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In the present work, a theoretical investigation is presented on how the efficiency of a Banki 

Mitchell turbine is affected by its design parameters. With the help of general formulation of the 

control volume theory to the equation of the moment of momentum in the turbine’s runner and 

considering all assumption regarding the properties of the flow and the design geometry of the 

runner, a mathematical model has been developed. The water discharge through the turbine is 

considered incompressible, non-viscous, homogenous and steady flow; The loss due to shock on 

the inner and outer surface of the runner as well as leakage losses are neglected. As results of 

the present study, the behaviour of hydraulic efficiency was determined when varying the angle 

of attack, the blade entry angle as well as the runner diameter ratio, indicating their appropriate 

values in each different scenario. In this paper critical relationships between design parameters 

have been disclosed and therefore analysed and simulated using Simulink MATLAB. 

Furthermore, it was mentioned that for a better performance, the exit angle of the blade should 

be 90°. At length, an expression was given estimating the turbine’s efficiency at various 

operating conditions and for calculating the energy contribution per stage, respectively. 
 
Keywords: Banki Mitchell Turbine, Fluid Mechanics Analysis, Control Volume Theory, Efficiency 

 

 

1. Introduction 

In recent years, small-scale hydrogeneration has become a 

good alternative for exploiting renewable energy resources in 

a clean way. To make the most of water resources, it is 

necessary to look for low-cost alternatives compared to 

conventional hydroelectric facilities. For this purpose, the 

cross-flow turbine is the one that is best suited, due to its good 

performance in small-scale power generation, its simple 

design, low manufacturing and maintenance cost. 

The cross-flow turbine, which is also called the Banki-

Mitchell or Ossberger turbine, is classified as an impulse 

turbine which is mostly used in smaller hydropower plants 

with power output range 5 – 100 KW[1]. Cross flow turbine 

consists of two main elements: an injector and a runner; The 

injector is that tubular element of rectangular section that 

conducts the flow towards the runner at a constant angle with 

respect to the tangent to the flow path and the runner is made 

up of two parallel discs that are joined by the edges by means 

of a set of curved blades in the shape of a circular arc. The 

energy transferred to the turbine runner is carried out in two 

stages where an average of 68.5% is contributed in the first 

stage and 31.5% in the second [2]. On the other hand, the 

flow through the runner has been analysed by Banki many 

years ago considering an impulse turbine with a 

representative current line through a one-dimensional 

analysis [3]. The flow inside this type of turbine is very 

complex because the water partially passes through the 

runner, making the flow unstable [4]. In the present study, a 

theoretical analysis of the hydraulic efficiency in the runner 

of a cross-flow turbine is carried out by varying certain 

design parameters (α₁, β₁, D₂/D₁) linked to it, in addition, the 

hydraulic efficiency of the turbine is estimated at different 

regimes of n11, as this will allow to know a priori the 

http://www.dergipark.gov.tr/ijeat
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performance of the runner before being manufactured. For 

this purpose, we apply the method of the control volume to 

the equation of the moment of the momentum, considering 

some hypotheses about the characteristics of the flow as well 

as the geometry of the runner; also finding some optimal 

relationships between geometric parameters of the runner 

that maximize hydraulic efficiency, as well as an expression 

that allows calculating the energy contribution per stage. 

2. Material and Methods 

2.1. General considerations 

The cross-flow turbine under study is considered a free-jet 

action turbine, which means that, it works at a constant 

pressure equal to atmospheric pressure. The flow that crosses 

through the runner has been considered non-viscous, 

homogeneous, incompressible and in steady state; 

furthermore, it is assumed that water flow completely passes 

through the runner. The velocity triangles of the fluid 

particles are also considered to be equal in the circumferential 

direction. Load losses in the runner blades as well as leakage 

losses are neglected. It is considered that the runner has as 

many blades as necessary, so that the space between blades 

may be signifyingly small as required, such that the 

circulation of any fluid particle is zero and therefore the flow 

is irrotational. The runner blades are assumed to be 

geometrically identical and their surfaces free of roughness. 

