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Abstract 

Climatic variables collected from weather stations evenly distributed in all regions of Turkey were used to study the potential of Gaussian 

Process Regression (GPR) and Support Vector Regression (SVR) in predicting reference evapotranspiration (ET0). The variables used 

as input features for the GPR and SVR models were solar radiation, mean temperature, wind speed, relative humidity, and month of the 

year. The corresponding ET0 values were calculated using the Food and Agriculture Organization recommended equation FAO 56 PM 

using climatic measurements collected from the same stations. Results show that regression models with high accuracies are possible 

using GPR and SVR models. The most effective input variable for ET0 prediction was found to be solar radiation. Relative humidity 

had the lowest impact on model accuracies. 

Keywords: Reference Evapotranspiration, Gaussian Processes Regression, Support Vector Regression.   

Destek Vektör Makineleri ve Gauss Süreçleri Kullanılarak Sınırlı İklim 

Değişkenlerinden Referans Evapotranspirasyon Tahmini 

Öz 

Türkiye'nin tüm bölgelerine eşit olarak dağılmış hava istasyonlarından toplanan iklim değişkenleri, Gaussian Proses Regresyon (GPR) 

ve Destek Vektör Regresyonunun (SVR) referans evapotranspirasyonu (ET0) tahmin etme potansiyelini incelemek için kullanılmıştır. 

GP ve SVR modelleri için girdi özellikleri olarak kullanılan değişkenler güneş radyasyonu, ortalama sıcaklık, rüzgar hızı, bağıl nem ve 

yılın ayıdır. Karşılık gelen ET0 değerleri, aynı istasyonlardan toplanan iklim ölçümleri kullanılarak Gıda ve Tarım Örgütü tarafından 

önerilen FAO 56 PM denklemi kullanılarak hesaplanmıştır. Sonuçlar, GPR ve SVR modelleri kullanılarak yüksek doğruluğa sahip 

regresyon modellerinin mümkün olduğunu göstermektedir. ET0 tahmini için en etkili girdi değişkeninin güneş radyasyonu olduğu 

bulunmuştur. Bağıl nem, model doğrulukları üzerinde en düşük etkiye sahiptir. 

 

Anahtar Kelimeler: Referans Evapotranspirasyon, Gaussian Proses Regresyon, Destek Vektör Regresyon. 
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1. Introduction 

Evapotranspiration is the loss of moisture from earth by 

evaporation of free water and transpiration from plants. 

Measuring evapotranspiration rates is crucial for planning 

efficient irrigation schemes, especially in arid and semi-arid 

regions where water resources are limited [1]. The Food and 

Agriculture Organization (FAO) recommends using the FAO56 

Penman-Monteith equation, Eq. (1), for reference 

evapotranspiration calculation [2]. Reference evapotranspiration 

(ET0) is the evapotranspiration that occurs in a surface of 

specified crop type and properties (reference surface). Then, using 

pre-determined relationships between evapotranspiration and 

crop properties, the real evapotranspiration relative to local crop 

types can be found. Using this method, surface and crop related 

variables can be eliminated from the evapotranspiration equation, 

which renders it more generalized. 

𝐸𝑇0 =
Δ(𝑅𝑛 − 𝐺) +

𝜌𝑎𝑐𝑝(𝑒𝑠−𝑒𝑎)

𝑟𝑎

Δ + 𝛾 (𝑎 +
𝑟𝑠

𝑟𝑎
)

                                    (1)    

Rn: Net Radiation, G: Soil heat flux, (es-ea): Vapour pressure 

deficit of the air, ρa: Mean air density, cp: Specific heat of the air, 

Δ: Slope of saturation vapour pressure temperature relationship, 

γ: Psychrometric constant, rs, ra: Surface and aerodynamic 

resistances  

The FAO56-PM ET0 equation still requires numerous 

measured variables, some of which can only be acquired from 

major weather stations. The absence of these measurements in 

rural areas, especially in developing countries, limits the usability 

of the FAO56-PM equation. This complexity of 

evapotranspiration measurement has induced research in 

estimating its values from easily obtainable climatic 

measurements, such as temperature and wind speed. One of the 

earliest and most popular equations that estimate ET0 using few 

variables, ambient air temperature and solar radiation, is the 

Hargreaves equation (HG) [3]. Various empirical equations were 

proposed for estimating evapotranspiration from limited data [4]. 

