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Abstract

This paper presents numerical simulations of liquid-solid and
solid-liquid phase change processes using mathematical models in
Lagrangian and Eulerian descriptions. The mathematical models
are derived by assuming a smooth interface or transition region be-
tween the solid and liquid phases in which the specific heat, density,
thermal conductivity, and latent heat of fusion are continuous and
differentiable functions of temperature. In the derivations of the
mathematical models we assume the matter to be homogeneous,
isotropic, and incompressible in all phases. The change in volume
due to change in density during phase transition is neglected in all
mathematical models considered in this paper. This paper describes
various approaches of deriving mathematical models that incorpo-
rate phase transition physics in various ways, hence results in dif-
ferent mathematical models. In the present work we only consider
the following two types of mathematical models: (i) We assume the
velocity field to be zero i.e. no flow assumption, and free bound-
aries i.e. zero stress field in all phases. Under these assumptions
the mathematical models reduce to first law of thermodynamics i.e.
the energy equation, a nonlinear diffusion equation in temperature
if we assume Fourier heat conduction law relating temperature gra-

dient to the heat vector. These mathematical models are invariant of
the type of description i.e. Lagrangian or Eulerian due to absence
of velocities and stress field. (ii) The second class of mathemat-
ical models are derived with the assumption that stress field and
velocity field are nonzero in the fluid region but in the solid region
stress field is assumed constant and the velocity field is assumed
zero. In the transition region the stress field and the velocity field
transition in a continuous and differentiable manner from nonzero
at the liquid state to constant and zero in the solid state based on
temperature in the transition zone. Both of these models are con-
sistent with the principles of continuum mechanics, hence provide
correct interaction between the regions and are shown to work well
in the numerical simulations of phase transition applications with
flow. Details of other mathematical models, problems associated
with them, and their limitations are also discussed in this paper.

Numerical solutions of phase transition model problems in R1

and R2 are presented using these two types of mathematical mod-
els. Numerical solutions are obtained using h, p,k space-time fi-
nite element processes based on residual functional for an incre-
ment of time with time marching in which variationally consistent
space-time integral forms ensure unconditionally stable computa-
tions during the entire evolution.
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Nomenclature

General
cp : Specific heat (Lagrangian description)
c̄p : Specific heat (Eulerian description)
e : Specific internal energy (Lagrangian description)
ē : Specific internal energy (Eulerian description)
f : Liquid or solid volume fraction (Lagrangian description)
f̄ : Liquid or solid volume fraction (Eulerian description)
h : Specific enthalpy (Lagrangian description)
h̄ : Specific enthalpy (Eulerian description)
[J] : Deformation gradient matrix
k : Thermal conductivity (Lagrangian description)
k̄ : Thermal conductivity (Eulerian description)

L f : Latent heat (Lagrangian description)
L̄ f : Latent heat (Eulerian description)
p̄ : Pressure (Eulerian description)
T : Temperature (Lagrangian description)
T̄ : Temperature (Eulerian description)
µ̄ : Viscosity (Eulerian description)
ρ : Density (Lagrangian description)
ρ̄ : Density (Eulerian description)
D̄DDDDDDDD : Symmetric part of the velocity gradient tensor (Eulerian description)
IIIIIIIII : Identity tensor
qqqqqqqqq : Heat vector (Lagrangian description)
q̄qqqqqqqq : Heat vector (Eulerian description)
uuuuuuuuu : Displacement vector (Lagrangian description)
vvvvvvvvv : Velocity vector (Lagrangian description)
v̄vvvvvvvv : Velocity vector (Eulerian description)

γγγγγγγγγ(1) : First convected time derivative of Almansi strain tensor
εεεεεεεεε : Green’s strain tensor

σσσσσσσσσ (0) : Contravariant Cauchy stress tensor (Lagrangian description)
σ̄σσσσσσσσ

(0) : Contravariant Cauchy stress tensor (Eulerian description)
dσ̄σσσσσσσσ

(0) : Deviatoric contravariant Cauchy stress tensor (Eulerian description)
dσ̄σσσσσσσσ

(1) : First convected time derivative of dσ̄σσσσσσσσ
(0)

