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THE ORIGIN OF THE EQUATION FOR THE INTERFACIAL
COEFFICIENT OF HEAT TRANSFER

M. ALPAZ, A. BILGESU, 0. TUTKUN

SUMMARY

Among the few assumptions that Nusselt made in deriving his widely used equation for
the condensate film heat transfer coefficient was the one which stated that the condensate film
offers the only resistance to the heat transfer. This means that the effect of the vapour pbase
on the heat. transfer is negligible and that the surface temparature of the condensate is equal
to the saturation temperature of condensing vapour. However, there are practical situations
where this assumption is not valid in which case one has to take the so-called interfacial

resistance into account.

INTRODUCTION

When a liquid is in equilibrium with its vapour, the number of
molecules leaving the surface of the liquid in unit time is equal to the
number of the molecules from the vapour which condenses in the sur-
face in unit time. When evaporation is to take pla.e, the number con-
densing from the vapour, and for condensation to occur the reverse
must be the case. Now the number of vapour molecules which strike
the surface per unit time can be calculated from the kinetic theory
when the pressure and temperature are known (Moore 1978, Daniels
1966, Castellan 1971). From kinetic theory an attempt has been made
to show the derivation of the so-called interfacial heat transfer coeffi-
cient, that signifies the resistancs to the rates of transport at the vapour-
liquid interface, during condensation or evaporation process. Also its
possible effscts on operating conditions such as temperature and pres-
sure are reviewed and discussed.

THE KINETIC THEORY

1. The pressure of a gas:

Ths simplest kinetic theory model of a gas assumes that the vo-
lume occupied by the molecules may be neglected completely compa-
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red to the total volume. It is further assumed that the molecules be-
have like rigid spheres, with no forces of attraction or repulsion hetween
them except during actual collisions.

In order to calculate the pressurs in terms of molscular quantities,
let us consider a volume of gas contained in a cubical box of side 1 (Fig.
1b). The velocity C of any molecule may be resolved into components
U, V, and W, parallel to the three mutually perpendicular to X, Y,
and Z, so that its magnitude is given by (Fig.1a).
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Figure 1 Components of the velocity vector
C? = U2 + V2 4 W2 (1)

Collisions between a molecule and the walls are assumed to be perfectly
elastic; the angle of incidence equals to the angle of reflexion, and the
velocity changes in direction but not in magnitude. At each collision
with a wall that is perpsndicular to v, the velocity component u chan-
ges sign from u to -u, or vice versa; the momentum component of the
moleculs aceordingly changss from -- mu to J° mu, whers m is ths mass
of the molecule. The magnitude of the change in momentum is therefore
2mu.

The number of collisions in unit tims with the two walls perpen-
dicular to X is equal to u/l, and thus the change in the v component of
momentum. in unit time is

2mu.(u/l) = 2mu?/l
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If there are N molecules in the box, the change in momentum in
unit time becomes 2 (Nm(a2)/I), whsre (d2) is the average valus of
the square of velocity component u. This rate of change of momentum
is simply the force exerted by the molecules colliding against the two
container walls normal to v, whose area is 212. Since pressure is defined
as the force normal to unit area., »

2Nm(a2) /1 Nm(a2) Nm(a2)

b= 2P - I - v @)

Thers is nothing to distinguish the magnitude of one particular
component from another in oquation (1) so that on the average (&%) =
(¥2) = (W2). Thus, 3 (@?) = ¢2 and the expression for the pressure
becomes

Nm(é-2)

P = 3V

®)

The quantity (§2) is called the mean square speed of the molecules,
and may be given the special symbol ¢2. Then ¢ = (§2)1/2 is called the
root mean square speed. The total translational kinetic energy Ex of

the molecales is Nme2. Therefore from equation (3).,

1 2

_ - 2 == v |
rv 3 Nme 3 Ex 4)

2. Molecular Speeds:

From equation (4) it may be written

(5)

Where p = _N‘l;'; is the density of the gas.
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From equation (4) and an ideal-gas equation we obtain for the root
mean square speed c, if M is the molecular weight, and from the ideal
gas equation

w RT RT
. = (6)

where w is the weight of gas.

