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ABSTRACT 
Present study investigates the capabilities of six distinct machine learning 

techniques such as ANFIS network with fuzzy c-means (ANFIS-FCM), 

grid partition (ANFIS-GP), subtractive clustering (ANFIS-SC), feed-

forward neural network (FNN), Elman neural network (ENN), and long 

short-term memory (LSTM) neural network in one-day ahead soil 

temperature (ST) forecasting. For this aim, daily ST data gathered at three 

different depths of 5 cm, 50 cm, and 100 cm from the Sivas 

meteorological observation station in the Central Anatolia Region of 

Turkey was used as training and testing datasets. Forecasting values of 

the machine learning models were compared with actual data by assessing 

with respect to four statistic metrics such as the mean absolute error, root 

mean square error (RMSE), Nash−Sutcliffe efficiency coefficient, and 

correlation coefficient (R). The results showed that the ANFIS-FCM, 

ANFIS-GP, ANFIS-SC, ENN, FNN and LSTM models presented 

satisfactory performance in modeling daily ST at all depths, with RMSE 

values ranging 0.0637-1.3276, 0.0634-1.3809, 0.0643-1.3280, 0.0635-

1.3186, 0.0635-1.3281, and 0.0983-1.3256 °C, and R values ranging 

0.9910-0.9999, 0.9903-0.9999, 0.9910-0.9999, 0.9911-0.9999, 0.9910-

0.9999 and 0.9910-0.9998 °C, respectively. 
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1. Introduction 
 

Annual, monthly, daily, and hourly meteorological data are among the most critical atmospheric parameters for many engineering 

systems and agricultural activities. As one of these meteorological parameters, soil temperature (ST) has crucial importance in 

distinct disciplines, including soil science, meteorology, agronomy, environmental studies, atmospheric, hydrological, and 

agricultural numerical models, ecological applications, and agricultural management (Mehdizadeh et al. 2017). Also, ST is a 

significant meteorological factor for agricultural activity, solar energy technologies, geothermal energy systems, ground source 

heat pumps, etc. The chemical structure of the soil and organic components are highly affected by ST. The soil heats inwards 

from the surface and cools by losing heat from inside to outside (Feng et al. 2019). Therefore, daily and seasonal temperature 

changes are high, although not as high as air. These changes decrease towards the depths, and the temperature remains constant 

after a certain level. Although the effects of the surface, in general, affect up to 10 m depth, temperature changes are negligible 

at depths more than 1.5~2 m. For these reasons, many studies have focused on ST forecasting and modeling (Araghi et al. 2017; 

Shahabi et al. 2021). 

 

Meteorological parameters are measured at meteorological stations located at specific points in many parts of the world. ST 

measurements are generally made with soil thermometers and soil thermographs at depths of 5, 10, 20, 50, and 100 cm. Many 

meteorological and atmospheric variables are more easily measured than ST, and therefore more widely accessible. Measuring 

the ST of a specific location when needed is not as easy as measuring the air temperature of that point. Therefore, estimating ST 

based on various meteorological parameters, which can be measured much more quickly, has facilitated many engineering 

problems (Xing et al. 2018).  

 

The thermal changes and energy balances between the soil and ground surface at a certain depth are highly affected by the 

ST (Araghi et al. 2019). Accurate ST forecasting is recognized as crucial information and foresight for this reason (Zeynoddin 

et al. 2019). Various studies have recently been conducted on short and mid-term ST forecasting (Penghui et al. 2020). In the 

first category, statistical approaches such as numerical weather prediction (NWP) methods are used, assuming that future 
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variations in the statistical characteristics of the ST data set will be similar to those in the past. However, these approaches often 

require much data that may not be available for long-term forecasts. In the second category, artificial intelligence (AI) and 

machine learning models such as an artificial neural network (ANN) (Citakoglu 2017; Singhal et al. 2021; Zhou et al. 2020), 

support vector machine (Xing et al. 2018), gene expression programming (GEP) (Mehdizadeh et al. 2017), genetic programming 

(Gill & Singh 2015; Stajkowski et al. 2020),  adaptive neuro-fuzzy inference system (ANFIS) (Mehdizadeh et al. 2020a) and 

hybrid models (Sattari et al. 2020; Shamshirband et al. 2020) are used. Various studies have modeled ST as a non-linear physical 

aspect (Li et al. 2020; Xu et al. 2020; Zeynoddin et al. 2020; Hao et al. 2021). 