With the immergence of machine learning (ML), scientists 

studied the potential of ML in ET0 estimation. Machine learning 

is a set of algorithms that can learn relationships between different 

variables and patterns in a dataset, eventually finding the 

equations that relate variables to each other without being 

explicitly being programmed for this purpose. ML models are 

based on statistical and probabilistic rules and can deal with large 

datasets and cases of nonlinearity. These properties of ML 

rendered its potential in ET0 estimation using few variables very 

high. V. Nourani et al. (2014) thoroughly reviewed the use of 

artificial intelligence tools for reference evapotranspiration 

estimation, focusing on studies that apply a Wavelet transform on 

input variables [5]. Chia et al. (2020) provide a more recent 

review of ET0 estimation using AI methods [6]. 

Citakoglu et al. (2014) estimated monthly mean reference 

transpiration in Turkey from several combinations of input 

variables using adaptive network based fuzzy inference system 

(ANFIS) and artificial neural network (ANN) models [7]. H. 

Citakoglu et al. (2014) concluded that solar radiation, air 

temperature, wind speed, and relative humidity are the most 

effective input features for estimating ET0. 

Wen et al. (2015) set a measuring station in a specific site in 

Ejina basin in China to measure meteorological data required for 

daily ET0 estimation using the FAO-56 PM equation [8]. Then, 

support vector regression (SVR) models were used to estimate 

daily ET0 values. Results show that models that took in maximum 

and minimum daily temperatures and solar radiation as inputs 

gave the most accurate results.  

Carter and Liang (2019) compared ten machine learning 

models to predict ET values using data collected from satellite 

sensors (GLASS, MODIS) and data from measuring towers 

obtained from Fluxnet and Ameriflux [9]. This study emphasized 

the potential of satellite data inclusion in ML models for ET0 

estimation. 

Yu et al. (2020) investigated the uncertainty of artificial 

intelligence methods in estimating daily reference 

evapotranspiration [10]. Whereas other papers were concerned 

about the potential of different AI models for ET0 estimation and 

their accuracies, this paper attacked the problem from a more 

scientific way. It was shown that wind speed, solar radiation, and 

max/min temperatures were the most contributing variables to the 

variation of ET0 estimates. These results were scientifically 

verified through the explanation of energy transformation and 

evapotranspiration demands. 

In this study, climatic data collected from weather stations 

around Turkey will be used to estimate ET0 using Gaussian 

process regression (GPR). The use of this ML algorithm for ET0 

estimation is limited in academia. Moreover, to the knowledge of 

the author, this study is the first to apply GPR on climatic data 

collected from sparsely spread locations in Turkey. 

2. Material and Method 

2.1. Support Vector Machines (SVM) 

Support vector machine (SVM) algorithm was first 

developed as a classifier. The SVM algorithm finds the best 

hyperplane that separates different variables. The best hyperplane 

is the one that has the greatest margin that separates it from all 

variables equally (Fig 1.). In most cases, variables cannot be 

separated by a hyperplane in the original dimensional space. 

Kernels are used to transform the data to a higher dimensional 

space where variables can be separated using a hyperplane. For 

this study, the radial basis function kernel was used as an SVM 

kernel. Using the same algorithm, the classification hyperplane 

can be used as a regression hyperplane by maximizing the number 

of variables that fall inside the margin.  

 

Fig. 1 Support vector machine (SVM) classification 
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In order to create a regularized model and avoid overfitting, 

an allowance for the regression hyperplane to miss some values is 

given by introducing a threshold parameter ϵ. By defining a 

maximum threshold value, all training predictions will be 

constrained to not be farther from true values than the threshold 

allows. The thresholds of all variables are multiplied by a 

parameter C that penalizes high threshold parameters in the loss 

function. Therefore, large C values result in low training error and 

possible overfit, and small C values result in higher tolerance for 

errors and less overfit. For this study, Python’s scikit-learn library, 

which is an open-source machine learning library, was used. The 

RBF kernel equation used in this library (Eq. 2) contains one 

optimizable variable, γ. This variable determines the proximity 

correlated variables to each other. For instance, a small γ 

corresponds to variables away from each other being correlated, 

thus a smoother function. 

𝐾𝑅𝐵𝐹(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾 ⋅ (𝑥𝑖 − 𝑥𝑗)
2

)                                 (2) 

The three previously mentioned SVR parameters are chosen 

using cross validation. In cross validation, the available data is 

divided to a number of folds, in this study five folds, whereby in 

every iteration one fold is used as a test set and the other folds are 

used to train the model. Using a set of preliminary values for each 

variable, a grid search is applied by creating a model for each 

variable combination. From the mean score of the 5 tests, the best 

parameter combination is determined. 

