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Abstract

In this paper, we propose a di�erent way for solving systems of nonlinear Fredholm integral equations of the
second kind. We construct our new strategy in two steps, through beginning with the linearization phase of
the system of Fredholm integral equations by applying Newton method, then we pass to the discretization
phase for some involved integral operator using Nyström method. The convergence analysis of our new
method is proved under some necessary conditions. At last, a numerical application to approach a nonlinear
Fredholm integro-di�erential equation by using this new process is taken to con�rm its advantage.
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1. Introduction

Fredholm integral equations emerge from the modeling of the Spatial Spread of an Epidemic, what's
more, di�erent physical and organic models [11]. For solving this kind of nonlinear problems, we use the
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classical process which starts by discretizing the problem for �nding a nonlinear algebraic system, at that
point, we linearize the discrete nonlinear system using Newton's method. For instance, many works concern-
ing the Newton method ([6, 12, 3, 4, 9]) and �xed point method ([8, 7]) have been performed in order to
solve nonlinear integral equations.

In a recent paper [5], author constructs a very useful numerical process based on the inverse way of
classical process, in order to approach a nonlinear Fredholm integral equation of the second kind. This new
process starts with the linearization phase and goes on with the discretization phase. However, the numerical
results of [5] con�rm the high e�cacy of this new process compared with the classical process.

In the present paper, we adapt the numerical method proposed in [5] for solving a nonlinear integral equa-
tion to solve a system of nonlinear Fredholm equations of the second kind de�ned in an in�nite dimensional
context given by the following form:

u1(t) =

∫ 1

0
κ1 (t, s, u1(s), u2(s), ..., uN (s)) ds+ g1(t),

u2(t) =

∫ 1

0
κ2 (t, s, u1(s), u2(s), ..., uN (s)) ds+ g2(t),

...
...

...

uN (t) =

∫ 1

0
κN (t, s, u1(s), u2(s), ..., uN (s)) ds+ gN (t),

(1)

for all t ∈ [0, 1] , and a given functions gi.

As well as, to show the e�ectiveness of this new process, we compare our results with an other existing
results using the classical process. For this reason, we denote option A to refer our new strategy, and the
classical process will be called option B. However, we describe the strategy of the both options A and B as
follows:

Option A:We propose to begin with the linearization phase to the system (1) in its in�nite-dimensional
space context by applying the Newton method, then we go to the discretization phase by using Nyström
method to approach some involved integral operators.

Option B: We start with the discretization phase on the system (1) by using Nyström method, which
leads to a nonlinear �nite-dimensional algebraic system, then we apply the classical Newton method on the
obtained algebraic system.

The paper is organized as follows: In section 2, we present notations and preliminary results. In section
3, we describe the strategy of option A, and present all necessary propositions and conditions that will be
used in the convergence analysis. Section 4, is devoted to the convergence analysis of option A, and section
5, to the convergence analysis of option B. In section 6, we show how to approach a nonlinear Fredholm
integro-di�erential equation by applying option A. In section 7, we present numerical examples which con�rm
the e�ectiveness of our new process.

2. Notions and preliminary results

We consider for all 1 ≤ i ≤ N a real Banach spaces χi = C1([0, 1],R) and χ̃ =
N∏
i=1

χi , with Ωi and Ω̃ be

a nonempty open subsets of χi and χ̃ respectively. Let ||.||χi be the norm of the Banach space χi, and ||.||χ̃
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be the norm of χ̃ such as

∀Z = (z1, z2, ..., zN ) ∈ χ̃, ||Z||χ̃ =
N∑
i=1

||zi||χi =
N∑
i=1

(
∥zi∥∞ +

∥∥z′i∥∥∞)
,

where ||.||∞ is the norm of the uniform convergence represented as

||zi||∞ = sup
t∈[0,1]

|zi(t)|, zi ∈ χi.

We de�ne a nonlinear Fréchet-di�erentiable operator Ki : Ω̃ ⊂ χ̃→ χi:

Ki (u1, u2, ..., uN ) (t) =

∫ 1

0
κi (t, s, u1(s), u2(s), ..., uN (s)) ds, ui ∈ Ωi, t ∈ [0, 1].

For all 1 ≤ i, j ≤ N , let Tij :=
∂Ki

∂uj
denote the Fréchet derivative of Ki associated to uj , i.e, for all

V = (v1, v2, ..., vN ) ∈ χ̃,

[Tij(V )yi](t) =

∫ 1

0

∂κi
∂uj

(t, s, V (s)) yi(s)ds, yi ∈ χi, t ∈ [0, 1].

The Nyström approximation Kn,i of order n of the nonlinear operator Ki is given by

Kn,i(V )(t) =
n∑
p=1

ωn,pκi (t, tp, V (tp)) , V ∈ χ̃, t ∈ [0, 1].

The Nyström approximation Tn,ij of order n of the linear operator Tij is given by

[Tn,ij(V )yi] (t) =
n∑
p=1

ωn,p
∂κi
∂uj

(t, tp, V (tp)) yi(tp), x ∈ χ̃, yi ∈ χi, t ∈ [0, 1].

In practice, the trapezoidal numerical integration rule (see[1], pp.109), for all κ ∈ C1([0, 1]2 × RN ,R), gives
us the following convergence order: for all t ∈ [0, 1],∣∣∣∣∣∣

∫ 1

0
κ(t, s, U(s))ds−

n∑
p=1

ωn,pκ(t, tp, U(tp))

∣∣∣∣∣∣ = 1

12n2

∣∣∣∣∣
[
∂κ(t, s, U(s))

∂s

]s=1

s=0

∣∣∣∣∣+O(h4). (2)

Now, by using previous notations, the system of nonlinear equations (1) can be rewritten as:
u1(t) = K1 (u1(t), u2(t), ...uN (t)) + g1(t),

u2(t) = K2 (u1(t), u2(t), ...uN (t)) + g2(t),
...

