @ 1. Then

C x %Hﬁ x D equipped with the two-sided tensor product algebra C ® H ® D becomes a
bialgebra if and only if the following conditions hold:

1g®1G:1®1, 1T®1T:1®1, 1R®1R:1®1; ( )

(x2')r & (ed ) = xpa) ® epcy; (2.16)

(dd')r ® (v2')r = drd; @ TRT); (2.17)

(cc)aB(dd)' ® (z2')9B(dd')* = cgB(d) e B(d)! @ 29B(d)*a'“B(d)?,  (2.18)

where ¢, € C, z,2' € H, d,d € D and g = G,t = T,r = R. In this case, we call this

bialgebra Brzezinski’s two-sided crossed coproduct bialgebra and denoted by Cogﬂg oD.

Proof. We only prove that the comultiplication Acggep preserves multiplication and

leave the rest to the reader. For all ¢,c € C, z,2’ € H,d,d € D and g = G,t =T,r = R,
we have

A(cwzed(dod ed) 2 cd @ (cab(d) b, 8d)") ® (dadh), © (cach):

©(x%B(d1)%a"9B(d})?)r ® dady

2 et © (eaoB(e) ulehy B(d) )1 @ (dadh), @ eachy
@(xCB(d1)2 2" 3(d})?), ® dsdy

20 1) @ (eaBlda) Nlchy Bdh) )1 © dardy @ cachy
@(x%B(dr)?) (29 B(d1)?) r © dady

= Alc®zdA([dered),

as desired. N

In [13], the authors studied the antipode for a class of two-sided crossed product in
the setting of Hopf quasigroup. Now we discuss the antipode for Brzezinski’s two-sided
crossed coproduct bialgebra. Firstly we need the following definition.

Definition 2.10. Let C, D be two coalgebras and H be an algebra with a distinguished
element ey € H*. Let G:C®H — H®H,: D — H® H and S: H — H be linear
maps. Then S is called a (G, §)-antipode of H if for all x € H,c € C,d € D, the following
conditions hold:

Su(caB(d))z98(d)* = ec(c)em(z)ep(d)ln. (2.19)
caB(d)' Su(zB(d)*) = ec(c)en(z)ep(d)1n. (2.20)
In this case, we call H a (G, §)-Hopf algebra.
Remark 2.11. (1) Let H be a Hopf algebra with antipode S and the maps G, § be trivial
in Definition 2.10. Then S is a (G, §)-antipode of H. Therefore any Hopf algebras are
(G, B)-Hopf algebras.

(2) Let a: C — H ® H be linear map and G(c ® z) = a(c)'z1 ® a(c)?xy in Definition
2.10, then we call H an («a, §)-Hopf algebra.

Proposition 2.12. Let C, D be two Hopf algebras with antipodes Sc, Sp, H be a bialgebra
and Sg : H — H a linear map. Suppose that CogH}g o D is a Brzezinski’s two-sided
crossed coproduct bialgebra. Then C ogﬂg o D is a Hopf algebra with antipode S defined
by

S(c@z®d) = Sc(er) @ Sy(zrr) @ Sp(dr). (2.21)
if and only if H is a (G, 3)-Hopf algebra.



1128 T. Ma, B. Li

Proof. Forallce C,x € Hld€ D and R=r,T =t,G = g, we have

(S*id)(c®r ®d) (L2 Sc(ern)ewz ® Su((caaB(dr))ir) (9 B(d1)?)r ® Sp(darr)ds
2 10 ® Su((eaBd))r) (@ B(d1)*)r © Sp(darr)ds
P2 10 © Su(caB(d2) )29 B(d2)?) © Sp(dir)ds
(2é9) le® 5(0)5($r)5(d2)1H ® SD(d”)
= eglo)e(@)e(d)le@1lp®1p
and
(d+S)corod "2 ¢ Socur) ® (csa)B8(d)")eSu((@CB(d1)?)ar)
®da1,Sp(da2Rr)
D eiSe(enr) ® (ese)B(dr))iSa((@9B(dr)))
®dar1Sp(dara)
= aSo(eur) ® ((ese)B(d))eSu (x%B(dr1)*)rr)e(dar) ® 1p
1) c1Sc(car) ® ((c3e)B(d1)")eS((xCB(d1)?)r)e(d2) @ 1p
U2 ciSc(ear) ® (c20)B(d) S (¥ B(dr))e(d2) ® 1
e c1Sc(car)e(@r)e(d) @ 1y @ 1p
= eiSe(en)en)eld) © 1 @ 1p

= 6(6)6( ) (d)lc®1H®1D.
Thus, S is the antipode of C ongg o D. The rest are direct. O
Example 2.13. Let H, C, D be bialgebras. Let o : C — HQH,: D — H®H
be linear maps such that f(1p) = 1y ® 1. Then C x *HP x D equipped with two-

sided tensor product algebra C'® H ® D becomes a bialgebra if and only if the following
conditions hold:

a(le) =1g @1y, o(lc) =1y ® 1¢,¢%(1p) = 1p @ 1u; (2.22)
(ec)_1z2" @ (cc')o = c_1zd 12" & coc); (2.23)
(dd') oy @ za'(dd') 1) = d(o)d( 0) ® zd(y® d(l) (2.24)

a(cd)t @ aled)? = ale)'ale)! @ ale)’a(d); (2.25)
Bdd) @ p(dd')* = B(d)' B(d)! @ B(d)*B(d)%; (2.26)
B(d) 'z @ B(d)*zs = 21 8(d)' @ 228(d)?; (2.27)
ale)tz @ a(e)’ry = z1a(c)t @ z2a(c)?; (2.28)
B(d)'a(c)' ® B(d)*a(c)* = a(c)' B(d)! @ a(c)*B(d)?, (2.29)

where ¢, € C, x,2' € H, d,d € D. In this case, we call this bialgebra two-sided twisted
crossed coproduct bialgebra and denoted by C' o *H? o D. Furthermore, if C, D are Hopf
algebras with antipodes Sc and Sp, Sy : H — H is a linear map, then C o “H? o D is
a Hopf algebra with antipode S defined by

?(c XRxr & d) = Sc(c()) ® SH(Cfll'd(l)) ® SD(d(O))
if and only if H is a («, 8)-Hopf algebra.

Proof. Let T(c® x) = c_12 ® o, G(c ® ) = a(c)' 1 ® a(c)’xy, R(z ® d) = d(g) ® zd()
in Theorem 2.9. Then we obtain Eqs.(2.22)-(2.24) and

al(ed) (za')18(dd)' @ alcd)?(za’)28(dd)? (2.30)
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= a(0)'z18(d) a(d) 218(d)! ® alc)*z2B(d)*a(d) 2hB(d)*.
In fact, Eq.(2.30) is equivalent to Egs.(2.25)-(2.29). One can calculate as follows.
a(e) w1 B(d) a(d) ) B(d) @ a(c)?z28(d)*a(d) 2, B(d)?

"2 a(omale )B(d)lw’ (d)' @ a(c)*zra(c)*Bd) 23 B(d)?