Shock losses on the outer and inner periphery of the runner 

are neglected. According to this assumption, there are no 

shock losses at the entrance of each of the stages, and 

assuming the presence of a quantity of blades as large as 

required, in Figure 1 the fluid particle that passes through 

point X of the streamline must have the relative component 

of the velocity, coinciding with the direction of the tangent to 

the blade. Therefore, we can generalize this fact for each 

point of the portions of current lines that make contact with 

the runner blades. 

Therefore, the equation that will be used to compute the 

torque that the fluid exerts on the turbine’s blades, is found 

by applying the general equation of the control volume 

method to the equation of moment of the momentum [5] and 

we obtain:  

�⃗⃗�  = ∫ 𝑟 𝑥�⃗�  . (𝜌�⃗� . �⃗� )𝑑𝐴
𝐶𝐴

+
𝜕

𝜕𝑡
∫ 𝑟 𝑥�⃗�  𝜌𝑑𝑉
𝐶𝑉

 (1) 

As mentioned above since we assume our flow to be a steady 

flow, the amount of angular momentum within the control 

volume remains constant, and thus the time rate of change of 

angular momentum of the contents of the control volume is 

zero [5]. resulting in: 

�⃗⃗�  = ∫ 𝑟 𝑥�⃗�  . (𝜌�⃗� . �⃗� )𝑑𝐴
𝐶𝐴

     (2) 

As the control area is in turn composed of four surfaces as 

shown in the points of water flow when it passes through any 

blade; From what has already been mentioned, we can 

deduce that the upper end points X1 and X2 through which 

the flow enters could coincide with the ends of two runner 

blades at a certain moment, thus in the same way the ends Y1 

and Y2 through which the flow exits could coincide with the 

lower ends of two other blades. Finally, it is assumed that the 

flow does not impact the turbine runner shaft and that the 

turbine runner is in uniform rotary motion. 

2.2. Mathematical modelling 

For the development of the mathematical model, a control 

volume has been considered as, which is delimited by two 

concentric cylindrical surfaces that contain the inner and 

outer surfaces of the runner as well as by two lateral surfaces, 

superimposed on the inner side of the circular discs of the 

runner limiting the lateral space contained between the inner 

and outer periphery of the runner, in this way we will obtain 

a control volume in the shape of a hollow solid cylinder 

shown in Figure 2. This control volume is attached to an 

inertial reference system located on the runner shaft, in 

addition, the components of speed as well as acceleration will 

be assumed to be null in the axial direction, so the flow 

movement is reduced to a movement in the plane transverse 

to the axis.  

And since Figure 2, the velocity field on the lateral surfaces 

A3 and A4 of the control volume is perpendicular to the 

vector normal to these surfaces, then the expression is 

obtained: 

�⃗⃗�  = ∫ 𝑟 𝑥�⃗�  . (𝜌�⃗� . �⃗� )𝑑𝐴
𝐴1

+ ∫ 𝑟 𝑥�⃗�  . (𝜌�⃗� . �⃗� )𝑑𝐴
𝐴2

 (3) 

With: A1 and A2, the exterior and interior surface area of the 

control volume respectively. 

 

Fig. 1. Kinematic flow configuration in the rotor of the cross-flow 

turbine 
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Finally, taking into account that the flow is homogeneous and 

incompressible, the expression of the torque in the axial 

direction is obtained: 

𝑀 = (𝜌𝐵𝑣2
2𝑅2

2𝜃 sin 𝛼2 cos 𝛼2 −  𝜌𝐵𝑣1
2𝑅1

2𝜃 sin 𝛼1 cos 𝛼1) +

(𝜌𝐵𝑣4
2𝑅1

2𝜃 sin 𝛼4 cos 𝛼4 − 𝜌𝐵𝑣3
2𝑅2

2𝜃 sin 𝛼3 cos 𝛼3) (4) 

Where it can be seen that the effective torque exerted on the 

flow can be considered as the sum of the individual torque 

effected in each of the stages. 