2.2. Gaussian Processes Regression 

Gaussian process is a joint distribution of variables, where 

every subset of these variables is normally distributed. Gaussian 

processes are used to solve regression problems. To define a 

Gaussian process, a prior multivariate Gaussian distribution is 

required [11]. This prior is defined by a mean vector and a 

covariance matrix. The prior mean vector value has minor effect 

on the regression model and is usually assumed zero.  The 

covariance matrix is created using kernel functions that take in 

every two data point combination and return the corresponding 

value for the covariance matrix. Kernels ensure that the resulting 

covariance matrix is positive semi-definite. The choice of the 

kernel and its parameters is the determining factor of the accuracy 

and quality of the regression model. Using the defined kernel 

function, a modified covariance matrix is created using training 

and test data, which represents the posterior [12]. Predictions 

made using Gaussian processes are accompanied with their 

uncertainty values. Predictions near training data have low 

uncertainty, and predictions further away have higher uncertainty 

values. It is worth mentioning that the regression curve tends to 

return to the mean value of the prior distribution when data is 

unavailable (Fig. 2). Therefore, it is not recommended to 

extrapolate from the resulting regression function. 

Radial basis function (RBF) kernel, Eq. (3), was seen as most 

suitable for ET0 prediction. The RBF kernel assumes that points 

next to each other have higher correlations than points away from 

each other, which is the case for reference evapotranspiration. 

There are two parameters that should be optimized in an RBF 

kernel, variance and length scale. Variance determines the prior 

variance in case no data is available. Length scale determines the 

spacing between correlated variables, i.e., a low value of length 

scale corresponds to a noisier function and a higher value 

corresponds to a smoother function.  

𝐾𝑅𝐵𝐹(𝑥𝑖 , 𝑥𝑗) = 𝜎2 exp (−
(𝑥𝑖 − 𝑥𝑗)

2

2𝑙2
)                               (3) 

 

 

 

Fig. 2 Sine function regression using Gaussian Processes 

The posterior covariance matrix will have zero variance for 

training data points, which is unrealistic and causes overfitting. 

To solve this issue, Gaussian noise, Eq. (4), is added to the derived 

covariance matrix to allow for variance round training data points. 

The variance of the added Gaussian noise should also be 

optimized. 

 

ϵ =  Ν(0, 𝜎2)                                                                            (4)  

 

GPy Python package was used in this study. GPy is an open-

source Gaussian process framework written in Python by The 

Sheffield Machine Learning group. Parameter optimization is 

done using the Limited Broyden – Fletcher – Goldfarb – Shanno 

(LBFGS) algorithm. 

2.3. Materials 

This study is conducted on a dataset consisting of 3300 

measurements of five climatic variables and the corresponding 

reference evapotranspiration obtained from the General 

Directorate of Turkish State Meteorological Service (TSMS). The 

measured variables are solar radiation (R_s), mean temperature 

(T_avg), relative humidity (RH), wind speed (WS), and the 

number of the month (Mo) in which the measurements were 

taken. These climatic variables were collected from 275 weather 

stations around Turkey during a period ranging between 20 to 45 

years on some stations. The reference evapotranspiration 

corresponding to each set of climatic variables was calculated 

using the FAO-56 PM equation, whereby the required variables 

for the equation were collected from the same weather stations. 

The dataset can be accepted as a general case in Turkey, as the 

weather stations are evenly distributed around the country. The 

dataset was split into a training set and a testing set by a ratio of 

1:4. The distribution of variables of both sets are shown in Fig. 3. 

It can be seen that both, training and test datasets, have similar 

distributions. 
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Fig 3. Distributions of variables 

2.4. Model Evaluation 

Model evaluation is done using three parameters: mean absolute 

error (MAE), root mean squared error (RMSE), and the 

coefficient of determination (R2), given in Eq. (5-7). MAE and 

RMSE are two measures of error, therefore perfect models would 

have MAE and RMSE values equal to zero. The coefficient of 

determination measures the ratio of variation represented by the 

regression line to the total variation of data for a linear regression. 

A regression line that is the mean value of data would have R2=0, 

whereas a perfect model would have R2=1. 

𝑀𝐴𝐸 =
1

𝑁
𝛴𝑖=1

𝑛 |𝑌𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑌𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|                        (5) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
𝛴𝑖=1

𝑛 (𝑌𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑌𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
2

               (6) 

𝑅2 =
𝛴𝑖=1

𝑛 (𝑌𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑌𝑚𝑒𝑎𝑛)
2

𝛴𝑖=1
𝑛 (𝑌𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑌𝑚𝑒𝑎𝑛)

2                                        (7) 

3. Results and Discussion  

Several combinations of input variables were used to create 

Gaussian Process and Support Vector Regression models. 