 

There are many approaches to predict ST using numerical, analytical, and data-driven models based on the literature. In the 

early 18th century, Fourier suggested a one-harmonic analytical method that accepts the STs as a function of depths and year's 

date (Xing et al. 2018). This model is derived according to one-dimensional heat conduction equations, considering the ST on 

the surface as the boundary conditions. Analytical models can be applied for any desired location, but many parameters such as 

the soil's heat conductivity, density, and thermal capacity must be known. A particular study is needed to obtain this information 

correctly. Therefore, analytical models cannot be easily adapted wherever desired. Numerical methods are also utilized to predict 

the ST. While only conduction heat transfer is considered in analytical methods, convection heat transfer and mass transfer can 

be included in the mathematical model and conduction heat transfer in numerical methods. However, developing the 

mathematical model in numerical methods is complex, and at the same time, the model calculation time is comparatively long-

time. Naranjo-Mendoza et al. (2018) investigated analytical and numerical methods for forecasting ST, and they presented that 

the sinusoidal approach was not appropriate for estimating the short-term temperature variations. However, the finite difference 

method was the most appropriate approach for long- and short-term temperature forecasting. Kayaci & Demir (2018) have 

presented a numerical model of transient ST distribution for a horizontal ground source heat pump. They obtained steady periodic 

ST and investigated the impacts of distinct parameters on the ST profile.  

 

Different types of ST prediction models based on the correlation between the ST and meteorological parameters using the 

data-driven statistical methods can be listed as linear regression (LR), non-linear regression (NLR), ANFIS, ANN, wavelet neural 

network (WNN), and deep learning. George (2001) presented a study to estimate ST using ANN algorithms. Wind speed, relative 

humidity and atmospheric temperature data were utilized to predict ST. Gang et al. (2014) estimated the efficiency of a hybrid 

ground source heat pump unit with the ANN predictive control method. Yan et al. (2016) used data monitoring and mining 

techniques for predicting the long-term performance of a ground heat pump system using short-term data. Chen et al. (2018) 

developed an ANN model to estimate the vertical ground heat exchangers. A data-driven model was used by Xing et al. (2018) 

for daily ST estimations. They estimated the daily or monthly ST of a single site with great accuracy considering solar radiant, 

air temperature, and time as inputs. Samadianfard et al. (2018) applied the GEP, and WNN approaches to estimate short-term 

ST at distinct depths. Zeynoddin et al. (2020) used the linear-based stochastic model for ST estimation. 

 

As seen recently, machine-learning approaches have been efficiently used to estimate ST. Considering previous studies, most 

of the studies modeling or forecasting STs use many environmental and atmospheric variables as inputs. However, the 

availability of these models may be limited in countries where atmospheric and environmental data are scarce. The STs 

estimation for any future short or long-term without the need for any other meteorological or geographical data by establishing 

a relationship between previous STs and future ST can have a significant advantage. Therefore, the main scope of this study is 

to predict the next day’s ST based solely on the previously measured ST data. For this purpose, a univariate procedure was used. 

Creating such a univariate time series information is very important for areas where meteorological data are limited and can 

contribute to many previously mentioned applications. In this respect, in this work, six distinct machine learning techniques such 

as ANFIS-SC, ANFIS-GP, ANFIS-FCM, ENN, FNN, and LSTM were used in one-day ahead ST forecasting. 

 

2. Material and Methods 
 

This section describes the methods used for soil temperature prediction, and provides information about the study area and 

materials. 

 

2.1. Study area and data  

 

In this study, daily STs at 5, 50, and 100 cm depths were obtained from the Turkish Meteorological Service’s station, located in 

Sivas province, Turkey. The climate of the study area, illustrated in Figure 1, is a continental climate with warm and dry summers 

and cold and snowy winters. The average air temperatures in wintertime and summertime are recorded as -1.7 °C and 18.7 °C, 

respectively (www.sivas.climatemps.com). Total annual precipitation is 427.4 mm. The ST data used in this study cover 10-year 

daily records from 2010 to 2020. In the machine learning applications detailed above, the first 80% of the dataset was used for 

training and 20% of the dataset was utilized for testing. 
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Figure 1- Location map of the study area, showing the place of the ST measurement station. 

 

Table 1 presents descriptive statistics for the daily ST data used in training and testing phases. In Table 1, the skewness is a 

measure of the symmetry condition of distribution, and zero skewness stands for a completely normal (Gaussian) distribution. 

In this study, the ST data also indicate an almost normal distribution since the skewness values of both training and testing data 

sets are close to zero. Concerning the maximum and minimum ST values at different depths, Table 1 reveals that maximum 

values are higher and minimum values are lower in the training phase than in the testing phase. The standard deviation values 

show that the ST variation decreases as the depth decreases. Figure 2 illustrates the variation in 10-year ST data sets used in this 

study at 5, 50, and 100 cm depths. The figure also reveals the training and testing data sets, covering 80% and 20% of all data, 

respectively. Besides, it is clear from Figure 2 that the ST variation at different depths shows the almost normal distribution for 

each year, and the more the depth increases, the lower the ST variation is observed. 