From equations (5) and (6) we obtain,

3RT
o = A3 (M

3. The average speed, ¢:

Representing the fraction of moleculos having a velocity betwoen
u and u + du by dn/n,, this law may be written from th> Boltzmann
distribution law or the barometric formula,

P = P, exp (— ¢, /kT) (8)
wherc P, P, are the pressures at any height and zero, respectively.
ep 1s ths potential energy of the individual molecule,
k is the Boltzmann constant and T is the absolute temperature.

The equation (8) states that if n, is the number of molecules in
any given state, the number n in a state whose potential energy is ¢
above that of the given state is ‘

n = ny exp (—e/kT) 9

The motion of a molecule with an upward velocity u is just like
that of a ball thrown vertically into the air. If its initial velocity is ug,
it will rise with continuously decreasing spead, as its kinetic energy is
transformed into the potential energy according to the equation as
follows.

1 1 .
mgx = —— muy2 — 5~ mu? (19)
where x is the height at any time.

The distribution of kinetic energies cx among the molecules follow
an exponential law just as the potential energy distribution does simi-
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lar to equation (8). The fraction of molecules having a velocity between
u and u + du by dn/n, this law may b> written from equation (9) as

dn

ny

= A exp (—=x/kT) du (i1

Hers A is a constant whose value has to be determined.

This distribution law is completely unaffected by collisions bet-
ween molecules, since a collision results only in an interchange of velo-
city components between two molecules.

The constant A, in equation (11), may be evaluated from the fact
that the sum of all the fractions of molecules in all the velocity rangss

must be unity. Thus, integrating over all possible velocities from —*
to -+, we have
4.0
A j o-mUW/AT dy = 1 (12)
— o0,
. mu? . e . .
Letting T x2 and subscribing into equation (12) we obtain as
1/2 o0
A ( 2kT ) j* o2 dx — 1 (13)
m —®
40
I, — S —y (14)
-0
The value of equation (13) can be found as «\/—:‘“E: and thus
m 1/2
( 2xkT ) (15)
Therefore, equation (11) becomes
1/2
dn m mu?
= —— s 1
no ( ST ) exp ( 2T ) o (10

The tree-dimensional distribution law may now be obtained by a
simple extension of this treatment. The fraction of molecules having
simultaneously a velocity component between u and u -+ du, v and
v + dv, and w and w - dw, is
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- (i) e [

Now an expression is desirad for the number with a speed between ¢
and ¢ + dc, regardless of direction, where ¢2 = u2 -+ v2 + w2,

dn

n,

m
27kT

u?4-v2-w2)
2kT

]dudvdw (17)

These are the molecules whose velocity points lie within a spherical
shell of thickness do at a distance ¢ from the origin (Figs. 2a and 2b).
The volume of this shell is 4mc2de, and therefore desired distribution
function is

b4
#L.?!dw
- [ S
c _Jd
!dv y
l'w //
1
V0
—_ - o
v
v, (a)

Figure 2. (a) Three dimensional velocity
(b) Spherical shell

exp ('—

dn 32

n,

mc?2
2kT

) c2de

— 4m (T:;T*) (18)

3. The average speed:

The average speed value # of any property r of the molecules is
obtained by multiplying each value of r, r;, by the number of molecules
n; having this value, adding these products, and dividing by the total
number of molecules. Thus,

E;ni Iy
3

Zni Tj
i

Zni

i

(19)

n,
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In case n is known a s a continuously varying function of r, n(r),
instead of the summation of equation (18) the integrations may be ob-
tained

o

) j r dn(r) .
r = joo = 0'{ r dn(r) (20)
dn(r)

The calcalation of the average molecular speed ¢ may be done in a si-
milar way, using equation (18).

o

_ L an — 4 m  \2(® me \ Lo
¢ = n“jc "= ”(%kT)J"XP(—“ 21;T)" ¢ @l

The evaluation of this integral can be done in a similar way to that,

o :
I = j e—8%2 x3 dx
o

The value of integral I can be found as follows

R 1
I = J e 2% x3 dx = 53
Therefore obtaining ¢
1/
2
G — ( 8kT ) : (22)
Tm

4. Molecular effusion:

A direct experimental illustration of different average speeds of
molecules of different gases can be obtained from the phenomenon cal-
led ‘molecular effusion. Consider the arrangement shown in Fig.3a.
Molecules from a vessel of gas under pressure are permitted to escape
through a tiny orifice, so small that the distribution of the velocities
of the gas molecules remaining in the vessel is not affected in any way;
that is, no appreciable mass flow in the direction of the orifice is set
up. The number of molecules escaping in unit time is then equal to the
number that, in their random motion, happen to hit the orifice, and this
number is proportional to the average molecular speed.
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(g1