Resulting scores for both training and test datasets are given in         

Table 1−2 sorted from the worst to the best model, with the 

relative estimation-measurement plots given in Fig 4−6 for GPR 

and SVR models, respectively. All models, GPR and SVR, were 

created using the radial basis function kernel; however, the kernel 

parameters were optimized for each input case. It can be seen that 

solar radiation on its own can produce good results, which is 

scientifically expected as solar radiation is the factor that 

determines energy balance. Function samples from the Gaussian 

process model with solar radiation as an input are represented               

in Fig 4−6 with a 95% confidence range. 

 

Fig 4.  Function samples from model 3. 

Table 1.  Models and Variables 

Model Variables Algorithm 

 Model 1 𝐓𝐚𝐯𝐠, 𝐖𝐒 
GPR 

SVR 

Model 2 𝐓𝐚𝐯𝐠, 𝐑𝐇, 𝐖𝐒 
GPR 

SVR 

Model 3 𝐑𝐬 
GPR 

SVR 

Model 4 𝐓𝐚𝐯𝐠, 𝐌𝐨 
GPR 

SVR 

Model 5 𝐓𝐚𝐯𝐠, 𝐖𝐒, 𝐌𝐨 
GPR 

SVR 

Model 6 𝐑𝐬, 𝐓𝐚𝐯𝐠, 𝐌𝐨 
GPR 

SVR 

Model 7 𝐑𝐬, 𝐓𝐚𝐯𝐠, 𝐖𝐒, 𝐌𝐨 
GPR 

SVR 

Relative humidity was seen to have minor effect on the model 

results and was therefore eliminated from other models. Adding 

the month of the year to the model with mean temperature and 

wind speed caused a significant improvement in the model 

accuracy. This can be explained by the correlation between month 

of the year and sunshine hours and solar radiation. A model 

including solar radiation, wind speed, mean temperature, and 

month variables showed very high accuracy and low MAE and 

RMSE errors. Results show that GPR and SVR models have 

similar accuracies and errors, although GPR models were 

marginally better on test data, hence the better regularization of 

GPR models. 
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Table 2. Model Errors for Training and Test Scores 

Algorithm 
Training Scores Test Scores 

MAE RMSE R2 MAE RMSE R2 

GPR 1.441 1.771 0.749 1.561 1.91 0.691 

SVR 1.422 1.787 0.744 1.577 1.974 0.670 

GPR 1.275 1.594 0.796 1.428 1.779 0.732 

SVR 1.260 1.629 0.787 1.418 1.814 0.721 

GPR 0.976 1.259 0.873 0.907 1.167 0.885 

SVR 0.974 1.265 0.872 0.915 1.179 0.882 

GPR 0.716 0.977 0.923 0.694 0.946 0.924 

SVR 0.698 0.960 0.926 0.678 0.930 0.927 

GPR 0.578 0.798 0.949 0.601 0.855 0.938 

SVR 0.536 0.767 0.953 0.602 0.866 0.936 

GPR 0.564 0.753 0.955 0.508 0.663 0.963 

SVR 0.544 0.741 0.956 0.489 0.641 0.965 

GPR 0.240 0.321 0.992 0.255 0.350 0.990 

SVR 0.242 0.323 0.992 0.271 0.368 0.988 

 

 
Fig. 5 GPR Prediction-Measurement plots 

 

Fig. 6  SVR Prediction-Measurement plots 

4. Conclusions and Recommendations 

Artificial intelligence has taken a large portion of research in 

climate science. The nonlinearity of meteorological variables and 

their dependency on many other properties and variables render 

machine learning models beneficial and efficient in this field. 

Calculating reference evapotranspiration using minimum climatic 

variables has always been a requirement, especially in rural areas 

where obtainable measurements are limited. Using machine 

learning algorithms, accurate ET0 estimations are obtainable. 

In this paper, the potential of Gaussian Processes in predicting 

ET0 values from easily measurable climatic variables was 

investigated. Prediction accuracies exceeding 99% were 

obtainable from only four input features, in comparison with the 

numerous input variables for the FAO 56 PM equation. Besides 

being accurate, Gaussian Process models provide an uncertainty 

value with every prediction, making it more suitable for real-

world usage. 

The dataset used to conduct this study consists of climatic 

variables measured from all around Turkey. Moreover, both test 

and train datasets contained data from all Turkey’s regions. This, 

along with the obtained accuracy results, proves that a single 

model is suitable for use in different areas of relatively different 

climates. Therefore, predictions to be done in areas in Turkey 

other than the studied areas will be as accurate as the ones in this 

study.  
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