Subscript l : Liquid region
Subscript s : Solid region/Saturation value (sharp-interface models)

Sharp-interface models
α : Energy factor
β : Material parameter in theoretical solution
Γxxxxxxxxx : Interface location
Θ : Initial condition in theoretical solution

Phase field models
f (p,T ) : Restoring potential

p : Phase variable
η : Entropy
ξ : Energy coefficient (Phase field models)
α : Scaling parameter
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1 INTRODUCTION, LITERATURE
REVIEW, AND SCOPE OF WORK

1.1 Introduction

The phase change phenomena in which the matter transitions
and transforms from one state to another is of significant academic
and industrial importance. Solid-liquid or liquid-solid phase tran-
sitions and their numerical simulation have been a subject of re-
search and investigation for over a century. There are many sources
of difficulties in the numerical simulation of phase change phe-
nomena. Phase transition physics and its mathematical modeling
is quite complex due to the fact that this phenomenon creates a
transition region, a mixture of solid and liquid phases, in which
the phase change occurs resulting in complex changes in transport
properties such as density, specific heat, conductivity and the latent
heat of fusion that are dependent on temperature. During evolution
the phase transition region propagates in spatial directions, i.e. its
location changes as the time elapses. Idealized physics of phase
change, in which jumps in the transport properties are often as-
sumed, results in singular interfaces. As a consequence the math-
ematical models describing such evolutions result in initial value
problems that contain singularities at the interfaces. When solving
such non-linear initial value problems, one must assume existence
of the interface. Numerical simulation of the propagation of such
fronts during evolution also presents many difficulties that cannot
be resolved satisfactorily. Major shortcomings of this approach are
that formation of the phase transition front cannot be simulated.
Secondly, singular nature of the front is obviously not possible to
simulate numerically.

In the second approach of phase transition physics and its math-
ematical modeling, one assumes that the phase transition region is
of finite width, i.e. the phase transition occurs over a finite but small
temperature range in which the transport properties such as density,
specific heat, conductivity and latent heat are function of tempera-
ture and vary in a continuous and differentiable matter between the
two states. Thus, the phase transition region is of finite width in
temperature that propagates as time elapses. This approach is more
realistic and more appealing from the point of view of numerical
simulations of the resulting IVPs from the mathematical models
as it avoids singularities present in the first approach. The phase-
field approach utilizes this concept. A major source of difficulty in
this approach is the physics of the transition region, often referred
to as ‘mushy region’, that consists of liquid-solid mixture in vary-
ing volume fractions as one advances from one state to the other.
Adequate mathematical modeling of the physics in the transition
region may require use of mixture theory [1–3] or some similar
approach, based on thermodynamic principles of continuum me-
chanics. Conservation of mass, balance of momenta, first law of
thermodynamics and the constitutive theories for stress tensor and
heat vector based on the second law of thermodynamics must all
be reformulated assuming thermodynamic equilibrium in the tran-
sition region. This approach of mathematical modeling of the tran-
sition region has not been explored in the published literature (to

our knowledge), but may be of benefit in accounting for the realis-
tic physics in the transition region.

The third and perhaps another vital issue lies in the selection
of the methods of approximation that are utilized to obtain numer-
ical solutions of the initial value problems describing evolution. It
is now well established in computational mathematics that meth-
ods of approximation such as finite difference, finite volume and
finite element methods based on Galerkin Method (GM), Petrov-
Galerkin method (PGM), weighted residual method (WRM), and
Galerkin method with weak form (GM/WF) used in context with
space-time decoupled or space-time coupled methodologies are in-
adequate for simulating time accurate evolutions of the non-linear
IVPs describing phase change processes [4–9].

Thus, in order to address numerical solutions of phase transi-
tion processes, in our view a simple strategy would be to: (i) Decide
on a mathematical model with desired, limited physics. (ii) Employ
a method of approximation that does not disturb the physics in the
computational process, results in unconditionally stable computa-
tions and has inherent (built in) mechanism of the measure of error
in the computed solution without the knowledge of theoretical so-
lution as such solutions may not be obtainable for the problem of
interest. The work presented in this thesis follows this approach. In
the following we present literature review on mathematical model-
ing and methods of approximation for obtaining numerical solu-
tions of the IVPs resulting from the mathematical models. This is
followed by the scope of work undertaken in this paper.