(a) . . (b)

Figure 3. Effusion of gases

In Fig. 3b is shown an enlarged visw of the orifice, having an area
dS. If all the molecules were moving directly perpendicular to the
opening with their mean speed ¢, in one second all those molecules would
hit the opening that were contained in an element of volume basz dS
and height ¢, or volume ¢dS, for a molecule at a distance ¢ will just
reach the orifice at the end of one second. If there are n moleculss per
cm3, the number striking would be nedS.

If the direction of the molecules is no longer normal to the wall,
instead of situation of Fig. 3, we have that of Fig.4a. For any given
direction the number of molecules hitting dS in unit time will be those
contained in a cylinder of base dS and slant height . The volume of
this cylinder is ¢ Cos0dS, and the number of molecules in it is néCos0dS.

—

Figure 4. Calculation of gaseous effusjon
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The next step is to discover how many molecules out of the total
velume have velocities in the specified direction. The velosities of the
molecules will be referred to a system of polar coordinates (Fig.4b)
with its origin at the wall of the vessel. We call such a representation
a plot of the molecular velocitiss in “velocity space”. The distanc: from
the origin ¢ defines the magnitudz of the velocity, and the angles 6 and
@ represent its direction. Any particular direction from the origin is
specified by the differcntial solid angle dw. The fraction of the total
number of molecules having their velocitios within this particular sproad
of directions is dw /4m, since 4w is thy total solid angle subtended by the
surface of a sphere. In polar coordinates this solid angle is given by

Sin6db6d o.

The number of the molecules bitting the surface dS in unit time
from the given direction (0, @) becomes

(1 /4) ncCos0SinGddd = dS. Or, for unit surface, it is

(1/4) néCoslSinGdOd . In order to find the total number striking

from all directions, %r;__ , this expression must be integrated.
’ /2 r2
‘1‘; — j " j " (1/4n) n&CosbSindd & d 23)
o] [+]

The limits of the integration of ¢ are from 0 to 2w, corresponding to
all the directions around the circle at any given 0. Then 0 is integrated
from 0 to = /2. The final result for the number of molecules striking unit
area in unit time is then

G = ue/4 (24)

If ¢ is the gas density, the weight of gas that effuses in unit tims
is ‘
dw/dt = pE /4 (25)

From equation (22) we obtain

1/2
RT
dwjdt = o (W) (26)
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Since k = R /N, where N is the Avogadro number, and M is the mole-
cular weight.

Usitig an ideal gas equation
w = dw/dt == P(M/2=zRT)1/2 (27)

where, u is the weight of gas that effuses per unit time per unit area,
kg. Sec™l. m™2,

P is the pressure of gas, N m 2,
M is the molecular weight of gas, kg.kmol-2,
R is the ideal gas constant (8.314 kJ.kmol 1.K™!} and

T is the absolute temperature, K

This can apply to condensation or evaporation at the liquid vapour
interface in a similar way. Having found equation (27), it may be as-
sumed that a proportion f of the molecules which strike the surface of
the liquid condense in it. The mass of molecules which strike unit area
per unit time y, then fu is the mass of thoss which condense in unit area
of ths liquid per unit time or condensation flux. It follows that fu. must
be the rate of escape of molocules from the saturated liquid surface.

In cass evaporation or condensation should occur, we must have
two different rates p; and y,, so that f{u; — p,) will represent the net
rate of evaporation or condensation, where f is the condensation or
evaporation coefficient.

From equation (27), we obtain the net rate of evaparation or con-
densation across a surface will be

1/2
m—f(gpr) @ — P | (28)

In equation (28) the approximation has been made by taking
T; = T;, which is valid for the case of the condensation or evaporation
of water, since the temperatures are absolute and differences are small.