 
Table 1- The descriptive statistics for the daily ST data used in training and testing phases. 

 

Data Depth Unit Min. Max. Avg. Std Dev. Skewness 

Training 

Data 

5 cm 
oC 

-7.2 34.8 14.0 10.6 0.13 

50 cm 1.2 27.5 14.0 7.9 0.09 

100 cm 3.9 24.3 13.9 6.1 0.11 

Testing 

Data 

5 cm 
oC 

-0.6 33.5 15.0 9.9 0.14 

50 cm 3.7 26.7 15.2 7.5 0.08 

100 cm 6.3 24.0 14.9 5.8 0.08 

 

 
Figure 2- 10 year ST data sets at 5, 50 and 100 cm depths used in the study. Training and testing data cover 80% and 20% of 

all data, respectively. 

 

2.2. Artificial neural networks (ANNs)  

 

ANNs are strongly applied in many scientific disciplines by using the dispersed storage features and large-scale parallel local 

processing techniques available in the human brain. Recently, they have become more effective tools, particularly for non-linear 

modeling processes, which are difficult to express with statistically or physically defined equations (Inyurt & Sekertekin 2019). 
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Figure 3 presents the structure of a primary neuron with R inputs. Each input p is identified by a weight value W. The sum of 

bias and weighted inputs constitutes the transfer function f. The different transfer functions f can generate neuron outputs 

(Mathworks 2020a). 

 
 

Figure 3- Structure of a basic neuron with R inputs (Mathworks 2020a) 

 

Different ANNs with different algorithms and structures can be formed in simulating and modeling linear or non-linear 

parameters. Usually, ANNs can be classified into two categories: (a) feed-forward neural networks (FNNs) and (b) recurrent 

networks. The FNNs do not have feedback or delay elements. In recurrent networks, the network's current and previous inputs 

or outputs affect the output. The recurrent networks, unlike the FNNs, can use internal memory to process handling random input 

data series and exhibit transient behavior. This capability makes them applicable to time series forecasting with satisfactory 

predictive results. As a particular recurrent neural network, Elman neural network (ENN) has been widely and successfully used 

in time series estimation and forecasting (Mehdizadeh et al. 2017). 

 

2.2.1. Feed-Forward Neural Network (FNN) 

 

The simplest and first of artificial neural networks is FNN. In the structure of the FNN, information flows forward, moving in 

one direction from input nodes to output nodes. Feed-forward backpropagation ANN covers supervised learning, but there are 

no feedback loops or connections in the network. In the multi-layer FNNs, several neuron layers are connected in a forward 

direction. As shown in Figure 4, each node unit in one layer connects directly to neurons in the next layer (Mathworks 2020a). 

 
 

Figure 4- A single-layer network of S logsig neurons with R inputs (Mathworks 2020a) 

 

FNNs usually consist of hidden layers followed by an output layer. Multiple neuron layers provide the non-linear relationships 

between the input and output vectors of the network with non-linear transfer functions. The linear output layer is usually applied 

for non-linear regression or function fitting cases. If it is desired to limit the outputs of a network between 0 and 1, the sigmoid 

transfer function should be preferred in the output layer. With this situation, a decision is made by the network, or the network's 

pattern recognition problem is solved. The two-layer logsig/purelin network is presented in Figure 5 (Mathworks 2020a). 
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Figure 5- The two-layer logsig/purelin network (Mathworks 2020a) 

 

2.2.2. Elman neural networks (ENN) 

 

ENN consists of several layers and the additional set of connection units in an elementary FNN. A fixed weight value connects 

the hidden layer units and these context units. Both context units and input nodes activate the nodes in the hidden layer. As 

shown in Figure 6, content units are enabled to be activated with the feedback of hidden units. At time step, t+1, context units 

record a copy of the hidden unit values obtained at step t. The behavior of the context layer achieves the improvement of the 

dynamic information processing capacity of the network as local feedback (Mathworks 2020b). 

 

 
 

Figure 6- Structure of a two-layer Elman neural networks (Mathworks, 2020b) 

 

Feedback is usually provided from the first layer output to the first layer input in a two-layer ENN. Thanks to this recurrent 

connection, the Elman network both detects and produces patterns that change over time. Logsig neurons and purelin neurons 

can be utilized in the recurrent or hidden and output layers of the ENN, respectively. This approach is special because two-layer 

networks with these transfer functions can estimate any function with random accuracy. However, the number of hidden layers 

must have sufficient neurons. The greater the complexity of the function available, the more hidden neurons are required. ENN 

differs from traditional two-layer networks in that the first layer has a recurrent connection. The delay in this connection reserves 

the values from the previous time step available in the current time step. Therefore, even if the same inputs are supplied to two 

ENN with the same biases and weights at a given time step, their outputs may differ due to different feedback situations. The 

network can learn spatial patterns and temporal patterns to store knowledge for future reference (Mathworks 2020b). 