 
Fig.2. Schematic of the control volume with its conformant control 

surfaces 

In the kinematic configuration of the flow, as shown in Figure 

1, a schematic current line can be seen in the region of doted 

blades, this in turn is the trajectory of a fluid particle because 

it is the steady flow. If we join the points of the current line 

that intersect the inner periphery of the runner with the centre 

of the runner, these will form an isosceles triangle, since the 

section of the current line inside the runner can be assumed 

to be practically rectilinear; also considering that there are no 

collision losses in the internal and external periphery of the 

runner, the fluid particle that enters the second stage will have 

a relative component in the same direction as the tangent of 

the blade at that moment and neglecting the increase in speed 

due to the difference in level between the output of the first 

stage and the input of the second stage, it follows that: 

α2 = α3 

β2 = β3 = 900 

v2 = v3 

w2 = w3 

And since it is assumed that there is no friction between the 

flow and the blades, then: 

w1 = w4 

Thus, the velocity triangles at the input and output of each 

stage are as shown in Figure 3, and therefore equation (4) 

becomes: 

𝑀 = (𝜌𝐵𝑣4
2𝑅1

2𝜃 sin𝛼4 cos𝛼4 − 𝜌𝐵𝑣1
2𝑅1

2𝜃 sin𝛼1 cos𝛼1) (6) 

By the volumetric continuity equation between the flow inlet 

and outlet, it is concluded that: 

v4 sinα4 BL4 = v1 sinα1 BL1 = Q   (7) 

What's more: 

L1 = L4 = R1.θ    (8) 

Considering the runner with uniform rotary motion, the 

power transferred by the flow to the runner will be given by 

the following expression: 

Pe = – M.ω     (9) 

Replacing equations (6), (7) and (8) in (9) the final expression 

is obtained for the calculation of the power exerted on the 

runner shaft: 

Pe = ρQu1 (v1 cosα1 – v4 cosα4)  (10) 

Applying the modified Bernoulli equation between the inlet 

of the pressure pipe and the outlet of the injector, and 

considering the speed at the injector outlet equal to the speed 

at the runner inlet, the latter can be calculated as: 

v1 = φ√2𝑔𝐻     (11) 

Experimental studies indicate that the value of φ ranges 

between 0.91 and 0.971 [6]. 

The turbine Hydraulic efficiency will result from the ratio 

between the turbine’s shaft power and water flow’s power 

and it will therefore be calculated as: 

ηh = 
Pe

𝜌𝑔𝑄𝐻
      (12) 

Replacing equations (10) and (11) in (12), the latter becomes: 

ηh = 
πφ

15√2𝑔
 n11 (cos α1 – 

𝜋

60𝜑√2𝑔
n11)  (13) 

 
Fig. 3. Velocity triangle in the rotor of the cross-flow turbine 

From the velocity triangle in Figure 3, it is obtained that: 

v4 cosα4 = 2u1 – v1 cosα1   (14) 

w1 cosβ1 = v1 cosα1 – u1   (15) 

v1
2 = w1

2 + u1
2 + 2w1u1 cosβ1    (16) 
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Replacing equations (10), (11), (14), (15) and (16) in 

equation (12), we obtain that: 

ηh = 4φ2. 
(
𝑢1
𝑤1

)cos 𝛽1

1+(
𝑢1
𝑤1

)
2
+2(

𝑢1
𝑤1

) cos𝛽1

   (17) 

Taking into account the sine theorem in the velocity triangle 

of figure 3, we get the expression of equation (18) which can 

be written as: 

ηh = 4φ2.  
sin 𝛼1 .cos 𝛽1.sin(𝛽1−𝛼1)

sin2 𝛽1
  (18) 