...
...

uN (t) = KN (u1(t), u2(t), ...uN (t)) + gN (t),

(3)

for all t ∈ [0, 1] and a given functions gi ∈ Ωi. As well as, the system (3) can take a clear and simple form as:

Find U ∈ Ω̃ ⊂ χ̃ : U = K(U) +G. (4)

where U =


u1
u2
...
uN

 , G =


g1
g2
...
gN

 and K =


K1

K2
...

KN

 .
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Let INN be the identity operator of the space L(χ̃), where L(χ̃) denotes the space of all linear boundes
operators de�ned from χ̃ into χ̃. For all φ ∈ χ̃, let MT (φ) ∈ L(χ̃) be the Fréchet derivative of the operator
K that we give it as the following form:

∀h ∈ χ̃, MT (φ)h =


T11(φ) T12(φ) . . . T1N (φ)
T21(φ) T22(φ) . . . T2N (φ)

...
...

. . .
...

TN1(φ) TN2(φ) . . . TNN (φ)




h1
h2
...
hN

 =



N∑
j=1

T1j(φ)hj

...
N∑
j=1

TNj(φ)hj


where

||MT (φ)h||χ̃ =

N∑
i=1

∥∥∥∥∥∥
N∑
j=1

Tij(φ)hj

∥∥∥∥∥∥
χi

.

We suppose some conditions that will play an important role in the proof of the convergence analysis. For
all 1 ≤ i, j ≤ N , we assume that

(i) Equation (4) has a unique solution U = (u1, u2, ..., uN ) ∈ χ̃,

(ii) (INN −MT (U)) is invertible, and ||(INN −MT (U))−1|| ≤ η < +∞,

(iii)
∂κi
∂uj

∈ C2([0, 1]2 × RN ,R),

(iν) R =

N∑
i=1

Ri > 0 is such that BR(U) =

N∏
i=1

BRi(ui) ⊂ Ω̃,

(5)

with BR(U) is the ball of center U and radius R for the norm ||.||χ̃, and BRi(ui) is the ball of center ui and
radius Ri > 0 for the norm ||.||χi .

3. Description of new process (Option A)

We propose the Newton method to linearize equation (4) as a premier phase, by the following scheme:(
INN −MT (U

(k))
)(

U (k+1) − U (k)
)
= −U (k) +K

(
U (k)

)
+G, U (0) ∈ χ̃, k = 0, 1, ... . (6)

In practise, we need to calculate
(
INN −MT (U

(k))
)−1

in each iteration, but this operator cannot be found
exactly. For this reason, we go to apply the discretization phase by using Nyström method in order to
approximate the involved integral operators in the scheme (6).

Let U
(k)
n =

(
U

(k)
n,1 , U

(k)
n,2 , ..., U

(k)
n,N

)
∈ χ̃ be the approximation of U (k) =

(
U

(k)
1 , U

(k)
2 , ..., U

(k)
N

)
∈ χ̃ obtained

by Nyström method. So, the discretization of the scheme (6) is presented as follows(
INN −MTn(U

(k)
n )

)(
U (k+1)
n − U (k)

n

)
= −U (k)

n +K
(
U (k)
n

)
+G, U (0)

n ∈ Ω̃, (7)

or in the matrix form
I − Tn,11(U

(k)
n ) −Tn,12(U (k)

n ) . . . −Tn,1N (U (k)
n )

−Tn,21(U (k)
n ) I − Tn,22(U

(k)
n ) . . . −Tn,2N (U (k)

n )
...

...
. . .

...

−Tn,N1(U
(k)
n ) −Tn,N2(U

(k)
n ) . . . I − Tn,NN (U

(k)
n )



U

(k+1)
n,1 − U

(k)
n,1

U
(k+1)
n,2 − U

(k)
n,2

...

U
(k+1)
n,N − U

(k)
n,N

 =
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−


U

(k)
n,1

U
(k)
n,2
...

U
(k)
n,N

+


K1(U

(k)
n )

K2(U
(k)
n )
...

KN (U
(k)
n )

+


g1
g2
...
gN


However, we can rewritten (7) as, for all 1 ≤ i ≤ N :

U
(k+1)
n,i (t)−

N∑
j=1

n∑
p=1

ωn,p
∂κi
∂uj

(
t, tp, U

(k)
n (tp)

)
U

(k+1)
n,j (tp) = f

(k)
n,i (t), (8)

where,

f
(k)
n,i (t) = −

N∑
j=1

n∑
p=1

ωn,p
∂κi
∂uj

(
t, tp, U

(k)
n (tp)

)
U

(k)
n,j (tp) +Ki

(
U (k)
n

)
(t) + gi(t). (9)

We de�ned the vectorX
(k+1)
N = (x

(k+1)
1 , x

(k+1)
2 , ..., x

(k+1)
N ) ∈ Rn×N for saving the collocation of our discretized

approximation U
(k+1)
n (t) ∈ χ̃ in the nodes (tp)1≤p≤n, and for all 1 ≤ i ≤ N we denote by

x
(k+1)
i (p) = U

(k+1)
n,i (tp).

The solution of system of equations de�ned in (8)− (9) is gotten by two steps :

Step1. Solve the linear algebraic system

(INN −A(k)
n )X

(k+1)
N = b(k)n ,

where for all 1 ≤ i, j ≤ N and 1 ≤ p, l ≤ n

[A(k)
n ]ij(l, p) = ωn,p

∂κi
∂uj

(
tl, tp, x

(k)
1 (p), x

(k)
2 (p), ..., x

(k)
N (p)

)
, (10)

b
(k)
n,i (l) = −

N∑
j=1

n∑
p=1

ωn,p
∂κi
∂uj

(
tl, tp, x

(k)
1 (p), x

(k)
2 (p), ..., x

(k)
N (p)

)
x
(k)
j (p) (11)

+

∫ 1

0
κi

(
tl, s, U

(k)
n,1(s), U

(k)
n,2(s), ..., U

(k)
n,N (s)

)
ds+ gi(tl).