C2 a0 a(¢) e Bld) 74 B(d)! @ ale)2a(d)2zaB(d) b A(d)2

G20 () () ! B(d) B(d) ® ale)?ald ) 2asahB(d)2B(d)?
B (el (a2 )1 B(Ad) © aled )Pz )aB(dd).

And the inverse is direct. Thus we can finish the proof by setting T(c ® ) = c_12 ®
o, G(c® x) = a(c)'z1 ® afc)?z2, R(x ® d) = d(g) ® xd(y) in Proposition 2.12. O

Remark 2.14. If H is commutative in Example 2.13, then Eqs.(2.27)-(2.29) hold auto-
matically and Egs.(2.22)-(2.26) just show that «a, 3, ¢, are algebra maps.

Example 2.15. Let H, C, D be bialgebras. Let T: C®H - HRC, R: H®D — D®H
be linear maps. Then C' x pHi X D equipped with the two-sided tensor product algebra
C®H®D becomes a bialgebra if and only if T"and R are algebra maps. In this case, we call
this bialgebra two-sided twisted tensor coproduct bialgebra and denoted by C'¢rHp ¢ D.
Furthermore, if H, C, D are Hopf algebras with antipodes Sy, S¢ and Sp, then CorHproD
is a Hopf algebra with antipode S defined in Eq.(2.21).

Proof. Let G and f be trivial in Theorem 2.9 and Proposition 2.12. U

3. An extended version of Majid’s double biproduct

In this section, we investigate the necessary and sufficient conditions for two-sided
crossed coproduct coalgebra and two-sided smash product algebra to be a bialgebra, which
improve the main result [8, Theorem 2.2.] by simplifying the conditions, especially the
condition Eq.(3.13).

Firstly, let us recall [8, Theorem 2.2.].

Lemma 3.1. Let H be a bialgebra. Let o : C — H ® H be a linear map, where C' a
left H-module algebra such that ec(1¢) = 1, a(lg) = 1y @ 1y, and a coalgebra with a
left H-weak coaction. Let : D — H ® H be a linear map, where D a right H-module
algebra such that ep(1p) = 1, f(1p) = 1g ® 1y, and a coalgebra with a right H-weak
coaction. Then the two-sided crossed coproduct coalgebra C x *HP x D eqquipped with the
two-sided smash product algebra CH#H#D becomes a bialgebra if and only if the following
conditions hold:

Ac(le) =1c ® 1o, Ap(lp) = 1p @ 1p; (3.1)
ec,ep are algebra maps; (3.2)
le ,®1lc, =1 ®1e, 1p) ® 1pa) = 1p @ 1 (3.3)
ec(xpc) =¢e(x)e(c),ep(day) =e(d)e(y); (3.4)
c(x1 > ) @ a9 = cr(ale) 'z > ) ® ales)?ms; (3.5)
(dazy)d @ xy = (daxeB(dy)?)dy @ 21 8(d)); (3.6)
(c(z> )1 @ (c(z>d))s = er(ea_1a(e3) x> ) @ eaoa(es)?za > ch); (3.7)
(da2)d)y @ ((daz)d)s = (dr a2 8(d) by © (da 2 waB(d )Pl (3
ale(zi o)) iey @ ale(zi > ) ez = a(e) zra(d) @ a(e)®zaa(d)?; (3.9)
z18((d<z3)d ) @ 22B((dax3)d)? = B(d) ' z16(d)! @ B(d)*z28(d); (3.10)
(c(z1 > ) 122 @ (c(z1>¢))o = c1o1a(ca) w1¢ 1 @ crpal(ca)?zac); (3.11)
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((dazo)d) () @ 21((dawa)d) 1y = (d(o) w1 B(d}) )iy @ diyz2(dy) gy (3.12)
(1> ¢1) @ zaca_1a(e3)B(d) z) ® (da(o) 9 2%) ® (23> €20) @ za(c3)?B(d) d2(1)azé (3.13)
®(dz <) = (218(d1)"1) > c1) @ 228(d1) 2c2—110(c3) 12 @ (d(g) < ca—1201(c3) 2h)
®x36(d1)*1da(1)1 > c20 @ 24B(d1)2dorypa(c3) 175 @ ds < a(es) o).
In this case, we call this bialgebra the double crossed biproduct denoted by C + “HP « D.
Next we give an improved version of the above result.

Theorem 3.2. Under the assumption of Lemma 3.1. The two-sided crossed coproduct
C x® HP x D equipped with the two-sided smash product C#H#D becomes a bialgebra if
and only if Eqs.(3.1)-(3.6) and the following conditions hold (x € H,c,c € C,d,d € D):

(N @ (cc)2 = c1(ca—1a(c3)' > ¢)) @ eap(a(es)® b &y); (3.14)
(xpe)1 @ (z>c)a = (z1>c1) @ (2> C2); (3.15)
(dd')y ® (dd)s = (dn < B(d}) ) ® (da < B(d, 2Ny (3.16)
(d<x); @ (d<x)s = (d1 <x1) @ (d2 < x2); (3.17)

oz > c)lze @ alzy > c)’xs = z1a(c)! ® z20(c)?; (3.18)
alcd) @ a(ed)? = ale)'a(d) @ alc)?a(d)?; (3.19)
z18(dax3)' @ xaf(d<x3)? = B(d) 21 @ B(d)*x9; (3.20)
Bldd)' © pdd')* = B(d)'B(d)" @ B(d)*B(d)*; (3.21)
(cc)1® (ec)o = er-1a(ea) 'y ® ero(alez)® > ¢p); (3.22)
(r1>c)_122 ® (1> C)g = T10—1 ® T > Cp; (3.23)
(daz2)0) ® 21(d 9w2) (1) = (d(o) 121) ® d(1)T2; (3.24)
(dd) oy ® (dd/)(l) (dioy < B(dy)" )iy @ diay B(dy)diyy; (3.25)
c® lye(d) = (B(d) > c) ® B(d)?; (3.26)
6(0)1H®d—a( N @ (daalc)?); (3.27)
d(1y>co ® d(g) <c-1 = c®d; (3.28)
c1 ® ca—1a(es)' B(dr)! @ dog) ® ca0 ® a(e3)?B(d1)’dory @ d3 = (B(dr)' b er)  (3.29)

®@B(d1)"yea—10(c3)'y ® (dagoy Qa(es)’y) @ (B(d1)?) > ea0) ® B(d1)?yda1ya(es)?;
®(ds < afes)?y).

In this case, we also call this bialgebra the double crossed biproduct still denoted by C %
“HP % D.

Proof. By Lemma 3.1, we only need to prove that Eqgs.(3.7)-(3.13) are equivalent to
Eqgs.(3.14)-(3.29). In what follows, we take two steps to prove the result.
Step 1. Let x = 1y and ¢ = 1¢ in Eq.(3.7), one gets Eq.(3.14) and Eq.(3.15), respec-
tively.
Conversely, we have
(c(z> ) @ (c(z> )2

c1(ea1a(eg)' v (2> d)1) ® exn(alce 3)2> (x> )2)

(
Co_ 10[(63) > (:Ul > Cl)) ® CQO(Q(C3)2 > (xg > 0/2))
c1(ca_1a(e3)tzr b)) ® (can(ales)?zo > ),
i.e., Eq.(3.7) holds. Thus Eq.(3.7)< Eq.(3.14) and (3.15).

