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Calculation of the Total Interaction Energy and
Surface Energy of Liquid Droplest in Microscopic Sizes

Timur HALICIOGLU

ABSTRACT

A method is developed to calculate the total intermolecular potential energy, Ep,
of spherical droplets of simple liquids as a function of the droplet’s radius. Numerical
values of E are calculeted for droplets of liquid Argon with radii between 10-250 A
(i.e., containing 102-10° atoms). It is found that for droplets containing less than 10°
atoms to estimate any quantity related to the energy (such as potential energy, surface
energy etc.) the use of macroscopic bulk properties of the liquid is inadequate. The vari-
ation of the surface energy with respect to the droplet’s size is alsc calculated.

INTRODUCTION

In the study of a vaporization-condensation process the
most peculiar situation occurs when the liquid phase is in the form
of small droplets. The properties of very small droplets are of im-
portance especially in problems related to homogeneous nucleati-
on [1-9]. The main problem, here, is to find how the thermody-
namic properties vary as the size of the droplet diminishes down
to very small dimensions. However, there is as yet no sound the-
ory to estimate the thermodynamic quantities of very small
droplets; and the subject is quite contoversial [6-10].

Recently, various attempts have been made to estimate -nume-
rically- the total potential energy of clusters (microcrystallites)
of atoms, or molecules, from pair interractions [2, 11, 12]. Beca-
use of the computational difficulties, however, there has not been
any work done for clusters containing more than 10° molecules,
nor for droplets of liquids.
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In this work, a method is developed to calculate the total in-
termolecular potential energy, Ej, of spherical droplets of simple
liquids using Lennard-Jones type pair interactions. The method
takes the geometry of the system into consideration and provides
the possibility of computing the total potential energy of droplets .
of simple liquids up to macroscopic sizes.

As an example the values of E, are calculated for varying
sizes of droplets of liquid Argon. It is found that droplets conta-
ining less than 105 atoms can be considered as microscopic and
accordingly, the use of macroscopic quantities to estimate the po-
tential energy (and related quantities) of such small droplets
is shown to be inadequate. Furthermore, an estimate of the
surface energy of microscopic droplets of liquid Argon is also
obtained as a function of the droplet’s size.

Model and Theory

A droplet is considered as a “central” molecule surrounded
by shells of molecules. In each shell molecules are assumed to be
distributed uniformly (providing a complete spherical symmetry).
If the internuclear distance between the central molecule and a
molecule located in the i th shell is denoted by r,, we further as-
sume that the relation

I; o _—
1. ? = '\/l
holds, as in an assembly of close packed spheres [11, 13]. Now,
the total number of molecules, N, in a given droplet can be exp-
ressed as:

2. NT:1+;S‘Ni

Where, N; represents the average number of molecules located
in the i‘th coodination shell, and s is the number of the outermost
coodination shell. Accordingly, the total potential energy, E,,
of the droplet due to the interaction among molecules is:

3. Ep = 1 (e, + Zsf Nie;)

where, e, denotes the potential energy of interaction of the central
molecule with all the other remaining molecules, and e; is the
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potential energy of interaction between a “reference” molecule
located in the i’th coordination shell and the other N;—1 muole-
cules in the droplet. For a “reference” molecule located within
the surface region of the droplet the value of e; should be diffe-
rent from e,.

Now, we will first consider a macroscopic droplet and estima-
te the average numbers, N;, and distances, r;, of molecules on the
coordination shells, then, these will be used in calculating E; for
microscopic droplets by means of Eq.3.

A. Macroscopic Droplets. In the case of a droplet of macros-
copic size (i.e., N+ o0) the number of molecules in the surface
region is negligibly small, if compared with the total number of
molecules in the droplet. Accordingly, for any macroscopic assem-
bly the difference between e; and e, can be ignored (as though
there were no surfaces). Therefore Eq.3 may be written in the fol-
lowing form:

N

4. E, = —§I e, (for N, very large)

Considering pairwise additivity of the potential, the term e, can
be calculated from:

5. €y = j:Ni- u (l‘i)

where, u (r;)) denotes the pair potential energy between two mo-
lecules at an internuclear distance, r;. To calculate u (r;) for simp-
le liquids the Lennard-Jones pair potential may be used:

o aw=ae (D) - (@)

3

where, ¢ and ¢ are the energy and distance parameters, respecti-
vely. Combining Equations 4,5 and 6 one obtains:

G ¢ s N; Ty '
7. =Ny (2) (55 ()
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Here, the term N; /N, is considered to be a geometrical factor,
and can be calculated from the geometry of an assembly of close
packed spheres (f). Accordingly, for macroscopic droplets (i.e.,
s - c0), the terms within the summation signs of Eq.7 approach
limiting values. From the geometry and considering Eq.1 we ob-
tain:
12 6
Lim. 52 (L) — 1.011 and Lim. 3 <t (r—‘) — 1.204