Step2. For all 1 ≤ i ≤ N , we recover U
(k+1)
n,i by the natural interpolation formula

U
(k+1)
n,i (t) =

N∑
j=1

n∑
p=1

ωn,p
∂κi
∂uj

(
t, tp, x

(k)
1 (p), x

(k)
2 (p), ..., x

(k)
N (p)

)(
x
(k+1)
j (p)− x

(k)
j (p)

)
+

∫ 1

0
κi

(
t, s, U

(k)
n,1(s), U

(k)
n,2(s), ..., U

(k)
n,N (s)

)
ds+ gi(t). (12)

Before studying the convergence of Option A, we give some properties of operators MT and MTn .

3.1. Properties of operators MT and MTn

Proposition 3.1. Under the assumption (5)(iii), we have MT is Lipschitzian over BR(U) where

λR = 2 sup

{
sup

1≤j≤N
sup

(t,s,ψ̃j)∈[0,1]2×DR

N∑
i=1

∣∣∣∣∣∂2κi∂u2j
(t, s, ψ̃j)

∣∣∣∣∣ , sup
1≤j≤N

sup
(t,s,υ̃j)∈[0,1]2×DR

N∑
i=1

∣∣∣∣∣ ∂3κi∂u2j∂t
(t, s, υ̃j)

∣∣∣∣∣
}
,

is the Lipschitz constant, and
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DR = [−||U ||χ̃ −R, ||U ||χ̃ +R].

Proof. Let φ = (φ1, φ2, ..., φN ), ϕ = (ϕ1, ϕ2, ..., ϕN ) ∈ BR(U) and h ∈ χ̃, we have

∥(MT (φ)−MT (ϕ))h∥χ̃ =
N∑
i=1

∥∥∥∥∥∥
N∑
j=1

[Tij(φ)− Tij(ϕ)]hj

∥∥∥∥∥∥
χi

≤
N∑
i=1

N∑
j=1

∥[Tij(φ)− Tij(ϕ)]hj∥χi

=

N∑
i=1

N∑
j=1

(
|| [Tij(φ)− Tij(ϕ)hj ] ||∞ + || d

dt
([Tij(φ)− Tij(ϕ)]hj)||∞

)

≤ sup
t∈[0,1]

N∑
i=1

N∑
j=1

∫ 1

0

∣∣∣∣(∂κi∂uj
(t, s, φ(s))− ∂κi

∂uj
(t, s, ϕ(s))

)∣∣∣∣ |hj(s)|ds+
+ sup
t∈[0,1]

N∑
i=1

N∑
j=1

∫ 1

0

∣∣∣∣( ∂2κi
∂uj∂t

(t, s, φ(s))− ∂2κi
∂uj∂t

(t, s, ϕ(s))

)∣∣∣∣ |hj(s)|ds,
and by the assumption (5)(iii), we can apply the Mean Value Theorem, then for all 1 ≤ i, j ≤ N, ∃ψj , υj ∈
[φj , ϕj ]

(
The line segment joining two points φj , ϕj ∈ BRj (uj)

)
such that∣∣∣∣∂κi∂uj

(t, s, φ(s))− ∂κi
∂uj

(t, s, ϕ(s))

∣∣∣∣ ≤ sup
ψj∈[φj ,ϕj ]

∣∣∣∣∣∂2κi∂u2j
(t, s, u1(s), ..., ψj(s), ..., uN (s))

∣∣∣∣∣ ||φj − ϕj ||∞,

∣∣∣∣ ∂2κi∂uj∂t
(t, s, φ(s))− ∂2κi

∂uj∂t
(t, s, ϕ(s))

∣∣∣∣ ≤ sup
υj∈[φj ,ϕj ]

∣∣∣∣∣ ∂3κi∂u2j∂t
(t, s, u1(s), ..., υj(s), ..., uN (s))

∣∣∣∣∣ ||φj − ϕj ||∞,

it's not di�cult to demonstrate that, for all 1 ≤ j ≤ N , we have:

||ψ̃||χ̃ = ψ̃j ∈ DR = [−R− ||U ||χ̃, R+ ||U ||χ̃],where ψ̃ = (u1, ..., ψj , ..., uN ) ∈ BR(U),

||υ̃||χ̃ = υ̃j ∈ DR = [−R− ||U ||χ̃, R+ ||U ||χ̃],where υ̃ = (u1, ..., υj , ..., uN ) ∈ BR(U),

and by these notations, we can compose

sup
t∈[0,1]

sup
ψj∈[φj ,ϕj ]

∣∣∣∣∣∂2κi∂u2j
(t, s, u1(s), ..., ψj(s), ..., uN (s))

∣∣∣∣∣ ≤ sup
(t,s,ψ̃j)∈[0,1]2×DR

∣∣∣∣∣∂2κi∂u2j
(t, s, ψ̃j)

∣∣∣∣∣ ||φj − ϕj ||∞,

sup
t∈[0,1]

sup
υj∈[φj ,ϕj ]

∣∣∣∣∣ ∂3κi∂u2j∂t
(t, s, u1(s), ..., υj(s), ..., uN (s))

∣∣∣∣∣ ≤ sup
(t,s,υ̃j)∈[0,1]2×DR

∣∣∣∣∣ ∂3κi∂u2j∂t
(t, s, υ̃j)

∣∣∣∣∣ ||φj − ϕj ||∞.