L1kew1se one can obtain that Eq.(3.8)< Eq.(3.16) and (3.17); Eq.(3.9)< Egs.(3.18) and
(3.19): Eq.(3.10)& Eqgs.(3.20) and (3.21); Eq.(3.11)< Egs.(3.22) and (3.23); Eq.(3.12)<
Egs.(3.24) and (3.25).

(3.14)
(3.15)

1
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Step 2. This step is technical, we will show that Eq.(3.13) < Egs.(3.26)-(3.29).
Firstly, by applying ide ® eg ® ep ® e¢ ® idy ® ep to Eq.(3.13), we have

(21 ¢) @ 2oe(d)e(x’) = 218(d)' > c1 @ x28(d)?e(2).

Let = 2/ = 1y in the above equation, one gets Eq.(3.26). Applying e¢c ® idy ® ep ®
ec ®ep ®idp to Eq.(3.13), we have

e(c)xr) @ daxh = e(c)ra(es)'z] @ d<a(es)?ah. (3.30)

Let x = 2/ = 1y in the above equation, we have Eq.(3.27). Setting z = 2’ = 1y in
Eq.(3.13), we have

1 ® ca—10(c3) ' B(d)! @ dog) ® c20 ® av(c3)*B(d) dy1) ® ds
= ((B(d1)"1) > er) @ Bdr) 2ca-n10(e3)'1 @ (dyo) < c2120(cz)'a)  (3.31)
®(B(d1)*1da(1)1 & c20 ® B(d1)*2da(1)20(c3)?1 @ (dg < au(c3)?s).

Applying ec ® ey ® idp ®ide ® eg ® ep to Eq.(3.31), we can get Eq.(3.28). And

RHS of Eq.(3.31)

G200 3 b e1) ® Bldr) aar(en) es_n1alea)ls @ (do(oy < () c3-120(ca)'2)
®(B(d1)*1da(1y1B(ds)" > c30) ® B(d1)?2da1)2B(ds)*c(ca)®t ® (da < ax(ca)2)

(B(d1)'1 > c1) ® B(dr) 2ca—1a(cs) a(ca)'t @ (da(oy(0) < ca0—100(c3)*axlcs)'s)
(

®(B(d1)*18(dz2)" d3(0)1 > c200) ® B(d1)?2B(d2) d1yex(ca)®s @ (dy < axfcs)®2)

B2 ()" b 1) @ Bldr) aea_ra(es) ale)! 1 ® (ds(oy < alcs)a(cs)s)

®(B(d1)*18(d2)" > c20) ® B(d1)*2B(da) dg1ycx(ca)®s @ (dy < ax(cq)?s)

(B(d1)'1 > c1) @ Bldr) aca—1a(ez)ts @ (daoy < a(es)'s)
®(B(d1)*1 > c20) ® B(d1)*28(d2)?d3(1ye(c3)*1 ® (ds < av(c3)?2)
—  RHS of Eq.(3.29).

And LHS of Eq.(3.31) is exactly LHS of Eq.(3.29), so we obtain Eq.(3.29). Inversely, we
have

RHS of Eq.(3.13)
(3.26)(3.27)

(1.9)(2.9)

(3.26)(3.27)

((@18(d1)"1) > e1) @ 22 (dr) 2a(ca) e311a(ca) 12 @ (dy() < a(e2)®ez-12

xa(cs)'awh) @ (w3B(dr)*1do1)18(ds)' & c30) ® 24B(d1)*2d(r)2B(ds) a(cy) 1%

®(ds < afca)?2y)

" (@1B(d) ) b 1) @ 22B(dr) 22 10(es) a(es) 1) @ (dyo) < cao—100(c3)?

xa(ca) oxh) @ (w3B(d1)*1da(1)18(ds)" > ca00) ® 2B (d1)?2do(1)28(ds) a(cs) 1%
( 2

(dg e’ 04) 2Ty )
(2.9 )

=) ((z1B8(d1)"1) > 1) ® w2B(dr) aca—10(c3) a(es) 17] @ (dg0)(0) < c20-10x(c3)?
) ® (2351 8(da)" d3(0)1 > c200) @ T4B(d1)?2B(d2) dg1yox(ca)1 2

®@(dy < afcq)?ay)

((z1 > B(d1)"1) > e1) ® 2B(dr) 2co—1a(es) afcs)12] ® (d3(0) aa(es)?

xa(cq)'orh) @ (23B(d1)*18(d2)" > c20) ® w43(d1)*28(d2) d1ycx(ca)* 12

®(dyg < a(04)22 axh)

xa(eq)toxh

(3.28)
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3.26)(3.27
G2UE2D (21 B(d1)"1) b e1) © 228(d1) 2c2_10(c3) 17 ® (dago) < a(cs) o))

®(w38(d1)%1 > c20) ® 2aB(dr)2dogrya(cs)® 125 ® (ds < o(cz)?s < aly)

3.29
( = ) (xl > Cl) &® x202_1a(03)1,8(d1)1w’1 ® (dQ(O) < x’z) ® (1‘3 > 020)

®a40(c3)*B(dy) o1yl ® (ds < ay)
= LHS of Eq.(3.13).

Thus Eq.(3.13)< Egs.(3.26)-(3.29). These finish the proof. O
Corollary 3.3. Let H be a bialgebra. Let o : C — H ® H be a linear map, where
C a left H-module algebra, and a coalgebra with a left H-weak coaction. Then the left
crossed coproduct C' x* H equipped with the left smash product C#H becomes a bial-
gebra if and only if the parts about C' of Eqs.(3.1)-(3.4), a(1¢) = 1g ® 1g, Egs.(3.5),
(8.14),(3.15),(3.18),(3.19),(3.22) and (3.23) hold. In this case, we call this bialgebra left
crossed biprodcut and denote it by C x* H.

Proof. Let D = K in Theorem 3.2. O

Remark 3.4. In [14, Theorem 1.1], Wang-Wang-Yao provided a bialgebra construction
for the left crossed coproduct C' x* H and the left smash product C#H as follows: Let H
be a bialgebra. Let o : C — H ® H be a linear map, where C a left H-module algebra,
and a coalgebra with a left H-weak coaction. Assume that « is convolution invertible and
for all ¢, € C,

(ale) b)) @ ala(e)® > ) @ ala(c)? > cy)? (3.32)
= (a(e)' > c)) ® a(e)’;a(ch)' @ a(c)?ya(ch)*.
Then the left crossed coproduct C' x* H equipped with the left smash product C#H
becomes a bialgebra if and only if the parts about C' of Egs.(3.1)-(3.4), a(l¢) =15y ® 14,
Eqs.(3.14), (3.15), (3.18), (3.19), (3.22), (3.23) and
cro(a(e2)?a(es)ty > ) @ cro1ales)tales)t; ® a(es)? (3.33)
= cio(a(c2)?, > ) @ cr1afe2)t @ ale)?,
hold.
By comparing the necessary conditions of Wang-Wang-Yao’s above and ours in Corollary

3.3, we can get that the conditions imposed on « are redundant, i.e., the conditions that
a is convolution invertible and Eq.(3.32) should be omitted.

