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ABSTRACT

The surface crystal structures of polycrystalline electrodes that are not stable and the difficulties in
obtaining reproducible results lead to several difficulties in working with such electrodes. For this reason
especially in the recent years intensive search is being carried out. For this goal noble metal platinum is
especially selected because of its high electrocatalytic effect. But obtaining single crystal surfaces and
preparing electrode from these surfaces turn out to be difficult. During the thermal procedure, surface
changes and due to the pretreatment that are adapted different current-potential curves are obtained.

In this review by giving the preparation methods of single crystal platinum and gold electrodes
voltammetric studies have been explained with these electrodes.

1. INTRODUCTION

Electrocatalysis on single crystal surfaces has attracted the attention of those
who work in this field of catalysis, as well as those who work in the field of
chemical catalysis, because both types of catalysis are considered to be equally
structure-sensitive. The study of electrocatalysis on well-defined single crystal
surfaces is necessary to elucidate the structure dependence of this type of catalysis.

Platinum is a suitable material for single crystal study of electrocatalysis
because of its high electrocatalytic activity for many reactions as shown by abundant
information hitherto reported on polycrystalline samples. On the other hand gold has
the widest double-layer region, among all the noble metals (37). This region covers
0.4-0.8 V in Pt, 0.3-0.5 V in Rh and 0.2-0.8 V in gold. That is why gold is the most
suitable metal to investigate most of organic reactions.
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However, the preparation and the conservation of well-defined single crystal
surface encounter many difficulties. A surface of single crystal exposed by cutting to
a direction parallel to the not plane having this index. The roughness factor of a true
single crystal surface should ideally be unity.

Of course the kinetic parameters of the oxide growth could be dependent on the
crystallographic orientation of the surface. Hence, measurements at polycrystalline
metals are not very suitable for investigations of thin epitactic layers and monolayer
effects, which could differ on different planes.

EXPERIMENTAL

Preparation of Pt and Au Single Crystals

A bead single crystal was prepared by the method of Kaischew (63) as
modified by Clavilier et al (33). The crystallographic axes of the crystal were
determined optically, using as a guide the laser beam spots on a wall, as reflected by
the (111) facets on the bead surface. Then the crystal imbedded in resin was cut with
a diamond cutting wheel to give the (111) face. This surface was then polished to
optical flatness using a 0,1 pm diamond paste for the final finish. After the resin was

removed, a Pt lead wire and Pt-Rh wire, which were used as a thermocouple for the
exact measurement of temperature, were welded onto the sample at the opposite side

of the surface. The (111) face thus obtained was annealed at 1100°C in a hydrogen-
oxygen flame or in a small electric furnace specially designed for this purpose (74)
(Fig 1) under an argon flow, and then cooled by a droplet of a ultrapure water in
similar way to that used by Clavilier et al (33) or cooled in various atmospheres.
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Fig. 1. Electrode holder (part A) connected to the heat treatment furnace (part B),
(C) inlet for atmospheric gas, (D) inlet for inert gas.
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Figure 1 shows an electrode holder (part A) put in contact with a small furnace
(part B; fused silica tube of 10 mm diameter); the narrow gap at the contact between
the two tubes served as a gas exit. Atmospheric gas was introduced from the gas
inlet of the furnace ( C on the left), and inert gas was introduced from the gas inlet
the electrode holder (D on the right).

The sample was supported by Pt and Pt-Rh wires, used as thermocouple wires,
which were shielded in a Pyrex tube of 6 mm diameter, serving as a moving rod.
After being cooled the sample was brought into the electrode holder tube by shifting
the moving rod, and then the sample, together with the electrode holder, was
transferred under the protection of an argon flow in the electrochemical cell. The
Pt(111) surface was brought into contact the solution surface as schematically shows
in Fig 2, in the way done by Clavilier et al (33).
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Fig. 2. Measurement cell assembly.
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Another way of the preparation of single crystals have been found by Faure
(44). Roughly speaking, it consists in fusing a high purity platinum wire in Hy-O,
low pipe, and in slowly cooling the spherical platinum droplet thus obtained, which
solidifies as a single crystal. This crystal (about 3 mm in diameter), is X-ray
oriented, then it is cut along a diametral plane. The surface is in turn, mechanically
polished, to adjust accurately, its orientation, with 0.2°C. Finally, two platinum wires
are welded at the back crystal to provide means of holding and heating it, together
with the two wires of a platinum, platinum-rhodium thermocouple, and the crystal is
carefully annealed in the low-pipe flame. The sample surface is cleaned in ultra high
vacuum (UHV) by argon bombarding and annealing.