So, as for all 1 ≤ j ≤ N, ||hj ||∞ ≤ ||h||χ̃, we have

∥(MT (φ)−MT (ϕ))∥ ≤
N∑
i=1

N∑
j=1

sup
(t,s,ψ̃j)∈[0,1]2×DR

∣∣∣∣∣∂2κi∂u2j
(t, s, ψ̃j)

∣∣∣∣∣ ||φj − ϕj ||∞

+

N∑
i=1

N∑
j=1

sup
(t,s,υ̃j)∈[0,1]2×DR

∣∣∣∣∣ ∂3κi∂u2j∂t
(t, s, υ̃j)

∣∣∣∣∣ ||φj − ϕj ||∞.

Obviously,
N∑
j=1

||φj − ϕj ||∞ ≤ ||φ− ϕ||χ̃, what's more, we take

λR = 2 sup

{
sup

1≤j≤N
sup

(t,s,ψ̃j)∈[0,1]2×DR

N∑
i=1

∣∣∣∣∣∂2κi∂u2j
(t, s, ψ̃j)

∣∣∣∣∣ , sup
1≤j≤N

sup
(t,s,υ̃j)∈[0,1]2×DR

N∑
i=1

∣∣∣∣∣ ∂3κi∂u2j∂t
(t, s, υ̃j)

∣∣∣∣∣
}
,
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to discover at last that
∥(MT (φ)−MT (ϕ))∥ ≤ λR||φ− ϕ||χ̃.

Proposition 3.2. Assume that (5)(iii), there exists a constant CN such that, for all V ∈ BR(U)

∥MT (V )−MTn(V )∥ ≤ CN
n2

, (13)

where

CN =
1

12n2
sup
t∈[0,1]

N∑
i=1

N∑
j=1

{∣∣∣∣∣
[
∂2κi(t, s, V (s))

∂vj∂s

]s=1

s=0

∣∣∣∣∣+
∣∣∣∣∣
[
∂3κi(t, s, V (s))

∂vj∂s∂t

]s=1

s=0

∣∣∣∣∣
}

Proof. Let h ∈ χ be the direction of the operator MT . For all V = (v1, v2, ..., vN ) ∈ BR(U), we have

∥(MT (V )−MTn(V ))h∥χ̃ =

N∑
i=1

∥∥∥∥∥∥
N∑
j=1

[Tij(V )− Tn,ij(V )]hj

∥∥∥∥∥∥
χi

≤
N∑
i=1

N∑
j=1

∥[Tij(V )− Tn,ij(V )]hj∥χi

= sup
t∈[0,1]

N∑
i=1

N∑
j=1

|([Tij(V )− Tn,ij(V )]hj) (t)|

+ sup
t∈[0,1]

N∑
i=1

N∑
j=1

∣∣∣∣ ddt ([Tij(V )− Tn,ij(V )]hj) (t)

∣∣∣∣
≤ sup
t∈[0,1]

 N∑
i=1

N∑
j=1

|[Tij(V )− Tn,ij(V )] (t)|

 ||hj ||∞

+ sup
t∈[0,1]

 N∑
i=1

N∑
j=1

∣∣∣∣ ddt [Tij(V )− Tn,ij(V )] (t)

∣∣∣∣
 ||hj ||∞,

and by the trapezoidal rule (2), we have for all 1 ≤ i, j ≤ N

|(Tij(V )− Tn,ij(V ))(t)| ≤ 1

12n2

∣∣∣∣∣
[
∂2κi(t, s, V (s))

∂vj∂s

]s=1

s=0

∣∣∣∣∣ ,
| d
dt
(Tij(V )− Tn,ij(V ))(t)| ≤ 1

12n2

∣∣∣∣∣
[
∂3κi(t, s, V (s))

∂vj∂s∂t

]s=1

s=0

∣∣∣∣∣ ,
we �nish up at last that

∥MT (V )−MTn(V )∥ ≤ 1

12n2
sup
t∈[0,1]

N∑
i=1

N∑
j=1

{∣∣∣∣∣
[
∂2κi(t, s, V (s))

∂vj∂s

]s=1

s=0

∣∣∣∣∣+
∣∣∣∣∣
[
∂3κi(t, s, V (s))

∂vj∂s∂t

]s=1

s=0

∣∣∣∣∣
}
.

Proposition 3.3. Assume that (5) holds. Let r := min

(
R,

1

2λRη

)
, where λR is de�ned in Proposition 3.1.

Then for all V = (v1, v2, ..., vN ) ∈ Br(U), INN −MT (V ) is invertible and
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||(INN −MT (V ))−1|| ≤ 2η.

Proof. For all V = (v1, v2, ..., vN ) ∈ χ̃, we have

INN −MT (V ) =INN −MT (U)−MT (V ) +MT (U)

= (INN −MT (U))
[
INN − (INN −MT (U))−1 (MT (V )−MT (U))

]
,

we have for all V = (v1, v2, ..., vN ) ∈ Br(U), (Proposition 3.1)

∥(MT (V )−MT (U))∥ ≤ λRr.

Then ∥∥∥(INN −MT (U))−1 (MT (V )−MT (U))
∥∥∥ ≤ ηλRr ≤ 1

2 ,

use the Geometric Series Theorem (see [1], pp.516 ), we conclude that INN −MT (V ) is invertible such that,
for all V = (v1, v2, ..., vN ) ∈ Br(U)

(INN −MT (V ))−1 =
(
INN − (INN −MT (U))−1 [MT (V )−MT (U))]

)−1
(INN −MT (U))−1 ,

and its inverse is uniformly bounded on Br(U), where∥∥∥(INN −MT (V ))−1
∥∥∥ ≤ η

∞∑
m=0

∥∥∥(INN −MT (U))−1 (MT (V )−MT (U))
∥∥∥m ≤ 2η.

Proposition 3.4. Assume that (5) holds. Then for n big enough, and for all V = (v1, v2, ..., vN ) ∈ Br(U),
INN −MTn(V ) is invertible, and there exists δn ∈]0, 1[, such that

sup
V ∈Br(U)

∥∥∥INN − (INN −MTn(V ))−1 (INN −MT (V ))
∥∥∥ ≤ δn,

sup
V ∈Br(U)

∥∥∥(INN −MTn(V ))−1
∥∥∥ ≤ 2η(1 + δn).