Proof. We only need to prove that Eq.(3.5) is equivalent to Eq.(3.33). Applying id¢e ®
exg ®idy to Eq.(3.33), we have

cila(e) > d) @ ale)? =cd @ 1g. (3.34)
Then
c(z1> ) @ x9 (334 ci(a(e)t v (z10 ) ® aler) s
= cla(e)zivd) ®ale)es.
Thus Eq.(3.5) holds. The inverse can be checked as follows.
cro((a(e2)®a(es)y) b ¢) @ cira(ez) ales); ® ales)”
(1.8)

=" co((a(cn) ale3)]) > d) @ crica1a(es)! @ alean)’aes)s

1.6
W g (alein) ale2)?) b ¢) @ errafen)! @ aleros)2ales)?

38) cro(a(ca)iv ) @ c1o1a(c)! ® ales)3,

finishing the proof. O
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Corollary 3.5. Let H be a bialgebra. Let B : D — H ® H be a linear map, where
D a right H-module algebra, and a coalgebra with a right H-weak coaction. Then the
right crossed coproduct H? x D equipped with the right smash product H#D becomes a
bialgebra if and only if the parts about D of Eqs.(3.1)-(3.4), B(1p) = 1g ® 1, Egs.(3.6),
(8.16),(3.17),(3.20),(5.21),(5.24) and (3.25) hold. In this case, we call this bialgebra right
crossed biprodcut and denote it by H® x D.

Proof. Let C = K in Theorem 3.2. O
Based on Theorem 3.2 and Corollaries 3.3, 3.5, we have

Proposition 3.6. Under the assumption of Lemma 3.1. Suppose that C x* H is a left
crossed biprodcut and HP x D is a right crossed biproduct. Then the two-sided crossed
coproduct C x® HP x D equipped with the two-sided smash product C#H#D becomes a
bialgebra if and only if (3.26)-(3.29) hold.

Corollary 3.7. ([9,10]) Let H be a Hopf algebra, C a bialgebra in TYD, and D a bialgebra
n YDE. Then the two-sided smash product algebra CH#H#D and the two-sided smash
coproduct coalgebra C x H x D form a bialgebra, named the Majid’s double biproduct (or
double-bosonization) and denoted by C x H x D if and only if Eq.(3.28) holds.

Question. Let H be a Hopf algebra. C is a bialgebra in gY}D) if and only if C x H is a
left Radford biproduct, D is a bialgebra in YID)Z if and only if H x D is a right Radford
biproduct. Is there a tensor category EY]D)O‘ (or 5Y]D)g) such that C is a bialgebra in
AYD? (or PYDE) if and only if C x* H (or H? x D) is a left (or right) crossed biproduct?

At last, we provide three specific examples for double crossed biproducts, of which the
first one is the case of «, 8 trivial and the last two are the case of a, 5 non-trivial.

Example 3.8. Assume that chark # 2. Let H = K{1, ¢} be the group bialgebra. Let
C = sp{1,z}, its algebra structure is defined by 2% = 0; its coalgebra structure is defined
by A(1) =1®1, ¢(1) =1, A(z) =2®1+1®x, and e(z) = 0. Let D = sp{1,y},
its algebra structure is defined by y? = 0; its coalgebra structure is defined by A(1) =
1®1,e(1)=1, A(y) =y®1+1®y, and e(y) = 0.
Define the linear maps:

>: H®C — C such that gbz = —x,9g>1:=1;

p:C — H ® C such that p(z) :=g®z,p(1) :=1® 1,

<4:D® H — D such that y<g:= —y,1<g:=1;

v: D — D ® H such that y(y) :=y®g,7(1) :=1® 1.
Then C ® H® D = K{ai, a2, as, a4, as, ag, a7, ag}, where a1 = lc @ 1y ® 1p, as =
le®1lp®y, a3 =1c®g®1p, a4 =1c®gRY, a5 = R1x®1p, as =21y, a7 =
r®gR1p, ag =2 @ g ®y, is a double biproduct with the multiplication

ap az az a4 as a6 ar ag
apjay az as aq as ae az as
as | as 0 —a4 0 Qg 0 —as 0
asjaz a4 —ai —a2 —ay —ag —a5 —ag
a4 | A4 0 a9 0 —as 0 Qg 0
as | as Qg ay as 0 0 0 0
Qg | g 0 —as 0 0 0 0 0
ar | ay ag as ag 0 0 0 0
ag | asg 0 —ag 0 0 0 0 0

and comultiplication

Ala1) = a1 ®ay;
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= ay®az+ a ¥ az;

asz & as;
a4 ®ay +az @ aq;

as ® a1 +az @ as;
ag a3z +as Q@ az + a4 @ ay + az K ag;
= ay®az+a Qar;
Alag) = ag®aj +ar@ayq+az @ as + a1 ® ag.

AAA/I;A/—\
iy

S e e N N N
I

Example 3.9. Let H = K{ly,g,x,g9z} be a bialgebra, its algebra structure is defined
by ¢ = 1y, 22 = 0, gr = —xg; its coalgebra structure is defined by A(ly) = 1y ®
1y, 5(1H) =1, A(g) =gy, 6(9) =1, A(.ﬁ) =lp®r+rRy, E($) =0, A(gl’) =
g®gr+ gr @ 1y, e(gx) = 0. Let C = sp{l¢c,y}, its algebra structure is defined by
y? = 0; its coalgebra structure is defined by A(lg) = 1¢ ® 1¢, €(1¢) = 1, Ay) =
yR1lc+1c®y, e(y) =0. Let D = sp{lp, 2z}, its algebra structure is defined by 22 = 0;
its coalgebra structure is defined by A(1p) = 1p®1p, e(1p) =1, A(z) =2Q1p+1p®=z
and €(z) = 0.

Define linear maps>: HRC — C, p: C — HRC, a: C — H®H, <: D®H —
D, v:D—D®H, :D— H®H by

lprle:=1¢, g>ble:=1¢, lypy =y, gry:=y;
p(le) =1 @1c, py) =g ®y;
a(le) =1g @1y, ply) =klp@r—kg@z —kr® 1y + kx ® g;
lp<ly:=1p, Ip<g:=1p, 241y :=2,2<9 = z;
Y(1p) == 1p ® 1y, ¥(z) == 2 ® g;
B(lp) =1y @1y, B(y) =y @ gr —lg® gr — Lgr @ 1y + Lgxr ® g,

where V k, ¢ € Z (the set of integers).