 

2.3. Adaptive neuro fuzzy inference system (ANFIS) 

 

An ANFIS model combines two statistical systems: The Fuzzy Inference System (FIS) and the ANN. Figure 7 shows Type-3 

fuzzy reasoning and corresponding equivalent ANFIS architecture (type-3 ANFIS), respectively. A circle describes a fixed node 

in the structure, while a square denotes an adaptive node. As a simple structure, x and y inputs and f output can be considered. 

The Sugeno model type is the most extensively applied fuzzy model found in the related works (Jang 1993; Karakuş et al. 2017; 

Tabari et al. 2012).  
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Figure 7- (a) First-order Takagi-Sugeno fuzzy model (b) equivalent ANFIS (Type-3 ANFIS) (Jang 1993)  

 

In general, an ANFIS model contains two phases: construction and training. Membership functions’ types and numbers are 

determined during the construction phase, and the input and output data are divided into rule patches. Therefore, clustering 

methods are employed for understanding and classifying inputs facilitating the training phase with the help of the ANFIS model. 

Three clustering approaches comprising the methods of subtractive clustering (SC), fuzzy c-means (FCM), and grid partitioning 

(GP) are used for this purpose. Fuzzy c-means (FCM) is a clustering method allowing each data point to have multiple clusters 

and belong to different degrees of membership. The Subtractive Clustering (SC) algorithm considers each data point a candidate 

cluster center, and the potential of each data point is calculated by measuring the density of the data point surrounding the cluster 

center. The algorithm uses an iterative process, assuming each point is potentially a cluster center considering their location for 

other data points (Benmouiza & Cheknane 2019). Grid partitioning (GP) algorithm divides the input data space into a rectangular 

subspace with the help of an axis-paralleled partition. Each input is split into identically shaped membership functions. The grid 

is created without using any physical meaning or data density repartition. According to system input-output training data, fuzzy 

rules are generated using each grid part, thus achieving rapid learning and optimized calculation time. However, the size of the 

inputs and grid considerably affects the method's performance. A finer grid usually yields higher performance, as expected. The 

size and location of the fuzzy grid regions can be optimized using adaptive grid partitioning (Benmouiza & Cheknane 2019). 

Further information regarding ANFIS may be obtained from the work of Jang (1993).  

 

2.4. Long short-term memory (LSTM) neural network  

 

LSTM neural network is a type of Recurrent Neural Network that addresses problems by adding memory cells with persistent 

errors. This way, errors can be regenerated without disappearing gradients. Three different gates are present in the LSTM neural 

network. An input gate learns to preserve the persistent error flow in the memory cell from irrelevant inputs. An output gate 

learns to protect other units from unrelated memory content saved in the memory cell. A forget gate teaches how long the value 

is in the memory cell ( Hochreiter & Schmidhuber 1997; Piotrowski et al. 2015; Salman et al. 2018; Zahroh et al. 2019; Cai et 

al. 2020; Cho et al. 2020).  

 

Figure 8 shows the LSTM layer architecture, indicating the flow of an X time series with S-length C properties (channels) 

across an LSTM layer. In this architecture diagram, ht is also known as the hidden element and is the output. ct is the cell state 

at time step t. (Mathworks 2020c). 
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Figure 8- LSTM layer architecture (Mathworks 2020c) 

 

Figure 9 presents the flow of data at time step t. This figure indicates how the gates forget, update, and output the cell and 

the hidden states. Some components in the LSTM layer architecture are used to control the cell state and the hidden state of the 

layer. For example, input gate (i) and output gate (o) control the cell state update and level of cell state added to the hidden state, 

respectively. Besides, the forget gate (f) checks the level of cell state reset (forget). On the other hand, cell candidate (g) adds 

the information to the cell state. Further information regarding LSTM can be obtained from Mathworks (2020c) study. 