Proof. For all V = (v1, v2, ..., vN ) ∈ Br(U), we have

INN −MTn(V ) =INN −MT (V ) +MT (V )−MTn(V )

= (INN −MT (V ))
(
INN − (INN −MT (V ))−1 [MTn(V )−MT (V ))]

)
,

and as we have in Proposition 3.2

∥MT (V )−MTn(V )∥ ≤ CN
n2

→ 0, n→ +∞.

So, with n adequately large, plainly
CN
n2

<
1

2η
. Then∥∥∥(INN −MTn(V ))−1 (MTn(V )−MT (V ))

∥∥∥ ≤ 2ηCN
n2

< 1,
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and by the Geometric Series Theorem (see [1], pp.516 ), we have for all V ∈ Br(U), (INN −MTn(V )) is

invertible and
∥∥∥(INN −MTn(V ))−1

∥∥∥ ≤ 2η

1− 2ηξn
, where ξn =

CN
n2

.

As

INN − (INN −MTn(V ))−1 (INN −MT (V )) = (INN −MTn(V ))−1 (MT (V )−MTn(V )) ,

we de�ne δn =
2ηξn

1− 2ηξn
and for n large enough, δn < 1 we �nd

sup
V ∈Br(U)

∥∥∥INN − (INN −MTn(V ))−1 (INN −MT (V ))
∥∥∥ ≤ δn,

we have

(INN −MTn(V ))−1 =(INN −MT (V ))−1

−
[
INN − (INN −MTn(V ))−1 (INN −MTn(V ))

]
(INN −MT (V ))−1 .

In this way, we close at last that

sup
V ∈Br(U)

∥∥∥(INN −MTn(V ))−1
∥∥∥ ≤ 2η(1 + δn).

4. Analysis of option A

In this section, we study the convergence of Option A, where we will prove that our approximate solution
Ukn = (Ukn,1, U

k
n,2, ..., U

k
n,N ) ∈ χ̃ de�ned in (12), converges to the exact solution U = (u1, u2, ..., uN ) ∈ χ̃

de�ned in (1).

Theorem 4.1. Assume that the assumptions (5) are satis�ed, set r = min
(
R, 1

2λRη

)
. Then there exist

δn ∈]0, 1[, and ϱn > 0 such that, if the starting approximation U
(0)
n is chosen in the closed ball Bϱn(U), then

for all k ∈ N∗, U
(k)
n ∈ Bϱn(U), and

||U (k)
n − U ||χ̃ ≤ ϱn

(
1+δn
2

)k → 0 as k → ∞.

Proof. We have found in Proposition 3.4 that, if U
(k)
n ∈ Br(U), INN −MTn(U

(k)
n ) is invertible. Then U

(k+1)
n

de�ned in (7) can given by

U (k+1)
n − U = U (k)

n − U −
(
INN −MTn(U

(k)
n )

)−1 (
U (k)
n − U −K(U (k)

n ) +K(U)
)
.

Since

K(U)−K(U (k)
n ) = −

∫ 1

0
MT

(
(1− x)U (k)

n + xU
)
.
(
U (k)
n − U

)
dx,

then, we can write

U (k+1)
n − U =

∫ 1

0

[
INN −

(
INN −MTn(U

(k)
n )

)−1 [
INN −MT

(
(1− x)U (k)

n + xU
)]]

.
(
U (k)
n − U

)
dx,
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by added INN −MT (U
(k)
n ) to and subtracted from INN −MT

(
(1− x)U

(k)
n + xU

)
, we get

U (k+1)
n − U =

∫ 1

0

[
INN −

(
INN −MTn(U

(k)
n )

)−1 (
INN −MT (U

(k)
n )

)]
.
(
U (k)
n − U

)
dx

+

∫ 1

0

(
INN −MTn(U

(k)
n )

)−1 [
MT

(
(1− x)U (k)

n + xU
)
−MT (U

(k)
n )

]
.
(
U (k)
n − U

)
dx,

and

||U (k+1)
n − U ||χ̃ ≤ ||INN −

(
INN −MTn(U

(k)
n )

)−1 (
INN −MT (U

(k)
n )

)
|| ||U (k)

n − U ||χ̃+

+||
(
INN −MTn(U

(k)
n )

)−1
|| ||U (k)

n − U ||χ̃
∫ 1

0
||MT

(
(1− x)U (k)

n + xU
)
−MT (U

(k)
n )|| dx.

Let U
(k)
n ∈ Br(U) and according to Proposition 3.4

||INN −
(
INN −MTn(U

(k)
n )

)−1 (
INN −MT (U

(k)
n )

)
|| ≤ δn,

and since Br(U) is convex, for all x ∈ [0, 1], (1− x)U
(k)
n + xU ∈ Br(U) , and according to Proposition 3.1

||MT

(
(1− x)U (k)

n + xU
)
−MT (U

(k)
n )|| ≤ λRx||U (k)

n − U ||χ̃.

Hence ∫ 1

0
||MT

(
(1− x)U (k)

n + xU
)
−MT (U

(k)
n )|| dx ≤ 1

2
λR||U (k)

n − U ||χ̃.

We use the second inequality of Proposition 3.4, we have

||U (k+1)
n − U ||χ̃ ≤ δn||U (k)

n − U ||χ̃ +
(
2η(1 + δn)||U (k)

n − U ||χ̃
) 1

2
λR||U (k)

n − U ||χ̃.

We de�ne

ϱn := min

{
r,

(
1− δn

2λRη(1 + δn)

)}
.