Then C® H® D = K{by, by, b3, by, bs, bg, b7, bs, by, b1, b11, b1z, b13, b14, b1s, big},
where by = 1o @ 1gp®1p, by =1lc R 1Rz, bs=1c®gR1p, by =1c R g z, by =
le®@r®1p, bg =1lc®@r®z2, by =1lc®@grR1p, bs = 1lc®gr®2, bg = yR 1y R1p, bip =

YR1g®z b =y®gR1p, b2 =y®g®z2, bi3=yRr®1p, by =yR®r 2z, bis =
YR grR1lp, bijg =y ® gr  z, is a double crossed biproduct with the multiplication

| b by b3 by bs bs by bg by big bia  bia bz bia bis big
by | by by b3 by b5 bs by bg by big bz b2 bz bia bis big
bo b 0 by 0 bg 0 bs 0 b O b1a 0 b14 0 big 0
bs | b3 by by b by bs b5 bs bix bia b bio bis bis bz bus
by by 0 by 0 bg 0 b 0 b1s 0 b1g 0 big 0 b1a 0
bs | bs be —br —bs 0 0 0 0 bys b —bys ~bg 0 0 0 0
be | bg 0 —bg 0 0 0 0 0 by 0 —big 0 0 0 0 0
by | by bg —bs —bg 0 0 0 0 bis big —biz —bis O 0 0 0
bs | bs 0 —bg 0 0 0 0 0 0 big 0 —biy O 0 0 0
bo by bio b1 b1o biz by bis big 0 0 0 0 0 0 0 0
big | big O b12 0 by 0 big O 0 0 0 0 0 0 0 0
bii | b11 biz by bio bis big bz by 0 0 0 0 0 0 0 0
bia | bz O b1o 0 bie 0 by O 0 0 0 0 0 0 0 0
bis | bis by —bis —big O 0 0 0 0 0 0 0 0 0 0 0
biga | b1a 0 —byg 0 0 0 0 0 0 0 0 0 0 0 0 0
bis | b5 big —biz —biy O 0 0 0 0 0 0 0 0 0 0 0
big | big 0 —big 0 0 0 0 0 0 0 0 0 0 0 0 0

and comultiplication
A(bl) =b; ® by;
A(bg) =b1 ® by + b ® by;
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A(bz) = b3 @ bs;

A(by) =b3 ® by + by ® ba;

A(bs) =b1 ® bs + bs @ by;

A(bg) =—ba ® by + b1 ® bg + b ® bz + bs & ba;

A(b7)=br; @ by + b3 ® by;

A(bg) =—bs @ bs + by ® by + bg ® b3 + b3 ® bs;

A(bg) =bg ® by + b3 ® bo;

A(b1g) =b1g ® bz + by @ by + bs @ b11 + b3 @ b1o;

A(b11) =b11 ® bg + b1 ® biy;

A(bi2) =bia ® by + b1y ® by + by ® big + by @ byo;

A(big) =bs @ b1z + by ® bs + by @ b11 + b13 ® bs;

A(b14)=bg @ bg — b1p @ b7 + b3 ® b1y — by ® b5 + b1z @ by + b14 ® by + bg ® bg + by ® bya;
A(b15) =b11 ® by + b1 ® bis + bis @ by + bs @ by;

A(big) =b11 ® bg — big @ bs + b1 ® big — by ® b1z + big ® bz + b15 ® by + bg @ b1y + bs @ byo.

Example 3.10. Let H = K{\,¢} be a bialgebra, its algebra structure is defined by
M=)\ ¢Z=¢, A-¢=¢-\=0; its coalgebra structure is defined by A(A) =A@\ +¢®
6, N =1, A) =A@c+c® A, e(¢) =0. Let C = sp{ul®,uM 42 4B} its algebra
structure is defined by

‘ w©® M L2 4, B3

W@ [w® o0 0 0
WMo W™ 0 0,
W@ 0 0 w® 0
u® | 0 0 0 u®

its coalgebra structure is defined by

A =u® @ u® + M @ u® 4+ 43 @™ + 4@ g @
A =u® @ u® + M @@ 4+ 4? @ u® + 4 @
A =u® @ u® + @ @u® + 4 @ u® + 4O g u®
AP =u® @ u® + u® @@ 4+ 4 @ u® 4+ 4@ g
Let D = sp{v(®, v v v®)} its algebra structure is defined by
‘ 00 M) @) ,B)
v@O 1@ 0 0 0
oW 0o oM 0 0,
o@ 10 0 @ 0
v® 10 0 0 o®
its coalgebra structure is defined by
AWD) =0 g @ 4 D @) 4 B g M 4 ) @),
A(wM) =0 @ oM 4+ M @O 4 @ g ) 4 ) @ @),
AW =0 @ v® 4+ @ g v 4 (1) @ (M) 4 46) @B,
Aw®) =0 g v®) 4+ ) @40 4 M) @@ 4 3 g D).

Define linear maps>: HQC —C, p: C — H®C, a:C —H®H, <:D®H —
D, v:D—D®H, §:D— HQH by

p(u(o)) = )\ ® u(o) + S ® u(o)’ p(u(l)) = )\ ® u(l) + S ® u(3)7
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a(u(o)) EAQAFARCHCR A, a(u(l)) =0 R, a(u@)) =0, a(u(?’)) = 0;
7(v(0)) =00 @ \+00 S, ’y(v(l)) =M o \+00) ® S,
(@) =@ @A+ 0@ @<, y(®) =@ @A+ 0 @¢;

B =A@ N+ A@c+c® A, BoM) :=c®¢, B(v?):=0, B(®):=0.

Then C®H®D - K{Cl, C2, C3, ¢4, Cs, Cg, C7, C8, C9, C10, C11, C12, C13, C14, Ci15, C16, C17,

C18, C19,C20, C21, €22, €23, C24, C25, C26, Ca7, C28, €29, C30, €31, C32}, where ¢ = u(® @A
v o =uO@A20D, 5 =u P @A2v?), ¢4 =u P @ARvO), 5 = uM @A), ¢4
D @AW, 7 = M @A 0@, g = uP @A 0®), g = u® @A @ 0@, ¢
) )7 ey = @ @ A® U(Q)’ c19 = @ o ® U(3)’ c13 = uB® @ A® U(O)’ c14
) )7 cls = B 2 A® U(Z), cl16 = u® R\ ® 1;(3)7 clr = w9 @ c® U(O), c18
0 @ ¢® v(l), cl9g = v ¢® v(2), Cop = MON Y v(?’), Co1 = MON ¢® v(o), C22
: ) e =u) @c®@0v@, o = u @c@ v, 5 = u® @c @00, ey
) ) ( 1@ @ @@ e = u® @ ov® ey

(
®§®’U(1, 027:u2)®<®v(2), Co8 =
(

®

with the multiplication of the two-sided tensor product algebra and the comultiplication

defined by

Alc))=c1®c1+ca®@cs+ec3@cs+eg®@ca+ce5¢5+csRcg+ 7 @cr+ ¢ cg
Fcg ®cg + 10 ® c12 + 11 ® 11 + ¢12 ® ¢19 + €13 @ €13 + 14 ® ¢16 + €15 @ C15

+Ci16 ® c14 + 17 @ €17 + €20 @ o0 + C19 ® C19 + €18 V) €18 + €21 ® Cog + €24 K €32
+C23 Q €31 + 22 & €30 + C25 Q) Ca5 1 Cog @ Cag + Co7 K Ca7 + C26 @ €26 + C29 K C21

+c32 & €24 + €31 @ C23 + €30 & C22;
Aleg)=c1®cs+caQ@cg+c3@cr+ca®@c+50¢c1+cg®@ca+cr®@cz+ ¢y
+c9g @ €13 + €10 ® Cc16 + €11 @ €15 + €12 V €14 + €13 D €19 + €16 V €10 + C15 D €11