The accepted physical model of evaporation and condensation is
based on proposals of Hertz (1882) and of Knudsen (1915). This is
known as the Hertz-Knudser model. All earlier experimental determi-
nations of f refer to those evaluated from equation (22). Latsr Schrage
(1953) modified the equation (28) to account for the effect of net bulk
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vapour motion on the molecular velocity distribution. Based on this
work, the more rtecent investigations usually refer to the modified
equation, given approximately by (Tamir 1971, Nabavian 1963, Mills
1967)

i/3
£ M
R ( 2=RT, ) Py — Py (29)

It can be seen from the above equation that for f = 1, the rate predic-
ted by the Schrage equation is twice that is given by the Hertz-Kundsen
model, but for values of f lower than, say 0.2, the correction term 0.5
f can be ignored.

From the Clapeyron equation.

ap A
ar - (Vi— V3 Ty

(30)

If we assume that difference P; — P, is small as is indeed the case for
condensing steam under practical conditions. we have the associated
temperature difference as approximately

AP A
AT 7 TV, — V)

where AP = P; — P, and AT = T; — T,. Furthermore the term V,
can be dropped from the above equation, since V; > V,. Obtaining

T, V;

Ty — T, = L

(P, — Py (31)

where Ty, T, are the absolute temperatures, Py — P, are the pressures,
Vi, V, are the volumes of vapour and liquid phases, respactively, and
A is the latent heat of vaporization. Substituting equation (31) into
equation (28)

M\ AT, —T)
= (o) T @2

Since m is the weight condensed per unit area per unit time or the con-
densation flux, the interfacial heat transfer coefficient h; may be ob-
tained.
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mi
hj = T, =T, (33)
Substitution from equation (33) into equation (32) gives
M Y 22
hy = f ( 2nRT, ) © TV, (34)

Equation (34) can be used to calculate from the “Steam Tables” the
value of h; for steam condensing in a vessel wherein the steam pressure
is P;. When the value of f is known it becomes possible to determine
the difference of pressure necessary to obtain a certain rate of conden-
sation and so the theory can be applied to the steam-side heat transfer
rate in condensers. (Silver 1946, Silver 1963-1964, Silver 1961) The
phenomenon is something which provides an effective extra heat
transfor resistance, to that already present in the liquid film on the
tube. It can be regarded as a surface resistance or the so-called inter-
facial resistance. Its reciprocal would be called the interfacial heat
transfer coefficient. If hy is the heat transfer coefficient for the water
film calculated by the Nusselt formula and h; is the interfacial heat
transfer coefficient, the overall heat transfer cozfficient for the steam
side h will be given as follows

1 1 1
i v A

(35)

To show how this may be used in conjunction with Nusselt’s theory,
we have the Nusselt film coefficient equation for the vertical tubes as
(M¢ Adams 1954), then obtaining

0.25
3.3
he — 0.943 [—k:—gﬁ] (36)

where k is the thermal conductivity of condensate film,
is the density,

is the acceleration of gravity,

is the latent heat of condensation,

is the dynamic viscosity,

H® > o ©

is the length of the condenser, and

At is the temperature difference between the saturated
vapour and condenser surface.
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RESULTS AND CONCLUSIONS

The interfacial resistance is of importance in determining conden-
sation rates at low pressures, its importance depending on the value
of the condensation coefficient f. Table 1 shows value of h; so obtained
for an appropriate range of condenssr pressure (Silver 1946).

Table 1. h; as a function of conderser pressure.

Conderser Pressure,
temperature, K N.m2 abs. by, kW /m’K
299.8 3494 ! 19.4
300.9 3729 | 20.4
302.0 3978 i 21.6
303.2 4240 22.7
304.3 4519 24.0
305.4 4813 25.3
306.5 5123 26.6
307.6 5450 27.9
308.7 5795 [ 29.4

From Table 1 can be seen that the interfacial resistance decreases
as the pressure of condenser increases.

Nabavian and Bromley (1963) have searched the condensation of
pure steam in a system designed to minimize all thermal resistance
in series with the interfacial vapour-liquid thermal resistance, From
the numerous measurements at steam temperatures of near 10°C and
50°C, it was possible to calculate values for the condsnsation coef-
ficient f, as given by the Hertz-Knudsen equation (28), The results in-
dicate a probable range for f of 0.43 < f < 2.0. They plotted values
of h; /f as a function of liquid-vapour temperature as calculated from
the below equation which is similar to equation (34).