Then if U
(k)
n ∈ Bϱn(U),

1

2
λR||U (k)

n − U ||χ̃ ≤ 1− δn
4η(1 + δn)

. Hence

||U (k+1)
n − U ||χ̃ ≤

(
1 + δn

2

)
||U (k)

n − U ||χ̃,

since 1 + δn < 2 the previous inequality implies that U
(k+1)
n ∈ Bϱn(U) and that

||U (k)
n − U ||χ̃ ≤ ϱn

(
1 + δn

2

)k
→ 0, as k → ∞.
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5. Analysis of option B

This option begins by the discretization of the system (1), where the Nyström method leads to �nding
Vn(t) = (Vn,1(t), Vn,2(t), ..., Vn,N (t)) ∈ χ̃ such that

Vn,1(t) =
n∑
p=1

ωn,pκ1 (t, tp, Vn,1(tp), Vn,2(tp), ..., Vn,N (tp)) + g1(t),

Vn,2(t) =

n∑
p=1

ωn,pκ2 (t, tp, Vn,1(tp), Vn,2(tp), ..., Vn,N (tp)) + g2(t),

...
...

...

Vn,N (t) =
n∑
p=1

ωn,pκN (t, tp, Vn,1(t), Vn,2(tp), ..., Vn,N (tp)) + gN (t),

(14)

for all t ∈ [0, 1] and a given functions gi ∈ Ωi .

Proposition 5.1. Assume that (5) holds. Then

||Vn − U ||χ̃ ≤ C

n2
,

where

C =
c

12
sup
t∈[0,1]

N∑
i=1

{∣∣∣∣∣
[
∂κi(t, s, U(s))

∂s

]s=1

s=0

∣∣∣∣∣+
∣∣∣∣∣
[
∂2κi(t, s, U(s))

∂s∂t

]s=1

s=0

∣∣∣∣∣
}
.

Proof. For proving this proposition, we use the numerical integration rule (2), and the estimation ( (3.6)
pp.29) of [1].

Now by applying the collocation technique to each equation of system (14), we obtain a nonlinear algebraic
system of equations in Rn×N . Let

x
(∞)
j (l) = Vn,j(tl), j = 1, ..., N, l = 1, ..., n.

For 1 ≤ i ≤ N . Let On,i be open subset of Rn and let Fn = (Fn,1, Fn,2, ..., Fn,N ) be the nonlinear operator

from some open subset ÕN =
N∏
i=1

On,i of Rn×N into Rn×N de�ned by

Fn,i(X)(l) = xi(l)−
n∑
p=1

ωn,pκi (tl, tp, X(p))− gi(tl), (15)

where X = (x1, x2, ..., xN ) ∈ ÕN and l = 1, ..., n . The problem is set up as:{
Find X∞

n,N = (x∞1 , x
∞
2 , ..., x

∞
N ) ∈ Rn×N ,

Fn(X
∞
n,N ) =

(
Fn,1(X

∞
n,N ), Fn,2(X

∞
n,N ), ..., Fn,N (X

∞
n,N )

)
= 0Rn×N .

(16)

We have Fn is di�erentiable and its di�erentiable is presented by a block of matrices as

DFn =


[DFn ]11 . . . [DFn ]1N
[DFn ]21 . . . [DFn ]2N

...
. . .

...
[DFn ]N1 . . . [DFn ]NN
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where for all 1 ≤ i, j ≤ N, [DFn ]ij is a matrix of size n× n, and for all 1 ≤ l, p ≤ n

[DFn ]ij(l, p) =

1− ωn,p
∂κi
∂uj

(
tl, tp, x

(∞)
1 (p), x

(∞)
2 (p), ..., x

(∞)
N (p)

)
, if l = p,

−ωn,p ∂κi∂uj

(
tl, tp, x

(∞)
1 (p), x

(∞)
2 (p), ..., x

(∞)
N (p)

)
, if l ̸= p.

We solve the problem (16) by using the Newton-Raphson method. The iterate X
(k+1)
n,N solves

DFnX
(k+1)
n,N = d(k)n , k = 1, 2, ... ,

where for all 1 ≤ l ≤ n, 1 ≤ i ≤ N , we have

d
(k)
n,i (l) = −

N∑
j=1

n∑
p=1

ωn,p
∂κi
∂uj

(
tl, tp, X

(k)
n,N (p)

)
x
(k)
j (p) +

n∑
p=1

ωn,pκi

(
tl, tp, X

(k)
n,N (p)

)
+ gi(tl). (17)

We recover the approximation V
(k+1)
n =

(
V

(k+1)
n,1 , V

(k+1)
n,2 , ..., V

(k+1)
n,N

)
∈ χ̃ with the natural interpolation

formula:

V
(k+1)
n,i (t) =

n∑
p=1

ωn,pκi

(
t, tp, X

(k+1)
n,N (p)

)
+ gi(t), i = 1, ..., N, t ∈ [0, 1]. (18)

After these steps, we need to prove the convergence of the iterates V
(k+1)
n toward the solution Vn of the

system (14). Let ||.||n be the vector norm in Rn, and ||.||n,N be the vector norm in Rn×N such as:

∀V = (v1, v2, ..., vN ) ∈ Rn×N , ||V ||n,N =

N∑
j=1

||vj ||n =

N∑
j=1

n∑
p=1

|vj(p)|.

Let |||.||| be the matrix norm in Mn×N (R) such as

∀M ∈ Mn×N (R), |||M ||| = max
1≤i≤N

N∑
j=1

max
1≤l≤n

n∑
p=1

|Mij(l.p)|,

and Sr(W ) the ball of center W and radius r in Rn×N for the norm ||.||n,N .
We de�ne the vector W = (w1, w2, ..., wN ) ∈ Rn×N from the exact solution U by

wi(l) = ui(tl), i = 1, ..., N, l = 1, ..., n.