 

 
 

Figure 9- The flow of data at time step t (Mathworks 2020c)  

 

2.5. Statistical parameters 

 

In this study, four statistical error parameters such as mean absolute error (MAE), root mean square error (RMSE), 

Nash−Sutcliffe efficiency coefficient (NSE), and correlation coefficient (R) are used for the assessment of the accuracy of the 

models in forecasting the observed output variable. MAE, RMSE, NSE, and R parameters, respectively, are expressed as follows 

(Başakın et al. 2021; Citakoglu 2021): 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑝(𝑖) − 𝑜(𝑖)|

𝑁

𝑖=1

 (1) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑[𝑝(𝑖) − 𝑜(𝑖)]2
𝑁

𝑖=1

 (2) 

𝑁𝑆𝐸 = 1 −
∑ [𝑜(𝑖) − 𝑝(𝑖)]2𝑁
𝑖=1

∑ [𝑜(𝑖) − 𝑜̅]2𝑁
𝑖=1

 (3) 

𝑅 = (∑[𝑝(𝑖) − 𝑝̅][𝑜(𝑖) − 𝑜̅]

𝑁

𝑖=1

)/

(

 √∑[𝑝(𝑖) − 𝑝̅]2
𝑁

𝑖=1

√∑[𝑜(𝑖) − 𝑜̅]2
𝑁

𝑖=1
)

  (4) 

 

 

Where: p(i) and o(i) are the predicted value and observed value at the time i, respectively; 𝑝̅ and 𝑜̅ are the means of the 

predicted values and observed values, respectively, and the total number of data is represented by N. 
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3. Results and Discussion 
 

In this study, a time-series analysis was applied to predict one-day ahead ST. This is a technique for using time series data values 

to predict future values based on our historical data points. The proposed time series method is the univariate modeling based on 

time series data for the modeled variable. The most important advantage of univariate modeling is that there is no need to obtain 

independent variables. It is known that time-series tools may capture the stochastic component of the time series data, besides 

machine learning tools may forecast the determinative part of the time series data. In this respect, the used ANFIS-FCM, ANFIS-

GP, ANFIS-SC, ENN, FNN, and LSTM techniques were developed based on past observations of the ST parameter as an input 

to train the model and to predict future values.  

 

The performances of six machine learning techniques, namely, FNN, ENN, LSTM, ANFIS-SC, ANFIS-FCM, and ANFIS-

GP, were investigated based on one-day ahead ST forecasting at three different depths of 5 cm, 50 cm, and 100 cm. The trial and 

error method determined the optimal parameters in each method. The results of the error criteria for determining the optimal 

parameters in each method by trial and error method are given in Table 2. In order to deal with over-training, a known 

disadvantage in machine learning models, the data sets were categorized into training and testing. All models were calibrated 

based on the training data, and then their performances were evaluated using the testing data, which did not take part in model 

training. Figure 10 represents measured and forecasted ST variations by six machine learning methods at the testing phase. It is 

clear from Figure 10 that daily ST variations at 5 cm depth show abrupt changes. The general overview of the model results in 

the central figure of Figure 10 reveals that almost all models overlap with the measured data; however, the zoomed images 

explain the differences more clearly. The zoomed images show that ANFIS-GP (blue dashed line) explicitly differs from the 

other methods.  

 

 
 

Figure 10- Illustration of the measured and forecasted ST by machine learning models at 5 cm depth 

 

 

 

 

 

 

 

 

 



Bilgili et al. - Journal of Agricultural Sciences (Tarim Bilimleri Dergisi), 2023, 29(1): 221-238 

           229 
 

Table 2- The results of the error criteria for determining the optimal parameters in each method by trial and error method 

 

Method 
Depth 

(cm) 
HLN* 

MAE 

(oC) 

RMSE 

(oC) 
R 

 
Method 

Depth 

(cm) 
HLN* 

MAE 

(oC) 