1.2 Literature Review

In this section we present some literature related to liquid-solid
and solid-liquid phase transition phenomena. We group the liter-
ature review in two major categories: mathematical models and
methods of approximation for obtaining numerical solutions of the
initial value problems resulting from the mathematical models.

1.2.1 Mathematical Models

A large majority of published work on the mathematical mod-
els for phase change processes consider Lagrangian description
only, with further assumptions of zero velocity field, i.e. no flow
and free boundaries i.e. the medium undergoing phase change to
be stress free. We first present literature review and a discussion
of commonly used mathematical modeling methodologies in La-
grangian description based on the assumptions stated above. With
the assumptions of no flow and stress free medium, the mathemat-
ical model of the phase change process is invariant of the type of
description and reduces to the energy equation. In the published
works there are three commonly used approaches: sharp-interface
models, enthalpy models and phase field models.

In the mathematical models derived using sharp-interface the
liquid and solid phases are assumed to be separated by a hypo-
thetically and infinitely thin curve or surface called sharp interface
or phase. The transport properties such as density, specific heat
and conductivity are assumed to experience a jump at the interface.
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The latent heat of fusion is assumed to be instantaneously released
or absorbed at the interface. This of course results in step (sharp)
change in the transport properties and latent heat of fusion at the
interface, hence the name sharp-interface models. The mathemat-
ical models for liquid and solid phases are derived individually.
At the interface, the energy balance provides an additional relation
(equation) that is used to determine the movement of the interface.
The sharp-interface models are also called Stefan models, first de-
rived by J. Stefan [10] to study freezing of ground. The derivation
of this model is presented in Section 2. The proof of existence
and uniqueness of the classical solution of the Stefan mathematical
model has been given by Rubinstein [11] in 1947. An analytical
solution for temperature for one dimensional Stefan problem has
been presented in reference [12]. The sharp-interface models have
three major shortcomings: (i) Assumption of sharp-interface leads
to mathematical model in which the initial value problem contains
singularity at the interface. (ii) When obtaining solutions of the
initial value problems based on sharp-interface assumption, the lo-
cation of the interface is required a priori. That is sharp-interface
models are unable to simulate initiation of the interface or front.
(iii) Movement of the interface i.e. spatial location during evolu-
tion requires use of what are called front tracking methods.

Some mathematical models for phase change processes are
called enthalpy models. In these models the energy equation is re-
cast in terms of enthalpy and temperature with an additional equa-
tion describing enthalpy. Both enthalpy and temperature are re-
tained as dependent variables in the mathematical model. Compu-
tations of the numerical solution of the resulting initial value prob-
lem are performed on a fixed discretization. This approach elim-
inates energy balance equation at the interface used in the sharp-
interface models. These mathematical models have been derived
using different approaches [13–15]. Enthalpy model is also pre-
sented in Section 2. These models generally introduce a finite
phase transition region (over a small temperature change) called
mushy region between the liquid and the solid phases. The trans-
port properties are assumed to vary in some manner from one phase
to the other phase. The concept of liquid or solid fraction is gen-
erally introduced to account for the fact that the mushy region is
a mixture of solid and liquid phases. Due to the assumption of
the mushy region separating the solid and the liquid phases, sharp-
interface and the problems associated with it are avoided in this
approach.