§—>0c0 1 1 i S§—> 00 i N; T

The number of molecules in a spherical droplet is given by:

4 = R

8. Ny = ——

where, R denotes the radius of the droplet, and v,, is the volume
of one molecule in the liquid phase. (Here, v, is calculated as the
weight of one molecule divided by the bulk density of the liquid).
For droplets of macroscopic sizes R may be taken as equal to r,.
Therefore, considering Equations 1, 2 and 8 we obtain:

4} As®
3v, 2 N; /N,

9. N, —

Now, for a macroscopic droplet using Equations 7 and 9 one can
calculate N, and r, in terms of e, v, ¢ and ¢ (*). For liquid Ar-
gon, Krypton and Xenon numerical values of N, and r, are cal-
culated and given in Table I, with corresponding experimental
values. The value of e, is calculated from the experimental value

of Ep, the cohesive energy, [16] by means of Eq. 4. Numerical

() Bernal[14] and Scott [15] have shown that simple liquids can be well represen-
ted by “Random Close Packed” spheres. In their model, if we compare the ratio N; /N,,
(the average number of spheres in the i'th coordination shell divided by the average
number of nearest neighbors) with the analogous ratio, N;° /N, for an assembly of close
packed spheres, wefind that up toi=4, the value of N; /N; may be considered to be equal
to the value of N[N/, Th‘is region -which coincides with the short range order of
ligquids—is the most important region in the energy calculations. (See Reference 11.)

3 9
*) The term__\/_s_. in Eq. 9 for the limit s -> 0O converges to — .
q
N, /N, T2
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values of E,, v, , ¢ and o that are used in the calculation are tabu
lated in Table II. '

B. Droplets in Molecular Dimensions. In the case of micros-
copic droplets the number of molecules located in the surface regi-
-on is no longer negligible compared with the total number of mole-
cules. Therefore, to calculate the total energy, Eq. 3. should be
used, which considers molecules on each shell separately. Of co-
urse, every molecule in the droplet has its own coordination shells.
Let us name the coordination shells around the “central” mole-
cule as “central coordination shells” and the coordination shells
around and other reference molecule as “reference coordination
shells” (x). Depending on the location of a reference molecule some
of its “reference coordination shells” should be cut by the surface
of the droplet. As a result, in those coordination shells there sho-
uld be a decrease in the average number of molecules. (See Figure
I.) Accordingly, the interaction potential energy, e;, of a molecule
located in the i’th “central coordination shell” may be calculated
in the following way:

surface of

the droplet

central

coordination
shells

a reference molecule
located at the i’th
central -coordination shell

reference
coordination
shells
«central”
molecule
Figure 1. “Ceniral” and “Reference” Coordination Shells
) 8
10. ei = X ay Nju (15)
J

1 According to the model, molecules are uniformly distributed over the “central
coordination shell”, In calculating e;, similarly, molecules in any “reference coordinati-
on shell” are assumed to be uniformly distributed. :
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Where, a;; N; is the average number of molecules in the j°th “re-
ference coordination shell” of a molecule located in the i’th “cent-
ral coordination shell”. The factor a; can take values 0 << oy
< 1, depending on the location of the reference molecule. If the
“reference coordination shell” is not disturbed by the surface of
the droplet then, a;; = 1; otherwise a; < 1.

The factor o;; may be calculated in various ways. For examp-
le, if we assume that molecules in each coordination shell are dist-
ributed uniformly over the entire surface, for the j’th “reference
coordination shell”, which is cut by the surface of the droplet,
we may write:

11. adiy: = —
where, S; denotes the total surface area of the jth “reference

coordination shell”’, S, = 4 =r;2; and S, represents the portion
of S; included by the droplet. Accordingly, a;; is given by (*):

_ B —(vievi): . R T
12. oy = ™ if o < (Vi+ i)
oy = 1. it T > (Vit

Obviously, for small i the values of a;; differ from unity only for
larger values of j; but, for a large i (for a reference molecule in the
surface region) almost all a;;’s will be smaller than 1.

Now Eq. 3 can be used to calculate the total potential energy,
Ep, of a droplet. As an example, droplets of liquid Argon are con-
sidered. The numerical values of E;, are calculated for various
droplet sizes. Calculation is carried out for droplets containing
up to 106 Argon atoms. The results are tabulated in Table III.
The change in -Ej [Ny versus R is shown in Figure II. The curve

(*) The radius of the droplet, R, is defined according to Eq. 4 for very small
droplets R is not always equal to r,—asit was assumed for macroscopic droplets. The
surface area of a droplet is consi dered as the surface area of a sphere having the
same volume as N v,,.. [2]
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approaches asymptotically to the macroscopic value (**), e, =
—1.05 x 107** ergs, shown with the broken line.