RMSE 

(oC) 
R 

LSTM 5 5 1.0145 1.3391 0.9908 FNN 5 6 1.0088 1.3308 0.9909 

10 1.0012 1.3292 0.9910 7 1.0078 1.3308 0.9910 

15 0.9978 1.3256 0.9910 8 1.0065 1.3281 0.9910 

20 1.0039 1.3292 0.9910 9 1.0136 1.3340 0.9909 

25 1.0039 1.3310 0.9910 10 1.0151 1.3366 0.9909 

50  5 0.1783 0.2251 0.9995 50  6 0.1087 0.1395 0.9998 

10 0.1838 0.2331 0.9995 7 0.1090 0.1396 0.9998 

15 0.1900 0.2400 0.9995 8 0.1081 0.1389 0.9998 

20 0.2065 0.2645 0.9994 9 0.1085 0.1391 0.9998 

25 0.2009 0.2532 0.9994 10 0.1105 0.1418 0.9998 

100  5 0.0809 0.1016 0.9998 100  6 0.0523 0.0633 0.9999 

10 0.0838 0.1060 0.9998 7 0.0521 0.0635 0.9999 

15 0.0773 0.0983 0.9998 8 0.0519 0.0635 0.9999 

20 0.0885 0.1123 0.9998 9 0.0523 0.0635 0.9999 

25 0.0887 0.1103 0.9998 10 0.0520 0.0638 0.9999 

ANFIS-

FCM 

5 2 1.0036 1.3276 0.9910 ENN 5 6 1.0087 1.3300 0.9909 

4 1.0111 1.3334 0.9909 7 1.0074 1.3241 0.9910 

6 1.0161 1.3377 0.9909 8 0.9967 1.3186 0.9911 

8 1.0097 1.3365 0.9909 9 1.0368 1.3481 0.9907 

10 1.0132 1.3476 0.9907 10 1.0105 1.3305 0.9909 

50  5 0.1087 0.1388 0.9998 50  6 0.1167 0.1471 0.9998 

10 0.1097 0.1403 0.9998 7 0.1101 0.1406 0.9998 

15 0.1108 0.1415 0.9998 8 0.1092 0.1409 0.9998 

20 0.1106 0.1416 0.9998 9 0.1097 0.1405 0.9998 

25 0.1113 0.1431 0.9998 10 0.1099 0.1402 0.9998 

100  5 0.0525 0.0637 0.9999 100  6 0.0526 0.0636 0.9999 

10 0.0528 0.0642 0.9999 7 0.0525 0.0635 0.9999 

15 0.0530 0.0647 0.9999 8 0.0521 0.0635 0.9999 

20 0.0531 0.0649 0.9999 9 0.0523 0.0636 0.9999 

25 0.0529 0.0649 0.9999 10 0.0529 0.0641 0.9999 

ANFIS-SC 5 0.1 1.0124 1.3331 0.9909 ANFIS-

GP 

5 2 1.0407 1.3809 0.9903 

0.3 1.0132 1.3354 0.9909 3 1.1600 1.6971 0.9853 

0.5 1.0101 1.3327 0.9909 50 2 0.1106 0.1408 0.9998 

0.7 1.0045 1.3294 0.9910 3 0.1120 0.1438 0.9998 

0.9 1.0036 1.3280 0.9910 100 2 0.0517 0.0634 0.9999 

50  0.1 0.1135 0.1470 0.9998 3 0.0520 0.0638 0.9999 

0.3 0.1109 0.1417 0.9998       

0.5 0.1096 0.1398 0.9998       

0.7 0.1083 0.1387 0.9998       

0.9 0.1087 0.1389 0.9998       

100  0.1 0.0539 0.0661 0.9999       

0.3 0.0528 0.0648 0.9999       

0.5 0.0528 0.0644 0.9999       

0.7 0.0529 0.0645 0.9999       

0.9 0.0528 0.0643 0.9999       
 

* HLN: Hidden layer number / Number of MFs / Influence radius / Number of neurons in the hidden layer 

 

Concerning the visual interpretation of the daily ST forecasting at 50 cm depth (Figure 11), the temporal variations in ST at 

50 cm depth are not as dynamic as the ST at 5 cm depth. As observed in Figure 10, the general overview of the model results in 

the central figure of Figure 11, showing that almost all models are in good agreement with the measured data; however, the 

zoomed images reveal the differences between the models. The zoomed images show that LSTM (orange dashed line) explicitly 

differs from the other methods. On the other hand, all other methods present the same results with minor differences at breaking 

points. As in the 50 cm ST results, similar trends were observed in ST at 100 cm depth (Figure 12), presenting that the LSTM 

results were different from all other methods, while the other methods acted almost in the same manner. These results also 

indicate that the temporal variations in ST decrease with the increasing depth, enabling the methods to provide higher accuracy 

with better modeling capacities. 
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Figure 11- Illustration of the measured and forecasted ST by machine learning models at 50 cm depth. 

 

 
 

Figure 12- Illustration of the measured and forecasted ST by machine learning models at 100 cm depth. 
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In addition to the visual results above for forecasting the ST, Figures13-15 represent the regression analyses of the measured 

and forecasted ST data at 5 cm, 50 cm, and 100 cm, respectively. In the figures, X-axis presents measured ST values, while Y-

axis corresponds to forecasted ST in °C. These figures provide the distribution of the measured and forecasted values. Concerning 

R for the ST forecasting at 5 cm depth (Figure 13 and Table 3), LSTM, ANFIS-FCM, ANFIS-SC, ANFIS-GP, FNN, and ENN 

presented 0.9910, 0.9910, 0.9910, 0.9903, 0.9910, and 0.9911. Although all results are satisfactory, ENN provided slightly better 

results than the other 5 cm ST forecasting methods. It is clear from Figures 14 and 15 that the regression plots show that all 

methods forecasted the ST at 50 cm and 100 cm depth at a higher level than the ST at 5 cm depth due to high temporal variations 

in ST. The highest R values for the ST forecasting at 50 cm and 100 cm depth were provided by the FNN and ANFIS-GP with 

the values of 0.9998 and 0.9999, respectively (Figures 14-15 and Table 3). 