For Vn,N = (v1, v2, ..., vN ) ∈ Rn×N , we de�ne Ṽn,N = (ṽn,1, ṽn,2, ..., ṽn,N ) ∈ χ̃ by

ṽn,i(t) =

n∑
p=1

ωn,pκi(t, tp, Vn,N (p)) + gi(t), i = 1, ..., N, t ∈ [0, 1]. (19)

Lemma 5.2. For all Vn,N ∈ Sϱ(W ) =
N∏
i=1

Sϱi(wi) ⊂ Rn×N ,

||Ṽn,N − U ||χ̃ ≤ Cϱ||Vn,N −W ||n,N +O

(
N

n2

)
. (20)

Proof. We have

||Ṽn,N − U ||χ̃ =
N∑
i=1

||ṽn,i − ui||χi ≤
N∑
i=1

(
||Kn,i(Ṽn,N )−Kn,i(U)||χi + ||Kn,i(U)−Ki(U)||χi

)
.
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For all 1 ≤ i ≤ N , we use (2) and the regularity of κi, for writing:

||Kn,i(U)−Ki(U)||χi = O

(
1

n2

)
, and ||Kn,i(Ṽn,N )−Kn,i(U)||χi ≤ (Cϱi + C ′

ϱi)||vi − wi||n,

and by taking Cϱ = max
1≤i≤N

(Cϱi + C ′
ϱi) and ϱ =

N∑
i=1

ϱi, we have �nished the proof.

In the following step, we �xed n >> N such that the Propositions 3.1− 5.1 are satis�ed, and we choose
the positive number ϱ such that

ϱCϱ +O

(
N

n2

)
≤ r, (21)

with r is the parameter de�ned in Proposition 3.3 .Then

∀Vn,N ∈ Sϱ(W ) ⊂ Rn×N =⇒ Ṽn,N ∈ Br(U) ⊂ χ̃.

As for all 1 ≤ l ≤ n, we have

(DFn(Vn,N ).h) (l, .) = (INN −MTn(Ṽn,N ))(tl, .)h̃(tl), ∀h ∈ Rn×N , (22)

and by using the Proposition 3.4, we can �nd that DFn(VN ) is invertible and

∃ηn > 0, |||(DFn(Vn,N ))
−1||| ≤ ηn, ∀Vn,N ∈ Sϱ(W ). (23)

Similarly to Proposition 3.1, we can demonstrate that

|||DFn(X)−DFn(Y )||| ≤ λϱ||X − Y ||n,N , ∀X,Y ∈ Sϱ(W ), (24)

λϱ = 2 max
1≤i≤N

sup

{
sup

1≤j≤N
sup

(t,s,Zj)∈[0,1]2×DR

∣∣∣∣∣∂2κi∂u2j
(t, s, Zj)

∣∣∣∣∣ , sup
1≤j≤N

sup
(t,s,Z′

j)∈[0,1]2×DR

∣∣∣∣∣ ∂3κi∂u2j∂t
(t, s, Z ′

j)

∣∣∣∣∣
}
,

and
Iϱ = [−ϱ− ||W ||n,N , ϱ+ ||W ||n,N ].

Theorem 5.3. Let V
(k+1)
n be the iterate solution de�ned in (18). Assume that the assumption (5) are

satis�ed. Let r be the parameter de�ned in Proposition 3.3 and ϱ satisfy (21) . For V
(0)
n ∈ Sϱ(W ), let the

positives constants rn, βn, ηn, λϱ and τn be given with the accompanying properties:

Srn(V
(0)
n ) ⊂ Sϱ(W ), τn =

βnηnλϱ
2

< 1, rn =
βn

1− τn
,

the inequalities (23) and (24) are satis�ed, and

|||(DFn(V
(0)
n ))−1DFn(V

(0)
n )||| ≤ βn.

Then V
(k)
n ∈ Srn(V

(0)
n ) and

||V (k)
n − U ||χ̃ ≤ cβn

τ2
k−1
n

1− τ2kn
+

c

n2
. (25)

Proof. It is the Newton Theorem for Several Variables, and the proof is well detailed in [10] (see Theorem
5.3.2, pp.270).

Remark 5.4. (Comparison between option A and B)

The di�erence between the option A and B is due to the fact that integrals on the right-hand side of the

system of equations (8)− (9) in option A are approximated by the Nyström method, ie, for all 1 ≤ i ≤ N∫ 1

0
κi

(
t, s, U (k)

n (s)
)
ds ≈

m∑
q=1

ωm,qκi

(
t, tq, U

(k)
n (tq)

)
, U (k)

n ∈ χ̃, k = 1, 2, ... ,

where we choose a �ner grid according the number of nodes m in the subdivision too big to n (m >> n).
This choice that gave option A the preference over the other option B.
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6. Application on nonlinear integro-di�erential equation

This part explains how to apply option A in order to approach a nonlinear Fredholm integro-di�erential
equation. Consider the following integro-di�erential equation.

u(t) =

∫ 1

0
κ
(
t, s, u(s), u′(s), ..., u(N−1)(s)

)
ds+ g(t), t ∈ [0, 1], (26)

according the technique described in the paper [2], we derive this equation (N − 1) times, then we obtain
the system 

u1(t) = u(t) =

∫ 1

0
κ (t, s, u1(s), u2(s), ..., uN (s)) ds+ g(t),

u2(t) = u′(t) =

∫ 1

0

∂κ

∂t
(t, s, u1(s), u2(s), ..., uN (s)) ds+ g′(t),

...
...

...
...

uN (t) = u(N−1)(t) =

∫ 1

0

∂(N−1)κ

∂t(N−1)
(t, s, u1(s), u2(s), ..., uN (s)) ds+ g(N−1)(t),

(27)

for all t ∈ [0, 1]. If we set, for all 1 ≤ i ≤ N , gi = g(i−1) and κi =
∂(i−1)κ

∂t(i−1)
, so, the system (27) will be

equivalent to the system (1). However, we can apply now the new process (Option A) in order to approach
the solution of our integro-di�erential equation, that we will see in the next numerical examples.