Table III Calculated Values of Ep and E, for Various Droplet Sizes of Liquid Argon

Droplet’s Average number Total potential Energy per
radius ~ of molecules energy of molecule in Surface energy
in the droplet interaction the droplet
R NT "‘ED _ED /NT ES
(L) (ergs /droplet)  (ergs/molecule)  (ergs /molecule)
9.02 65 4.1395x10~2 0.6386x10~" 4.1992x10~"*
17.92 509 4.2754x10—1 0.8402x10-" 2.1835x10-"¢
27.04 1749 1.5932x10-" 0.9111x10~" 1.4742x10~M
35.87 4084 3.8693x10 0.9475x10-1 1.1102x10"*
54.08 13993 1.3771x10-*° 0.9842x10" 0.7438x10-'*
108.15 111927 1.1421x10-8 1.0204x10—% 0.3814x10—
180.29 518489 5.3667x10-° 1.0351x10-* 0.2347x10-*
243.44 1276483 1.3285x10-7 1.0408x10-"* 0.1778x10~*¢
(-Ep /Npx10%)
ergs /[molecule
1.0 F
0.9 |-
0.8 |
0.7 ¢
7
0.6 |
) 1 1 L 1 |
40 80 120 160 200 240 3

Droplet’s Radius
Figure 2. Interaction Potential Energy per Atom versus the Droplet’s Radius

(**) Here, e, is calculated as the molecular cohesive energy, i.e., cohesive
energy [Ny. Note that for infinitely large droplets we have e, = e, [2.
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From the values of the total potential energy for droplets of
various sizes one can also calculate the surface energy of droplets
as a function of their radii. The surface energy, E, of a droplet
of N, atoms is defined as the difference between the energy of
these Ny atoms in the droplet and the energy of N atoms in the
bulk liquid [2, 11]. Accordingly;

13. Es=E;—Nye,

The values of E are calculated for droplets of liquid Argon, and
tabulated in the last column of Table ITI. Also the variation of
E; versus the droplet’s radius is given in Figure IIL.

(in “ergs)
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Figure 3. Variation of the surface potential energy per atom as a function of the droplet’s
radius.

DISCUSSION

The model which is used in this work to represent liquid
droplest agrees quite well with the nature of the liquid state.It con-
siders no lattice structure. The assumption of the uniform distri-
bution of atoms —or molecules— on each coordination shell (that
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provides a spherical symmetry around a reference atom) facilita-
tes the compitational procedure greatly.

The method enables us to calculate the average value of the
microscopic quantities, N; and r, of a liquid, and the potential
energy of a liquid droplet of given size. With the Lennard-Jones
parameters, only the energy of vaporization and the density of
the liquid are necessary to estimate the numerical values of N,
and r;. The geometry of the close packed spheres is used to obtain
only the value of N; /N, (the ratio of the average number of atoms
in the i’th shell to the average number of nearest neighbors) for
liquid droplets. This is found to be a very good approximation,
especially within the short range order of simple liquids. The
calculated values of N, and r, for liquid Argon, Krypton and
Xenon are found to be in good agreement with the experimental
measurements.

The calculation of the total potential energy, Ep, for various
sizes of droplets of liquid Argon indicates that liquid droplets con-
taining more than 105 atoms may be considered as macroscopic
and the potential energy —or any quantity related to it— can be
estimated using macroscopic (bulk) values. For smaller droplets,
however, the extrapolation of macroscopic quantities down to
droplets containing less than 105 atoms is inadequate.
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OZET

Kiigiik kiiresel s1v1 damlaciklarinda toplam ¢ekim potansiyeli Ep’nin damlaeik
yari gapmn bir fonksiyonu olarak hesaplanmasi igin yeni bir metod geligtir‘ldi. Siv1 Ar-
gon’un 10-250 A yar: ¢aplarindaki (yani 10°-10¢ Argon atomu ihtiva eden) damlaciklar
igin Ep’nin sayisal degerleri hesapland:. 10° atomdan daha az atom ihtiva eden damla-
ciklar igin herhangi bir termodinamik miktarin (mesela, toplam potansiyel enerji, yiizey
enerji gibi) dogrudan dogruya makroskopik 6zelliklerden hesaplanmasimin hatah olaca-
g gosterildi. Ayrica yiizey enerjinin damlacik yar gapt ile degigimi de incelendi.
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