 
Table 3- Statistical accuracy results of the ST forecasting with six machine learning methods at various depths. 

 

Depth (cm) Method MAE (oC) RMSE (oC) R NSE 

5 LSTM 0.9978 1.3256 0.9910 0.9822 

ANFIS-SC 1.0036 1.3280 0.9910 0.9821 

ANFIS-FCM 1.0036 1.3276 0.9910 0.9821 

ANFIS-GP 1.0407 1.3809 0.9903 0.9807 

FNN 1.0065 1.3281 0.9910 0.9821 

ENN 0.9967 1.3186 0.9911 0.9824 

50 LSTM 0.1783 0.2251 0.9995 0.9991 

ANFIS-SC 0.1083 0.1387 0.9998 0.9997 

ANFIS-FCM 0.1087 0.1388 0.9998 0.9996 

ANFIS-GP 0.1106 0.1408 0.9998 0.9996 

FNN 0.1081 0.1389 0.9998 0.9996 

ENN 0.1092 0.1409 0.9998 0.9996 

100 LSTM 0.0773 0.0981 0.9998 0.9997 

ANFIS-SC 0.0528 0.0643 0.9999 0.9999 

ANFIS-FCM 0.0525 0.0637 0.9999 0.9999 

ANFIS-GP 0.0517 0.0634 0.9999 0.9999 

FNN 0.0519 0.0635 0.9999 0.9999 

ENN 0.0521 0.0635 0.9999 0.9999 
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Figure 13- Regression analyses of the measured and predicted data of ST at 5 cm depth with various methods: a) LSTM, b) 

ANFIS-FCM, c) ANFIS-SC, d) ANFIS-GP, e) FNN, f) ENN methods. 
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Figure 14- Regression analyses of the measured and predicted data of ST at 50 cm depth with various methods: a) LSTM, b) 

ANFIS-FCM, c) ANFIS-SC, d) ANFIS-GP, e) FNN, f) ENN methods. 
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Figure 15- Regression analyses of the measured and predicted data of ST at 100 cm depth with various methods: a) LSTM, b) 

ANFIS-FCM, c) ANFIS-SC, d) ANFIS-GP, e) FNN, f) ENN methods. 

 

In summary, Table 3 highlights the statistical accuracy results of the ST forecasting with six machine learning methods at 

various depths. It is clear from the table that every method provided satisfactory results at each depth compared to each other.  

However, we would like to demonstrate which method will give the best results, even with small differences. Considering the 

ST forecasting at 5 cm depth, ENN provided the best results with the statistical metrics of 0.9967 oC MAE, 1.3186 °C RMSE 

and 0.9824 NSE. On the other hand, the second-best method was the LSTM with 0.9978 oC MAE, 1.3256 oC RMSE, and 0.9822 

NSE, and also the ANFIS-GP offered the worst results with 1.0407 °C MAE, 1.3809 oC RMSE, and 0.9807 NSE. For ST 

forecasting at 50 cm depth, the performance of the methods from the best to the worst can be listed as FNN, ANFIS-SC, ANFIS-

FCM, ENN, ANFIS-GP, and LSTM, respectively. While the FNN presented the best results with 0.1081 °C MAE, 0.1389 °C 

RMSE, and 0.9996 NSE, the LSTM was the worst method with 0.1783 °C MAE, 0.2251 °C RMSE, and 0.9991 NSE in 

forecasting the ST at 50 cm depth. Concerning the ST forecasting at 100 cm depth, the effectiveness of the methods from the 

best to the worst, respectively, were ANFIS-GP, FNN, ENN, ANFIS-FCM, ANFIS-SC, and LSTM. The ANFIS-GP provided 

the best accuracy results as 0.0517 °C MAE, 0.0634 °C RMSE, and 0.9999 NSE, whereas the worst results obtained from the 

LSTM were 0.0773 oC MAE, 0.0983 °C RMSE, and 0.9997 NSE. Although the LSTM was effective in forecasting the ST at 5 

cm depth, this performance was not the same as in forecasting the ST at 50 cm and 100 cm depths, which reveals it works better 
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in complex environments. Another important point of the performance results is that the optimal parameters of each method 

were determined by trial and error, which may affect the accuracy results, but the study was already organized under this 

assumption. Even though we listed the best and the worst methods based on the statistical accuracy metrics for every depth, in 

general, all methods provided identical and satisfactory results with slight differences. The RMSE results at 5 cm, 50 cm, and 

100 cm depths varied from 1.3186 °C to 1.3809 °C, from 0.1388 °C to 0.2251 °C, and from 0.0634 °C to 0.0983 °C, respectively. 