+c14 ® c12 + €17 ® 21 + €18 ® g + €19 ® Ca3 + €20 @ €22 + 21 ® €17 + €24 B €18
+C19 ® €23 4 C22 & Co0 + C25 X €29 + Co6 & €32 + Ca7 K €31 + C28 & €30 + €29 & C25

+c32 ® 26 + €31 ® a7 + €30 ® C28;
A(63):C1®03+C3®01+CQ®CQ+C4®C4+C5®C15+C7®C13+66®C14+Cs®016

F+cg®c11+c11 ®cg+cro@cio+cr2@cr2 +c13 @ ¢y +c15 @ ¢5 + 14 O Cp

+c16 ® €8 + €17 ® €19 + €19 ® C17 + €20 & €18 + €18 ® €20 + €21 ® €31 + €23 © C29

+C22 @ €30 + C24 R €39 + Co5 X Co7 + Co7 & Co5 + Co6 @ Cog + Co8 & Cag + C29 K Co3

+€31 ® €21 + €30 ® €22 + €32 & C24;
Alcg)=c1®@cs+ca®@cr+ca®@c3+c3®@ca+ 65 @ 16+ 3 @ c13 + 6 ® €15 + ¢7 ® c14

F+cg®c12+cr2®cg 4 c10 ® €11 + 11 ® €10 + €13 ® €8 + 16 & €5 + 14 D €7

+c15 ® 6 + €17 ® €20 + €20 @ €17 + €18 ® €19 + €19 @ €18 + C21 @ €32 + €24 @ €29

+C22 ® €31 + 23 ® €30 + €25 @ Cag + Cag ® Co5 + €26 @ a7 + C27 ® Co6 + €29 & Co4

+c32 & €21 + €30 @ €23 + €31 & C22;
Alcs)=c1®@c5+ca®@cg+c3@cr+ca®@cg+c5R@¢1 +cg@ca+ 7 @cs+ ¢y
+c9g @ C13 + €10 ¥ €16 + €11 ® €15 + €12 Q) C14 + €13 @ €9 + €16 @ €10 + €15 D €11

+c14 ® €12 + €17 @ €21 + 20 ® C24 + €18 ® €22 + €19 & €23 + 21 @ €17 + C24 ® €
+C22 ® a8 4 C23 & €19 + Ca5 @ C29 + C26 & €32 + Ca7 K €31 + C28 & €30 + €29 & C25

+c32 & C26 + €31 @ C27 + €30 K C28;
Alcg)=c1®cs+ 2@ +3Qc+ca®@cr+c®c1+Qc+cgR@c3+ 7@
+c9g @ 14 + €10 ® €13 + €11 ® €16 + €12 B €15 + €14 @ €9 + €13 @ €10 + €16 D €11
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+c15 ® c12 + €17 © €22 + C20 © €21 + C19 ® C24 + €18 ® C23 + €22 ® €17 + €21 @ €0
+C24 ® C19 + €23 ® €18 + €25 @ €30 + €28 & C29 + C27 & €32 + €26 & €31 + €30 & C25
+C29 & Ca8 + €32 @ a7 + €31 @ C26;

Aler)=c1@cr+ 3@+ @ +ea®@cg+es@c3+cr@cr+ 3@ cy+ @ e
+c9 ®c15 + €11 ® €13 + €10 ® €14 + €12 ® C16 + €13 ® €11 + €15 @ €9 + €16 K C12
+c14 ® c10 + €17 ® 23 + €19 ® 21 + €18 ® 22 + 20 ® o4 + 21 ® €19 + 23 W C17
+C24 @ €20 + €22 @ €18 + €25 @ €31 + €27 B C29 + €26 ® €30 + €28 ® €32 + C29 @ C27
+c31 @ 25 + €32 @ 28 + €30 @ C26;

Alcg)=c1 ®cg+c3Qcs+2@cr+ces®@ce+cs@c3+g@cr+c4® ¢+ 1@ e
+c9 ®c16 + €11 ® 13 + €10 ® €15 + €12 ® €14 + €13 ® €11 + €16 © €9 + 14 ® C12
+c15 @ €10 + €17 ® €24 + €18 ® €21 + €20 © €23 + €19 © €22 + €21 ® €18 + C24 © C17
+c22 ® c19 + €23 © €20 + C25 © €32 + C26 © Ca9 + C28 ® €31 + C27 @ €30 + C29 @ C26
+C32 ® €25 + €31 & C28 + €30 X Ca7;

Acg)=c1®@cg+ca®@cra+c3®@ci1+ca®@cio+cg@cp +c1o®@cq+c11 ® ez +c12 @ e
+cs ey +eg®cg+ 7 @cr+ 8 Qg+ c13 D 13 + 14 Q 16 + €15 R ¢15
+C16 ® €14 + €17 @ C25 + €20 @ Co8 + €19 X Ca7 + €18 Q Co6 + C25 @ €17 + €28 & C20
+C27 ® C19 + €26 @ 18 + €21 @ 21 + €24 & Cog + €23 & €23 + C22 & 22 + C29 & C29
+C32 ® €32 + €31 @ €31 + €30 & C30;

Alcip)=c1®cip+ca®@cg+c3®@cia+ca®@cin+eg@ca+cro®c1 +c11 @cq + 12 @ 3
+c5 Rcgt+cegR@cs+c7Qceg+c3gRcer+ 13 14+ 14 ® €13 + ¢15 Q C1
+c16 @ c15 + €17 @ €26 + €20 @ €25 + €19 @ Cag + €18 @ Ca7 + €25 ® €18 + €28 ® €17
+C27 ® o0 + C26 @ €19 + €21 @ o2 + C24 ® Co1 + €23 & Cog + C22 ® 23 + C29 ® C3p
+c32 @ €29 + €31 Q €32 + €30 X €313

Afcr1)=c1®ci1+c3@cg+ca®@cio+ca®cia+cg @c3+c11 ®cp+c12®cq +c10 @ ¢z
Fes®er+er®ces + 6 Qce+ g @ g+ 13 c15 + 15 ® €13 + c14 ® €14
+C16 ® c16 + €17 @ Ca7 + €19 ® Co5 + €20 & €26 + €18 Q Cag + C25 Q C19 + Co7 &K C17
+C26 @ oo + €28 @ €18 + €21 @ €93 + €23 X €21 + C22 & €22 + C24 @ C24 + C29 & €31
+C€31 & €29 + €30 @ €30 + €32 & €32;

Alc12)=c1®cr2+ca®@cg+ca®@ci1 +c3@cip+cg@cy+c12®c1 +c1o@c3+c11 @ co
+e5 @ cg+cg@cs+cgQcr+ 7 @ ce+ 13 @ 16+ C16 @ €13 + €14 @ €15
+C15 @ C1a + €17 @ €28 + €18 @ €25 + €20 @ Ca7 + €19 @ €26 + C25 ® €20 + C26 @ C17
+C28 @ c19 + Ca7 @ 18 + €21 @ €24 + €22 @ €21 + €24 @ €23 + €23 @ €22 + C29 B €32
+C30 ® €29 + €32 X €31 + €31 & €30;