Gold single crystals (length 15 cm, diameter 4mm) are prepared from 99,999 %
gold in a vacuum furnace using the Czochralski method (13). The crystals are
electrolytically cut and planed using a spark erosion machine parallel to the (100)
and (111) plane respectively, which is perpendicular to the axis of the crystal rod.
Then the crystal surface is etched in aqua regia and polished electrolytically in a
cyanide electrode. Finally, the crystals are annealed in a high vacuum at 830°C for
6h to minimize the number of dislocations. To examine the crystal surface, Laue
back scattering diagrams are recorded using an X-ray diffractometer. It could be
shown by these Laue diagrams that the spark erosion disturbed a thin surface layer
only, which is removed completely by the subsequent etching and polished. Hence
the Laue diagrams of the polished and annealed (111) and (100) planes have shown
clearly-defined spots in a hexagonal or tetragonal symmetry, giving evidence for the
correct orientation of the crystal plane (38,39). The crystals are fixed on a stainless
steel holder by conducting glue containing graphite. To remove impurities from the
surface, the crystals are washed in acetone, concentrated HNO;, distilled water.

In single crystal experiments, it is always difficult to cover the planes of
differing orientation, surrounding the working area. In general, teflon or epoxy
resins are used. However, a teflon cover is not really tight and resins might
contamine the surface. Dickertmann et al (39) avoided these problems by the use of
an usual cell the design, which is schematically shown in Fig 3. The nozzle of the
syringe is situated some millimeters above the crystal surface to be examined
(working electrode, WE). The syringe contains the electrolyte and the gold wire as
counter (CE). At the beginning of the experiment, a few drops of the electrolyte are
placed on the surface. The solution wets the exposed surface (about 0,12 cm?)
completely. As there is a contact angle of about 50 degrees, the electrolyte can be
kept on the plane and does not touch the sides of the crystals rod. Thus side effects
and contamination are eliminated.
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Fig. 3. Schematic diagram of the cell for single crystal surface experiments (WE)
working electrode, (RE) reference electrode, (CE) counter electrode.
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However, preparation and conservation of well-defined single crystal surfaces
encounter many difficulties. Both rigorous cleaning and annealing in an ultra clean
atmosphere are required. Structural changes caused by different cooling atmospheres
bombardment with high energy particles.

Due to the simple preparation technique and stability of preferentially oriented
electrode surface it appears to be interest i) to study the structural effects of these
electrodes in electrocatalysis, ii) to prepare practical electrodes out of polycrystalline
material with catalytic properties similar to single crystal structures.

However, an important in such studies is. the accurate surface characterization.
A knowledge of the surface topography is necessary in order to correlate surface
structure with electrocatalytic activity. The most direct monitoring of surface
structure is by means of optical techniques such as AES (Auger electron
spectroscopy) and LEED (low energy electron diffraction) (1, 18, 19, 25, 26, 36, 40,
41, 43, 46-51, 57, 59, 60, 64, 66, 70-73, 76-83, 87, 88, 90, 96, 102, 103). But it is
not possible interpret a LEED pattern obtained from faceted polycrystalline
electrodes, which are of practical interest.

On the other hand, it was found recently that changes in the surface structure of
a polycrystalline material can be produced by electrochemical procedures (16, 17,
20-24, 74, 93). Preferentially oriented polycrystalline platinum surfaces can be
obtained by applying fast periodic potential perturbations under well-defined
potential limits and frequency conditions. Especially Cervino et al (20) have made
the fingerprints that the hydrogen adatom voltammetric fingerprints of platinum
single crystal surface can be obtained via an electrochemical preparation of
polycrystalline platinum material. The treatment consists in application of a very fast
potential scan to the polycrystalline material in aqueous electrolytes. In a typical
approach scan rates between 1000 and 15000 V/s and 1 M H,SO, solution are used.
Applying a fast potential scan in the range of 400 to 1600 mV (NHE) results in an
electrode surface which according to the voltammogram in the same electrolyte at
convential sweep rates, e.g. 0.1 V/s exhibit the characteristics of that described for Pt
(111) single crystal electrodes while at scan rates between 1 and 100 V/s a typical
increase of the platinum surface is observed.

A voltammogram run immediately after the preparation of the platinum surface
shown in Fig. 4a, by applying a symmetrical triangular potential scan of 100 mV/s in
the 40-1500 mV range. (Fig 4b) shows a close resemblance with the characteristics
of a Pt (111) single crystal surface. The mosaic structure of Fig 4 which includes
step is obviously different from the surface morphology of the untreated sample
(Fig. 5a). Fig 5b shows for comparison the voltammogram of the starting
polycrystalline platinum electrode under the same conditions as in Fig. 4b.
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Fig. 4. (a) Scanning electron micrograph (magnification 2300) for a polycrystalline
platinum wire after a repetitive potential scan at 10000 V/s during 12 h between 420
and 1080 mV NHE in 1.0 M H, SO, (b) the corresponding cylic voltammogram in
1.0 M H; S 04 100 corresponding cylic voltammogram in 1.0 M H, S O,, 100 mV/s.
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Fig. 5. (a) Scanning electron micrograph (magnification 2300) of a polycrystalline

platinum wire and (b) the corresponding cyclic voltammogram in 1.0 M H, SO,, 100
mV/s.
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Another micrograph was obtained for a polycrystalline Pt wire after the
application of a 1400 V/s potential scan between 23 and 1320 mV for 12 h (Fig.6a).
The surface appears to be smoother than after the first treatment and exhibits a
parallel-channel-like structure. In this case, the voltammogram run at 100 mV/s
between 40 and 1500 mV. (Fig. 6b), resembles closely that describes in the literature
for the Pt (100) single crystal surface
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Fig. 6. (a) Scanning electron micrograph (magnification 2200) of a polycrystalline
platinum wire after a repetitive scan at 1400 V/s during 12h between 23 and 1320
mV NHE in 1.0 M H, SO, (b) the corresponding cylic voltammogram inl 0OMH,
SO4, 100 m V/s.