1/2 ;
M A2
vt () m e
where Ty, = —;—— (Ty + T,) and Ty . T, are the absolute tempera-

tures of vapour and liquid phases, respectively. h; /f increases as the
liquid-vapour surface temperature decreases.

Mills and Seban (1967) have investigated filmwise condensation of
steam at low pressure on a vertical plate in order to ascertain the exis-
tence of an interfacial heat transfer. Data were presented for the con-
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densation of saturated steam between 7°C and 10°C at heat fluxes
between 3700 and 5000 W /m2. It was found that no significant inter-
facial resistance was present. Furthermore they obtained the values of
the interfacial heat transfer coefficient as a function of saturation
temperature for the condensation coefficients of unity and 0.036, as
shown in Table 2.

Table 2. Values of the interfacial heat transfer coefficient
for condensation coefficients of unity and 0.036.

Temperature, K h; (kW /m’K)
f=1.0 ’ f = 0.036
316 2561 44.8
305 1607 28.1
294 863 15.1
283 466 8.1
272 244 4.3

It was found that the interfacial resistance would be negligible in
industrial applications of filmwise condensation when the condensation
coefficient, based on ths Schrage model in equation (29), is greater
than 0.45.

Tamir and Hasson (1971) have performed two series of experiments
(evaporation and condensation) under similar vacuum conditions.,
corresponding to a saturation temperature in the range of 40°C to
60°C. The values of condensation coefficient, based on the Hertz-Knud-
sen model, were found to he 0.23 and 0.11at the saturation tempera-
tures of 50°C and 104°C, respectively. It was concluded that the con-
densation coefficients might be temparature dependent.

The very low values of f found for water (usually 0.03 to 0.04) are
widely attributed to’surface contribution’ or non-condensible gases at
the interface. It has been established that the condensation coefficient
for water falls rapidly as the time of exposure of the evaporating or
condensing interface is increased (Johnstone 1966). Theoretical values
of f have been calculated by Danon (1962) from a consideration of the
energy necessary to relaese molecules from the interface. Table 3 com-
pares the predicted 'values with those measured experimentally for a
number of common liquids.

Alad’yev and Kondrat’yev (1971) worksd out certain relationships
governing the thermal resistance of phase transition Ry and conden:
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Table 3. Values of the condensation coefficient calculated
by the method of Danon,

f observed (range
Fluid at 0°C f calculated of measurements)
Carbon tetrachloride 1.01 1.0
Benzene 0.92 0.85-0.95
Chloroform 0.17 0.16
Ethyl alcohol 0.014 0.02-0.024
Methyl alcohol 0.023 0.045
Water 0.051 0.04
! Toluene 0.59 0.45-0.85

sation coefficient f during condensation of potassium and sodium va-
pours. It has been found that Ryp and f do not depend on the vapour
velocity, heat flux, shape of its condensation surface and its location in
space, and has been correlated by the following equations within the
range of experimental results:

by = —b— — 100 P22 (38)
R[,h
and f = 0.0585 P05 (39)

where Py is the vapour pressure in bars,

by is the phase heat transfer coefficient in kW /m2K.

Equation (39) is valid for Pg of 0.035 to 1 bar. It follows from the above
argument that the condensation coefficient decreases with increasing
pressure. Experiments carried out by some other investigators (La-
buntsov 1966, Alod’yev 1966, Barry 1966, Kroger 1967) support the
findings of these workers and indicate a considerable reduction in the
value of the condensation coefficient from necar unity a tlow pressure
to below 0.1 near atmosphoric pressur. A similar type of behaviour also
has been reported with water (Mendelson 1965).

In conclusion it is worth noting that the effect of the interfacial
resistance. which is appreciable, in limiting possible rates of heat transfer
is entirely due to the low value of the coofficient f in equation (34).
If this had the higher value, which is sometimes anticipated, values of
h; would be much greater and as a result of this the resistance would
be negligible comparad to the condensate film resistance.
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