Alciz)=c1 ®@ciz+ca®cig+c3@cis+ca®@cia+ci3®@c1+cu®@cq +ci15 @ c3
Fc16® 2+ 5@ cog+ce®ci2+cr®ci1+ g ®cig+ cg @ cs + 12 ® cq
Fc11 ® 7 + €10 ® €8 + €17 @ €29 + €20 X €32 + €19 Q €31 + €18 ® €30 + C29 X C17
+C32 ® co0 + €31 @ 19 + €30 @ 18 + €21 & o5 + C24 & Cog + C23 & o7 + C22 & C26
+C25 @ €21 + €28 @ €24 + C27 & €23 + C26 & C22;

A(CM):Cl Xy t+ca®ci3+c3@cigt+ca@cC15+c13K 2+ 14 Q1+ ¢c15 D ¢y
Fe1®c3+es®cipt+ce®cg+cer@cig+cg®@ci1+cg®cg+ c10® s
+C11 ® g + C12 ® 7 + 17 @ €30 + C20 @ €29 + €18 ® €32 + C19 ® €31 + C29 @ C18
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+c32 ® €17 + €31 ® c20 + €30 © €19 + €21 © C26 + C24 © Ca5 + C23 @ Cag + C22 @ Co7
+C25 @ 22 + €28 @ €21 + C27 @ 24 + C26 @ C23;

Alcis)=c1®ci5 +e3®@ci3+ca®@cu+ca®cig+cz®@cg+cis @+ c16 @ ¢y
+C14 ®co+c5&c11 +cr Qg+ cg®cio+ g cia+ g & cr+c11 X cs
+c12 ® cg + €10 ® g + €17 ® €31 + €19 @ €29 + €20 Q €30 + €18 & €32 + €29 & C19
+c31 @ c17 + €32 @ c18 + €30 @ 20 + €21 & o7 + €23 & Co5 + C24 & 26 + C22 & Cog
+C25 @ 23 + Ca7 @ €21 + €28 @ €22 + C26 @ C24;

A(Cl(;):Cl®616+C4®613+62®615+63®Cl4+613®64+616®C1 + c14 X c3
Fc15® e+ 5@ c12+cg®cg+ Q11+ 7@ cip+ cg & cg + 12 ®cs
Fc10 ® c7 + €11 ® 6 + €17 @ €32 + €18 Q €29 + €20 X €31 + €19 ® €30 + C29 X C20
+C30 ® c17 + €32 ® €19 + €31 ® €18 + C21 @ Cag + C22 @ Co5 + C24 @ Co7 + C23 @ C26
+Ca5 @ €24 + C26 Q C21 + €28 Q €23 + C27 ® C22;

Aler7)=c1 @ c17+ €4 @ €0 + €3 @ €19 + 2 @ €18 + 5 @ €29 + €3 @ €32 + €7 @ €31
Fcg Q C30 + Cg @ 25 + €12 @ €28 + €11 Q €27 + €10 @ C26 + €13 ® €21 + C16 ® C24
+c15 ® €23 + €14 ® C22 + 17 ¥ €1 + €18 ® €4 + €19 @ €3 + €20 @ €2 + C21 B C13
+C22 ® €16 + C23 Q €15 + Co4 X C14 + C25 @ Cg + C26 @ C12 + Co7 & €11 + €28 K €10
+C99 ® ¢5 + €30 Q@ g + €31 ® C7 + €32 X C¢;

Afcig)=c1 ®@ci18 + ¢4 @ c17 + 3 @ c20 + 2 ® 19 + €5 @ €30 + €8 ® 29 + €7 ® €32
+c6 ® €31 + €9 ® €26 1 C12 ® €25 + €11 @ €28 + €10 © €27 + €13 © €22 + €16 © €21
+c15 @ cog +Cc1a a3 +c17 Qo+ 18 X1 + 19 @ ¢4 + o0 R €3 + 21 @ C14
+C22 @ c13 + €23 @ €16 + €24 @ €15 + €25 @ €10 + €26 @ €9 + c27 © €12 + 28 ® €11
+cC29 ® g + €30 @ ¢5 + €31 Q €8 + €32 X C7;

Acig)=c1 ®crg+c3®@ci17 +c4 @ c1g + 2 ® €20 + €5 @ €31 + €7 @ c29 + €8 @ €30
+Cp @ €32 + g @ Ca7 + €11 @ €25 + €12 & €26 + C10 & €28 1 €13 @ €23 + €15 @ €21
+c16 @ Cc22 + C14 @ Cc2g +C17 Q€3 + €19 ® €1 + €18 @ €2 + €20 @ €4 + C21 D C15
+C€23 ® C12 + €22 @ C14 + €24 @ C16 + €25 @ C11 + C27 @ Cg + C26 @ C10 1 C28 @ €12
+cCo9 @ c7 + 31 ® ¢5 + €30 Q Cg + €32 X C8;

A(ez0)=c1® 0+ 2 @c17 + ¢4 @ cr9 + 3 @ c18 + 5 @ €32 + 6 @ C29 + €8 ® €31
+c7 @ €30 + Cc9g @ a8 + €10 @ €25 + €12 @ C27 + €11 & €26 1+ €13 @ C24 + C14 © C21
+C16 @ €23 + €15 @ Co2 + C17 @ €4 + Co0 ® €1 + €18 @ €3 + €19 ® €2 + €21 X C16
FC24 @ c13+ 22 @15+ C23 @ 14 + €25 @ 12 + €28 @ €9 + €26 ® €11 + C27 ® €10
+c29 ® cg + €32 ® ¢5 + c30 ® ¢7 + €31 & Cp;

Afcar)=c1 ®ca1 + ¢4 @ cag + €3 ® ca3 + 2 ® 22 + €5 ® €17 + €8 ® 20 + €7 @ C19
+c6 @ c18 + 9 ® a9 + €12 ® €32 + €11 @ €31 + C10 @ €30 + C13 D C25 + C16 & C28
+C15 @ C27 + €14 @ €26 + €17 ® €13 + €18 W C16 + €19 B €15 + €20 @ €14 + C21 ® €1
+C22 ® €4 + €23 @ €3+ €24 @ Ca2 + a5 @ 5 + C26 © €8 + Ca7 & €7 + C28 @ Cp
+C29 ® €9 + €30 & C12 + €31 ® €11 + €32 & C10;

Afcpz)=c1 ®@co + ¢4 @ ca1 + 3@ caa + o ® a3 +¢5 @ c1g +cg ® 17 + ¢7 @ e
+C6 @ €19 + Cg @ €30 + €12 @ €29 + €11 @ €32 + €10 @ €31 + €13 @ C26 + C16 O C25
FCi5®@cag+c1a®@car+c17®@ciy +c18®@c13 + €19 ® 16 + €20 @ 15 + c21 @ 2
+C22 @1+ C23 Qg+ Coq @ €3+ Ca5 Q Cp+ Co6 D C5 + Ca7 X €] + Cag Q C7
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+C29 @ €10 + €30 ® g + €31 @ C12 + €32 @ C11;