Deriving equation (18) with respect to u1/w1 and equating it 

to zero, we obtain: 

𝜕𝜂ℎ

𝜕(
𝑢1
𝑤1

)
 = 4φ2. 

cos𝛽1(1−(
𝑢1
𝑤1

)
2
)

(1+(
𝑢1
𝑤1

)
2
+2(

𝑢1
𝑤1

) cos𝛽1)
2 = 0  (19) 

The solution to the equation is obtained when: 

𝑢1

𝑤1
= 1     (20) 

A direct consequence is obtained from the above equation, 

where from the velocity triangle in Figure 3 it follows that: 

β1 = 2α1     (21) 

Only this maximum condition will be adopted since when it 

is derived with respect to β1, it is obtained that β2 must be 0, 

which is impossible because the inflow of the flow would be 

tangential according to (21), thus violating the operating 

principle of this type of turbines. Therefore, the formula for 

maximum hydraulic efficiency results: 

ηhmax = 2φ2. 
cos𝛽1

1+cos𝛽1
    (22) 

Applying the volumetric continuity equation in the first 

stage, we have: 

w2 = w1sinβ1 (
𝐷1

𝐷2
)    (23) 

From the uniform rotary motion, it results: 

u2 = u1 (
𝐷2

𝐷1
)     (24) 

Applying some of the general equations of turbomachines to 

the first stage, the following relationships are obtained: 

W =
𝑃1−𝑃2

𝜌
 + 

𝑣1
2−𝑣2

2

2
 + g (z1−z2) − |𝑊𝑟|  (25) 

W =
𝑤2

2−𝑤1
2

2
 + 

𝑣1
2−𝑣2

2

2
+

𝑢1
2−𝑢2

2

2
   (26) 

Having assumed the turbine under study as a free jet action 

turbine, we have: P1 = P2 = Patm, neglecting the height 

between the inlet and outlet of each stage as well as the 

friction losses in the blades (|𝑊𝑟| = 0); then replacing 

equations (20), (23) and (24) in (26) and finally equating the 

relations (25) and (26), the following important relation is 

obtained: 

𝐷1

𝐷2
  = √sin𝛽1    (27) 

3. Results and Discussion 

With the help of Simulink/MATLAB software, the equation 

(18) and (13) were solved directly by using the model and 

various outputs were discussed below. 

3.1. Hydraulic Efficiency Curves  

Figure 5 shows the theoretical behaviour of the hydraulic 

efficiency of the runner of a cross flow turbine with respect 

to the unit rotational speed for certain values of α1, 

considering a value for φ of 0.95 which is very acceptable for 

this type of turbines [6]. Furthermore, it is observed that the 

maximum points of hydraulic efficiency are higher the 

smaller the values of the flow angle α1. 

 
Fig. 4. MATLAB/Simulink for equation (13) 
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It can be seen that the hydraulic efficiency values are almost 

coincident in the different efficiency curves for a unit rotation 

speed range from 0 to 10, which is also verified in 

experimental results [2]. Furthermore, the maximum 

efficiency points are shifting to the left as the value of α1 

increases; the growth of the efficiency curve can be clearly 

observed when the values of α1 are decreasing, which is 

quickly deduced from (18). On the other hand, the maximum 

points for each particular value of α1 have a parabolic 

behaviour, which is deduced by deriving (13) with respect to 

n11 and equating to zero, obtaining the following expression: 

ηhmax = 
𝜋2

1800𝑔
𝑛11

2     (28) 

 
Fig. 5. Hydraulic Efficiency Curves 

 

3.2. Effect of attack angle α₁  

Figure 7 shows the behaviour of hydraulic efficiency with 

respect to the variation of the angle of attack α1 at different 

values of β1, with a value for φ of 0.95 [6]. It can be clearly 

seen that the maximum values of hydraulic efficiency are 

obtained when α1 is half of β1 according to what was deduced 

in (21), in addition the maximum points of efficiency follow 

a behaviour that is shown with a dashed line decreasing 

according to what was deduced in (22). It can be seen that for 

a given value of α1 the hydraulic efficiency increases as the 

value of the angle β1 decreases; it is also seen that the values 

of α1 corresponding to the maximum efficiencies decrease as 

the value of the angle β1 decreases. 