Finally, it should be noticed that the preferentially oriented surfaces of
polycrystalline platinum induced by fast potential perturbations correspond to
structural changes in the surface which are comparable to these achieved from the
thermal and chemical pretreatments, applied to either single or polycrystalline
platinum and followed by voltammetry.

RESULTS AND DISCUSSION

The voltammetric curves with Pt and Au Single Crystal Electrodes.
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The electrochemical behavior of platinum single crystal surfaces has been
studied by several authors (8, 9, 11, 33, 87, 93, 104-106). On the other hand
electrochemical adsorption desorption of hydrogen has been shown to be a structure-
sensitive reaction (12, 27, 30-33, 35, 60, 77, 85, 86, 92, 103). The kinetics of typical
electrocatalytic reaction are likely to depend on the structure of the electrode
surface. The influence of surface structure on the kinetics of an electrocatalytic
reaction can be studied directly using single crystal surfaces. Clavilier and Armand
(30) were investigated electrochemical induction of changes in the distribution of the
hydrogen adsorption states on Pt (100) and Pt (111) in contact with sulfuric acid
solution. They showed Pt(100) undergoes reversible electrochemical surface
transformation while in contrast the Pt (111) surface; under the same conditions is
changed irreversibility (Fig 7). According to Hubbard et al (60) Pt (100) surface is
stable in aqueous electrolytes such as H,S04, HCIO4 and HCl in the 0.2 V10, 1.2 V
potential range. Similarly Pt (111) surface is stable in ageuous electrolyte. This has
only recently been confirmed by reports of pronounced structural effects on the
kinetics of formic acid (3, 4, 9, 15, 34, 67, 75), methanol (3, 29, 67) and
formaldehyde (3) on single crystal platinum surfaces and of O, reduction on single
crystal gold electrodes (4, 6, 7, 61, 91). On the other hand the adsorption and
oxidation of carbon monoxide have been extensively studied in the gas phase on
platinum single crystals (14, 43, 58, 67-69, 84, 89, 94).
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Fig. 7. Cylic voltammetry of a Pt (100) single crystal in 0.5 M H,SO,, (----)
compared to the Pt (111) crystal (-----), 50 m V/s.
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It has been recently pointed out (92) that the cyclic voltammogram of Au (111)
in 0.5 M H,SO, exhibits features bearing striking similarity to the anomalous peak
found for Pt (111) in such a solution. In addition the charges under the peaks for Au

(111) evaluated from 1™ and S0,% was found to range between 55-90 uCem -,

discharged univalent species. For instance, the case of Au (111) in 0.5 MH,S0;, is
shown in Fig 8 (solid line) in which such a feature occurs at 0.72 V vs SCE. A spike
is also observed in case of Au (111) in 0.01 M CsCl (dotted curve in Fig 8) at 0.68 V
vs SCE which is precisely at the same potential where the capacitance as measured
in a CI" containing electrolyte of a same concentration exhibit a sharp spike (56).
Furthermore, the potential at which the spike occurs is a function of the anion
concentration (28,52-56,92,97-101). A comparison of the voltammetric curves for
Au (111) films grown epitaxially on mica, in solutions containing different anions
(Fig 8) indicates that the spike shifts in the negative direction as the ability of the
anion to the undergo specific adsorption increases, i.e. SO <CI<Br. This
correlation is in complete agreement with the results obtained by Clavilier on Pt
(111) referred to earlier if it is assumed that the ability of amino to undergo specific
adsorption on this metal surface increases following the sequence CIO; <SO,<CI.
(27). The fact that the region of potentials involved in the voltammetric feature on
Au (111) electrodes is greater than the Pt (111) (Fig. 9) may be due to differences in
the adsorption isotherms for these surfaces in the case of Pt (111) with a region of
potentials much narrower then for Au (111).
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Fig. 8. Linear sweep woltammogram for Pt (111) in 0.5 M H,SO4, 50 m V/s.
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Fig. 9. Linear sweep voltammograms for Au (111) on mica in 0,01M Cs CI (----)
and 0.01 M Cs Br (----), sweep rate 50 m V/s (left-hand side current density axis),
and 0.5 M H,80, (----), sweep rate 10 m V/s (right-hand side axis).

For various metal adatoms, extensive work has been done by Pt and Au single
crystal electrodes. For example, the under potential deposition (UPD) of lead on Pt
(100) (2, 5, 41, 42, 45, 61, 62, 65) and gold single crystals (10). On the other hand
electrocatalysis works of oxygen and hydrogen peroxide reduction single crystal
gold electrodes have been made by several researches (4-8, 61, 62, 91).

In recent years studies concerning the effects of electrocatalysis and various
metal atoms using gold and platinum single crystal electrodes have increased
considerably.
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