Acoz)=c1 ®ca3+c3®@ca1 +ea®@ca+ 2@ s+ 5 D19+ 7@ cir + g Qi
+cg @ o0 + C9g @ €31 + €11 @ €29 + €12 @ €30 + €10 X €32 + €13 Q C27 + €15 B C25
+C16 & C26 + €14 & C28 + €17 @ €15 + €19 & €13 + €18 W C14 + €20 B C16 + C21 ¥ €3
+Co3 @1+ C22 R o+ Coqa Qg+ Co5 Q C7 + Co7 R €5 + Co6 K Cg + Cag X €8
+c29 ® €11 + €31 @ C9 + €30 ® 10 + €32 & C12;

Afcas)=c1 ®@cag +ca®@ca1 + ¢4 @ cag +¢3 @ 2+ ¢5 ® 20 + ¢6 @ 17 + c8 @ C19
+er ®c1g + g ® 32 + 10 @ 29 + 12 @ €31 + 11 @ €30 + €13 @ 28 + 14 @ €25
+c16 @ C27 + €15 @ €26 + €17 @ C16 + €20 @ €13 + €18 @ C15 + €19 @ C14 + €21 D €4
+C24 ® €1+ 22 ® €3+ 23 @ €2 + €25 @ €8 + C28 D €5 + €26 X €7 + C27 X Cp
+C29 ® €12 + €32 @ €9 + €30 @ €11 + €31 @ C10;

A(cas) =c1 ® €25+ €4 ® ca8 + €3 @ ca7 + €2 @ €26 + €9 @ €17 + €12 @ €20 + €11 @ C19
Fc10 ® 18+ 5 ® a1 + €8 @ €24 + €7 @ C23 + € ® Co2 + €13 & Ca9 + C16 & €32
Fc15®@c31 +C14®@c30+ 17 @ cg + 18 @12+ c19 ® 11 + €20 ® 10 + €25 ® 1
+co6 ® cq + o7 @ €3 + Cag ® €2 + €21 B €13 + 22 B €16 + €23 ® €15 + €24 K €14
+cC29 ® c5 + 30 ® g + €31 ® ¢7 + €32 X C6;

A(CQﬁ) =1 Q€26+ C4 X Co5 +C3 & Ca8 + Co X Co7 + €9 K €18 + €12 ® Cc17 + €11 K €20
Fc10 ® 19 + 5 ® a2 + €8 @ €21 + €7 @ €24 + €6 ® Cag + €13 ® €30 + C16 @ Ca9
+c15 @ €32 + c14 @ €31 + €17 @ €10 + €18 @ €9 + €19 ® €12 + €20 D €11 + €25 D €2
+C26 @ €1 + Co7 ® €4 + Cog ® €3 + o1 ® €14 + Co2 ® €13 + €23 ® €16 + C24 B C15
+e29 ® 6 + €30 @ €5 + €31 @ €8 + €32 X 75

A(027) =1 ®cCo7+ 3R Co5 + 4 Q Cop + C2 Q €8 + Cg & €19 + €11 @ C17 + €12 Q €18
+c10 ® €20 + €5 @ c23 + 7 Q@ co1 + €8 ® a2 + €6 Q C24 + €13 ® €31 + €15 Q €29
+c16 ® €30 + €14 ® €32 + C17 @ €11 + €19 @ €9 + €18 ® €10 + C20 @ €12 + C25 & €3
FC27 @ 1+ €26 ® C2 + Cag ® €4 + 21 ® €15 + 23 ® €13 + C22 R €14 + C24 R C16
+cC99 ® ¢7 + 31 ® ¢5 + €30 ® Cg + €32 D C8;

A(ng) =1 ® g + 2 X a5+ C4 X Co7 + €3 X Cog + €9 K c20 + €10 @ €17 + C12 K C19
+c11 ® 18+ €5 Q o + g ® €21 + €8 Q €93 + 7 @ C22 + €13 K €32 + €14 & C29
+c16 ® €31 + €15 © €30 + C17 © C12 + €20 ® €9 + €18 ® €11 + €19 ® €10 + C25 W €4
+Ca8 ® €1 + €26 Q@ €3 + C271 @ €2 + C21 @ C16 + €24 @ €13 + €22 D €15 + €23 D C14
+cC99 ® cg + ¢392 ® ¢5 + €30 Q C7 + €31 D C6;

Afcgg)=c1 @ co9 + ¢4 @ 32 + 3 ® 31 + 2 ® €30 + €13 ® €17 + €16 @ €20 + €15 @ C19
+C14 ® €18 + €5 @ €25 + €8  Ca8 + €7 & Co7 + €6 & C26 + €9 & €1 + €12 & C24
+c11 @ a3 + c10 @ a2 + €17 @ €5 + €18 ® €8 + €19 ® €7 + €20 & €6 + C29 D €1
+C30 ® €4 + €31 ® €3 4 €32 ® €2 4 C21 ® €9 + €22 ® €12 + €23 ® €11 + €24 & C10
+c25 @ 13 + €26 @ 16 + C27 @ C15 + €28 @ C14;

A(Cgo) =c1 ® 30+ €4 Qo9+ 3R 32+ Ca X 31+ €13 XQ c18 + C1g @ C17 + €15 K €20
+C14 @ €19 + €5 @ €26 + €8 ® €25 + €7 & €28 + €6 @ 27 + Cg @ €22 + €12 D €21
+C11 ® C24 + €10 @ €23 + €17 @ C6 + €18 K €5 4 C19 @ €8 + C20 ® €7 + C29 D C2
+c30 ® €1 + €31 © €4+ €32 @ €3 + 21 @ €10 + C22 @ €9 + C23 @ C12 + C24 B C11
+C25 @ C14 + €26 @ €13 + C27 & C16 + C28 & C15;
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Aes1)=c1 ®c31 4 €3 @ a9 + ¢4 @ 30 + c2 ® 32 + €13 ® 19 + €15 @ c17 + 16 @ 18

+C14 ® o0 + €5 @ Ca7 + €7 Q o5 + €8 & Cog + Cg & Cag + C9g @ ca3 + €11 & €21
+c12 ® a2 + €10 ® 24 + €17 ® 7 + €19 ® €5 + €18 @ €6 + C20 @ €8 + C29 W €3
+c31 ® 1+ 30 ® 2 + €32 @ €4 + C21 @ €11 + €23 @ €9 + Ca2 & 10 + C24 @ C12
+c25 @ c15 + C27 @ €13 + €26 @ €14 + C28 X C16;

A(czz)=c1 ® 32+ 2 ® €29 + €4 ® €31 + €3 ® €30 + €13 @ €20 + €14 @ €17 + €16 @ C19

+c15 ®c18 + ¢5 @ cag + g Q €25 + €8 ® Ca7 + €7 & €26 + €9 K €24 + €10 K €21
+c12 @ cog + 11 @ Coo + 17 Qg + o0 D ¢5 + €18 D €7 + €19 @ €6 + C29 @ ¢4
+e32 ® e+ 30 @3+ €31 @ 2 + €21 @ €12 + €24 @ €9 + €22 @ €11 + €23 @ C10
+e25 @ €16 + C28 @ €13 + €26 @ €15 + C27 @ C14.
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