 
Fig. 6. MATLAB/Simulink for equation (18) 
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Fig. 7. Hydraulic performance curves as a function of α1 

 

It is also appreciated that the maximum points of hydraulic 

efficiency are higher the smaller the values of the flow angle 

α1 are. These results are also verified in the experimental 

studies by Desai and Aziz [10] where it is concluded that the 

greater the angle of attack corresponds to a decrease in 

efficiency, also Choi and Kim [7] verify the same behaviour 

in a study when investigating the effect of the configuration. 

Turbine structural performance and internal flow 

characteristics through computational modelling. 

3.3. Effect of blade entry angle β₁ 

Figure 9 shows the dependence of hydraulic efficiency with 

respect to the blade entry angle β1, for different values of α1, 

with a value for φ of 0.95 [6]. It can be clearly seen that some 

maximum efficiency values are obtained when β1 is very 

close to twice α1, in addition the maximum points of 

hydraulic efficiency follow a behaviour that is shown with a 

red dotted line and the maximum points calculated from 

according to (22) they are joined with a black dashed line. It 

can be seen that for a given value of β1 the hydraulic 

efficiency increases as the value of the angle α1 decreases, in 

addition it can be seen that the values of β1 corresponding to 

the maximum efficiencies decrease when the value of the 

angle α1 decreases, and it is also appreciated that the 

maximum points of hydraulic efficiency are greater the 

smaller the values of the entry angle of the blade β1 are. The 

divergence between the maximum points obtained from (22) 

and those that emerge from (18) is also clearly appreciated. 

 
Fig. 8. MATLAB/Simulink for equation (18) 
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Fig. 9. Hydraulic performance curves as a function of β1 

 

This is explained because expression (22) was deduced 

accepting only condition (20), however we see that there is a 

very good approximation between them when β1 does not 

exceed 40°, where both lines practically overlap, which gives 

us reveals an important result from the theoretical point of 

view, since we can reach the maximum values of hydraulic 

efficiency only considering condition (21); then it is clear 

that once the value of α1 has been chosen, then the value β1 

will have to be twice that of α1 to reach the maximum 

efficiency or given the value of β1, the efficiency is 

maximized when α1 is half of β1; and the relevance of 

choosing a not excessively large value for α1 is verified again, 

which according to the graph it would be convenient not to 

exceed 20º, which is corroborated with values used in 

practice1, which allows us to obtain an acceptable 

performance in the turbine. Choi and kim [7] confirm in their 

results the trend of optimal efficiency which decreases as the 

value of the entry angle of the blade β1 increases. which is 

corroborated with values. 

3.4. Energy contribution by stage (ξ₁, ξ₂)  

Since the net torque effected on the flow can be expressed as 

the sum of the torque contribution in each of the stages 

according to (5), the torque calculated in each stage taking 

into account the expressions (4), (7) and (8) results: 

𝑀𝑒−1 = ρQ(R1v1cosα1 – R2v2cosα2)  

𝑀𝑒−2 = ρQ(R2v3cosα3 – R1v4cosα4) 

After considering the angle between absolute velocity and 

tangential velocity equivalent for both stage one and stage 

two, after also considering the absolute velocity equivalent 

for both stages, the total torque results: 

𝑀𝑒 = ρQ(R1v1cosα1 – R1v4cosα4) 

The energy contribution coefficients per stage are given by: 