 

Taylor diagram based on statistical analysis was utilized while comparing six models in order to assess the consistency of 

the predicted data from the measured data. Thus, further comparisons of all models were provided using the Taylor diagram. 

Figure 16 shows the Taylor diagrams for the ST variable of LSTM, ANFIS-FCM, ANFIS-SC, ANFIS-GP, FNN, and ENN 

methods. As can be seen from the figure, it is understood that the 6 models used in the modeling of ST data at 5, 50, and 100 cm 

depths are similar to each other, the data lines overlap and it is difficult to separate from each other. However, it is clear that the 

closest results to the measurement values are obtained at a depth of 100 cm. 

 

 
Figure 16- Taylor diagrams for ST variable of LSTM, ANFIS-FCM, ANFIS-SC, ANFIS-GP, FNN, and ENN methods. 

 

Additionally, a comparison with previous studies was carried out to verify the accuracy of our results and models. The 

literature review showed that previously published studies mainly applied machine learning models using some meteorological 

parameters to predict ST. However, few studies have been reported in the literature for ST prediction using time series-based 

models. According to this, the prediction results of the proposed models are compared with the results from some published 

studies based on daily ST estimates in Table 4. The results showed that the models proposed in this study predicts daily ST with 

close accuracy to the models in other studies, and even more accurately than most. In summary, the results in this table show 

that the proposed time series forecasting models have been successfully applied for one-day ahead forecasting of ST. 
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Table 4- Summary of typical studies on daily ST forecasting 

 

Reference Country Data Method 
Depth 

(cm) 

Error criteria 

R RMSE (oC) 

Singhal et al. (2021) India 
Daily  

(2016 - 2017) 
ANN 

10  0.9560 0.5520 

20  0.9840 0.2950 

45  0.9740 0.3980 

Hao et al. (2021) Switzerland 

Daily  

(2004 - 2014) 

 

EEMD-CNN 

5  0.9970 0.4660 

10  0.9980 0.3750 

25  0.9990 0.2760 

Zeynoddin et al. (2019) Iran 
Daily  

(2013 - 2015) 

Linear 

stochastic 

method 

5  0.9953 1.3300 

10  0.9971 0.9800 

20 0.9983 0.7000 

Yu et al. (2021) China 
Daily 

(2012 - 2020) 
EEMD-Conv3d 0-7  0.9946 1.3096 

Mehdizadeh et al. (2020b) Iran 
Daily 

(1998 - 2017) 
GEP-FARIMA 

5 - 0.2400 

10 - 0.1300 

50 - 0.0500 

100 - 0.1600 

 

This study 

 

Turkey 

Daily  

(2010 - 2019) 

 

ENN 5  0.9900 1.3186 

ANFIS-FCM 50  0.9988 0.1388 

ANFIS-GP 100  0.9999 0.0634 

 

4. Conclusions 
 

In this study, the performances of the six machine learning methods, namely, LSTM, ANFIS-SC, ANFIS-FCM, ANFIS-GP, 

FNN, and ENN, were evaluated based on one-day ahead ST forecasting at three different depths (5 cm, 50 cm, and 100 cm). The 

ST data at all depths cover the 10 years, and for all methods, the training and testing data sets were split into 80% and 20%, 

respectively, based on the whole data set. Concerning the data structure at different depths, it was observed that the daily temporal 

variation in ST increases with the decreasing depth. In other words, the daily ST at 5 cm depth shows more changes compared 

to the ST at 50 cm depth, and the variations in daily ST at 50 cm depth are higher than the ST at 100 cm depth. Considering the 

responses of the machine learning methods to these variations at different depths, it was proved that the methods provided high 

accuracies when the depth of the daily ST increased, such as from 5 cm to 100 cm. The visual and statistical results revealed that 

all methods presented satisfactory forecasting results at each depth, with only slight differences. The best performances in 

forecasting the daily ST at 5 cm, 50 cm, and 100 cm depths were obtained from ENN, FNN, and ANFIS-GP. In addition, the 

worst accuracies for the same depths were provided by the ANFIS-GP, LSTM, and LSTM, respectively. Even though LSTM 

was the second-best method in forecasting the ST at 5 cm depth, it did not respond well at 50 cm and 100 cm depths, which 

shows that it is good at forecasting the ST in complex environments. Overall, the obtained results indicate that all methods used 

in this study can be performed for the daily ST forecasting at different depths.  
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