7. Numerical Examples

In this section, to examine the e�ectiveness of our new process (option A), compared to the classical
process (option B), we will treat two examples. In the �rst example, we solve by using option A, the same
nonlinear Fredholm integro-di�erential equation presented in [2], and we compare our results with its results.
However, we mention that the results of the paper [2], have been obtained according the classical process
(option B). In the second example, we solve a system of nonlinear integral equations by using the both
options A and B, also we compare between the obtained results.

Let (U
(k)
n,1 , U

(k)
n,2 , ..., U

(k)
n,N ) ∈ χ̃ and (V

(k)
n,1 , V

(k)
n,2 , ..., V

(k)
n,N ) ∈ χ̃, k ∈ N∗, the k order approximative solution of

our system of equations (1) according to the scheme (12) of option A, and to the scheme (18) of option B,
respectively.

First, let n ∈ N∗, and considering the equidistant subdivision ∆n of [0, 1] de�ned by:

∆n =

{
tp = p h, h =

1

n
, p = 1, ..., n

}
.

We de�ne the stopping condition on the parameter k as:

For Option A : SkA =
N∑
i=1

max
1≤p≤n

|U (k+1)
n,i (tp)− U

(k)
n,i (tp)| ≤ 10−09.

For Option B : SkB =
N∑
i=1

max
1≤p≤n

|V (k+1)
n,i (tp)− V

(k)
n,i (tp)| ≤ 10−09.

We denote the obtained error using the both options A and B by:

For Option A : eA =
N∑
i=1

max
1≤p≤n

|ui,ext(tp)− U
(k)
n,i (tp)|.
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For Option B : eB =
N∑
i=1

max
1≤p≤n

|ui,ext(tp)− V
(k)
n,i (tp)|.

where, U = (u1,ext, u2,ext, ..., uN,ext) ∈ χ̃ is the exact solution of the initial system of equations (1). We pass
now to the numerical examples.

Example 1: Consider the nonlinear Fredholm integro-di�erential equation presented in [2]

u(t) =
1

5

∫ 1

0
sin[2(s+ t+ u(s)) + (1− s)es − u′(s)]ds+ g(t), ∀t ∈ [0, 1], (28)

with u ∈ C1([0, 1],R) and g(t) = tet − 1

5
[sin2(1 + t)− sin2(t)].

As we have described in section 6, we notice by u(t) = u1(t), u
′(t) = u2(t), g1(t) = g(t) and g2(t) =

g′(t) = (1 + t)et − 2

5
[cos(1 + t) sin(1 + t)− cos(t) sin(t)], then we obtain the following system
u1(t) =

1

5

∫ 1

0
sin[2(s+ t+ u1(s)) + (1− s)es − u2(s)]ds+ g1(t),

u2(t) =
2

5

∫ 1

0
cos[2(s+ t+ u1(s)) + (1− s)es − u2(s)]ds+ g2(t),

(29)

where U = (tet, (1 + t)et) is its exact solution. However, we solve this system (29) by using option A and
compare our results with the results obtained in [2].

Example 2: Consider the following system of equations, for all t ∈ [0, 1],

u1(t) =

∫ 1

0

u1(s)
2

2 + t+ u2(s)u3(s)
ds+ t+

1

3
log

(
t+ 1

t+ 2

)
,

u2(t) =

∫ 1

0

tu3(s)

2 + t+ u1(s) + u2(s)
ds− t

(
1 +

1

3(t+ 2)

)
,

u3(t) =

∫ 1

0

2tu2(s)− t

5 + u1(s) + u3(s)
ds+ t2 + t log

(
7

5

)
,

(30)

where U = (t,−t, t2) is its exact solution. In the same way of example 1, we solve this system (30) by using
the both options A and B, then we compare between the obtained results.

The Error

n Option A Option B ([2])

5 9.6417E-05 8.5244E-02

10 2.3565E-05 4.2957E-02

50 9.2595E-07 8.6250E-03

100 2.3097E-07 4.3136E-03

500 9.2225E-09 8.6289E-04

Table 1: Numerical results of example 1.



I.Sedka, S.Lemita, M.Z.Aissaoui, Adv. Theory Nonlinear Anal. Appl. 6 (2022), 547�564. 562

The Error

n Option A Option B

5 3.8751E-04 4,8409E-02

10 9.4735E-05 9,2095E-03

50 3.7221E-06 3.1248E-04

100 9.2821E-07 7.6564E-05

500 3.6736E-08 3.0139E-06

Table 2: Numerical results of example 2.

The errors of both options A and B applied on example 1 and 2 are shown in Tables (1) and (2),
respectively, which con�rm that option A is more accurate than option B. However, in Figures (1) and (3)
we can see that the approximate solutions using option A converge to the exact solutions. Furthermore,
Figures (2) and (4) show us the distance between two successive iterates using option A and B for example 1
and 2, respectively, which proves that option A has a linear convergence, worse than option B. So, we conclude
that our numerical results are similar to the results of [5], which assure that our vision is reasonable.

Conclusion

In this work, we have constructed a Linearization-Discretization process for solving a system of nonlinear
Fredholm integral equations de�ned in an in�nite dimensional context. As well as, we have proposed the
necessary conditions which guarantee the convergence analysis of this new process.
However, the numerical tests show that our new process should be preferred to the classical method. The
reason for this behavior is obviously that the sequence Ukn constructed by using option A converges to the
exact solution U . On the contrary, the sequence V k

n constructed by using option B converges to Vn, which
is just the solution of the discretized problem (14) obtained by the Nyström method.

Figure 1: Approximate solutions of example 1, using option A with n = 20 and m = 180.
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Figure 2: Graph of log10 of the distance between two successive iterates (example 1).

Figure 3: Approximate solutions of example 2, using option A with n = 20 and m = 180.

Figure 4: Graph of log10 of the distance between two successive iterates (example 2).
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