Figure 11 shows the behaviour of the energy contribution 

coefficient in each stage of the turbine as a function of the 

diameter ratio of the turbine runner. This graph shows that it 

is represented by a curve 

ξ₁ =
𝑀𝑒−1⋅𝜔

𝑀𝑒⋅𝜔
 = 

(𝑅1𝑣1 cos 𝛼1−𝑅2𝑣2 cos𝛼2)

(𝑅1𝑣1 cos 𝛼1−𝑅1𝑣4 cos𝛼4)
 

ξ2 =
𝑀𝑒−1⋅𝜔

𝑀𝑒⋅𝜔
 = 

(𝑅2𝑣3 cos 𝛼3−𝑅1𝑣4 cos𝛼4)

(𝑅1𝑣1 cos 𝛼1−𝑅1𝑣4 cos𝛼4)
 

It is also true that: 

ξ₁ + ξ2 = 1 

Performing the analysis at the maximum hydraulic efficiency 

regime, we know that it is true that v1 = 2u1 cosα1, v4 = 2u4 

cosα4, α1 + α2 = 900. Furthermore, from the velocity triangle 

we have to v2 = u2/cos α2. After taking these considerations 

into account in the above equation we obtain: 

ξ₁ =
1

cos 2𝛼1
(cos2 𝛼1 −

1

2
(
𝐷2

𝐷1
)
2

) 

ξ2 =
1

cos 2𝛼1
 (

1

2
(
𝐷2

𝐷1
)
2

− sin2 𝛼1) 

decreasing (upper line) while ξ2 by an increasing curve 

(lower line), in addition both must add a constant value equal 

to unity or 100%. It can be seen that once a quotient value 

has been set, the values of ξ₁ and ξ2 increase and decrease 

respectively as the value of the angle of attack α1 increases. 

Furthermore, it is observed that the values of the coefficients 

ξ₁ and ξ2 will remain constant when increasing the angle of 

attack α1, only if the value of the diameter ratio 
𝐷2

𝐷1
 increases 

correspondingly. 
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Fig. 10. MATLAB/Simulink for energy contribution expression 

 

Considering the expressions, the diameter ratio and the 

expression of the maximum efficiency in the equations of ξ₁ 

and ξ2, it is obtained that: 

ξ₁ =
cos𝛼1

cos 2𝛼1
(cos 𝛼1 − sin 𝛼1) 

ξ2 =
sin 𝛼1

cos 2𝛼1
(cos 𝛼1 − sin 𝛼1) 

With the considerations made, it has been possible to 

establish the coefficients of energy contribution per stage ξ₁ 

and ξ2 as parameters solely dependent on the angle of attack 

α1. In this regard, it is possible to calculate the energy input 

in each stage of the cross-flow turbine only knowing the 

angle of entry of the flow. In the case of an angle α1 = 150, 

78.88% are obtained as energy contributions in the first stage 

and 21.12% in the second stage, which is close to that 

obtained by Durgin and Fay who obtain 73% in the first stage 

and therefore 27% as energy contribution in the second stage 

[6]. 

 
Fig. 11.: Energy contribution by stage as a function of D2/D1 

 

3.5. Effect of the D2/D1 Diameter Ratio  

Combining expressions (21), (27) and (28) in (13), we find 

that the maximum hydraulic efficiency is given by: 

ηhmax= 
𝜑2

2
(1 + √1 − (

𝐷2

𝐷1
)
4

)   (28) 

Figure 13 shows the behaviour of the maximum hydraulic 

efficiency achieved as a function of the variation of the 

runner diameter ratio after being solved by Simulink. It can 

also be seen in this graph that the maximum hydraulic 

efficiency is represented by a decreasing curve as the value 

of the diameter ratio increases. 
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Fig. 12. MATLAB/Simulink for equation (28) 

 
Fig. 13. Maximum Hydraulic Efficiency as a function of D2/D1 

 

According to Desai and Aziz, when evaluating this type of 

turbines experimentally, they conclude that the higher the 

diameter ratio is, corresponds to a lower efficiency, and they 

also affirm that the maximum efficiency would be found in 

the vicinity of a diameter ratio of 0.68 [9]. When calculating 

the relation of diameters according to equation (27) for an 

angle α1 = 150, we have 
𝐷2

𝐷1
 = 0.707, which is in accordance 

with what is maintained by these researchers. From Figures 

11 and 13 it can be deduced that the higher the energy 

transferred in the first stage, the greater the efficiency of the 

turbine, which does not conform to reality, since a lower and 

lower value of diameter ratio implies an increase in D1-D2, 

which produces a wide difference between the inlet and outlet 

sections of each stage, causing considerable losses during the 

flow through the runner, seeking a decrease in efficiency [1]. 

In addition, large values of  
𝐷2

𝐷1
 would make the turbine 

inefficient since the water jet would flow out of the space 

between blades in the inner periphery [9], therefore in Figure 

8 we could consider with a good approximation that from 
𝐷2

𝐷1
 

= 0.66 henceforth, the behaviour would be more in line with 

reality, as some researchers indicate that 0.66 is the optimal 

relationship between runner diameters [1]. 
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4. Conclusions and Recommendations  

A theoretical study based on the control volume method was 

developed and applied to the study of hydraulic efficiency in 

the runner of a cross flow turbine, concluding that:  

The efficiency behaviour of the cross-flow turbine obtained 

by varying the values of some of its design parameters (α1, β1 

and 
𝐷2

𝐷1
) is confirmed by experimental studies by other 

authors. In the design of this type of turbine, it should be 

ensured that α1 does not exceed 20º, since the turbine would 

become inefficient.  

The exit angle of the blade β2 can be theoretically determined 

as 90º, which is also verified in experimental results [10]. In 

the design of the cross-flow turbine, it must be guaranteed 

that β1 = 2α1 and also that 
𝐷2

𝐷1
 = √sin𝛽1, since the fulfillment 

of these conditions makes the hydraulic efficiency maximum. 

The impact of the many parameters that influence the 

efficiency of the cross-flow turbine (such as the number of 

blades, the thickness of the blades or the clearance between 

injector and runner, as well as the shape of the injector walls) 

is still under investigation. However, it is preponderant that 

for the measurement of its effects on the performance of the 

turbine, methods and / or theoretical criteria are devised that 

link these design parameters with the efficiency of the 

turbine, thus allowing the obtaining of their optimal values. 

Since the improvement of the performance of this hydraulic 

turbine will depend on the optimization of these parameters. 
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D1, D2: outer and inner diameter of the runner [m]. ηh: hydraulic efficiency. |𝑊𝑟|: friction work on the blades. 

B: runner width [m]. Z: number of blades. g: acceleration of gravity (9.81 m / s2). 

H: available head [m]. u: tangential velocity = ωRi [m / s]. �⃗�  : vector normal to control surfaces. 

φ: Coefficient of losses in the injector. w: relative velocity [m / s]. 
𝑟  : radial vector for the position of the fluid 
particles. 

n: rotational speed of the runner [rpm]. v: absolute velocity [m / s]. �⃗�  : absolute velocity vector. 

n11: unit rotational speed = nD1 /√𝐻 ξ₁, ξ₂: energy contribution at each stage. Subscripts: 

ω: angular velocity [rad / s]. 
α: angle between absolute velocity and 

tangential velocity. 
1: Entrance of the first stage. 

Q: water flow [m3 / s]. 
β: angle between relative velocity and 

tangential velocity. 
2: Departure of the first stage. 

M: resultant moment in the axial direction [Nm]. 
θ: arc subtended by flux on the inner and 

outer periphery of the runner. 
3: Entrance of the second stage. 

ρ: density of the working fluid [Kg / m3]. Li: length of the arc that embraces the flow. 4: Exit of the second stage. 
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