Another category of mathematical models are called phase field
models. These mathematical models are based on the work of Cahn
and Hilliard [4]. In this approach the solid and liquid phases are
also assumed to be separated by a finite width (in temperature) tran-
sition region in which the transport properties are assumed to vary
with temperature between the two states. Landau-Ginzburg [5] the-
ory of phase transition is used to derive the mathematical model.
The basic foundation of the method lies in standard mean theo-
ries of critical phenomena based on free energy functional. Thus,
the method relies on specification of free energy density functional
which is the main driving force for the movement of the phase tran-
sition region. Details of phase field mathematical model in R1 are

presented in section 2. The method shows good agreement with the
Stefan problem in R1. While the phase field models eliminate the
sharp-interfaces and their tracking, the main disadvantages of this
approach are: (i) It requires a priori knowledge of the free energy
density functional for the application at hand. (ii)The mathematical
model is incapable of simulating the initiation or formation of the
solid-liquid interface, hence the liquid-solid phases and the transi-
tion region must be defined as initial conditions. This limitation
is due to specific nature of the free energy function (generally a
double well potential, see section 2). However, if a liquid-solid in-
terface is specified as initial condition, then the phase field models
are quite effective in simulating the movement of the front during
evolution. In most applications of interest, simulation of initiation
of the transition region i.e. solid-liquid interface is essential as it
may not be possible to know its location and the precise conditions
under which it initiates a priori. These limitations have resulted in
lack of wide spread use of these mathematical models in practical
applications.

When the assumptions of stress free media and zero velocity
are not valid (as in case of fluid flow), the mathematical models
discussed above are not applicable. In such cases Eulerian descrip-
tion is necessary for the fluid while Lagrangian description is es-
sential for the solid region. The mathematical model in this case
consists of conservation of mass, balance of momenta, first law of
thermodynamics and constitutive theory for stress tensor and heat
vector based on the second law of thermodynamics for each of the
two phases (i.e. liquid and solid) as well as the transition region.

The published works on these mathematical models are rather
sketchy, the models are not based on rigorous derivation and in
most cases are aimed at solving a specific problem as opposed to
developing a general infrastructure that addresses totality of a large
group of applications. We present some account of the published
works in the following. In almost all cases the fluid is treated as
Newtonian fluid. In some cases [16] the fluid is also considered
inviscid. Sharp-interface models generally force (set) the relative
movement of the material particles to be zero in the solid phase
[17, 18]. In case of enthalpy and phase field models the consti-
tutive theory for the transition region is still unclear and published
works in many instances are conflicting. There are three main ideas
that are commonly found in the majority of the published works on
mathematical models derived using Eulerian description. In the
first approach both the liquid and the solid phases are assumed to
be Newtonian fluids. The viscosity in the solid phase is artificially
increased to a very high value and is assumed to vary along the in-
terface between the two states in order to approximate no velocity
condition in the solid phase [19]. In the second approach a varying
interfacial force is employed such that it satisfies the no velocity
condition in the solid phase [20]. The third approach assumes that
the solid particles in the transition region form a porous medium
through which the fluid flows. Voller and Cross [15] use Darcy
model for flow in porous media in which the velocity field is as-
sumed to be proportional to the pressure gradient in order to com-
pare their results with variable viscosity model. Beckermann [21]
assumed the average stress to be proportional to the gradient of
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superficial liquid viscosity in the porous media. There are other
approaches [22] that utilize these three basic ideas in some man-
ner or the other. In most cases, solid phase behavior is neglected
by setting the velocity to zero. In general, our conclusion is that
published phase change models that account for nonzero stress and
velocity fields are crude, ad hoc and are aimed to obtain some nu-
merical solutions for specific applications. A general theory of
mathematical modeling based on thermodynamic and continuum
mechanics principles is not available for phase transition modeling
to our knowledge.

1.2.2 Computational Methodologies

Regardless of the type of mathematical model, the resulting
mathematical models for phase change phenomena are non-linear
partial differential equations in dependent variables, space coordi-
nates and time, hence they are non-linear initial value problems.
If we incorporate realistic physics of phase transition, the math-
ematical models become complex enough not to permit determi-
nation of theoretical solution, hence numerical solutions of these
IVPs based on methods of approximation are necessary. The meth-
ods of approximation for IVPs can be classified in two broad cate-
gories [6–9] : space-time decoupled methods and space-time cou-
pled methods. In space-time decoupled methods, for an instant of
time, the spatial discretization is performed by assuming the time
derivatives to be constant. This approach reduces the original PDEs
in space and time to ODEs in time which are then integrated using
explicit or implicit time integration methods to obtain evolution.
Almost all finite difference, finite volume and finite element meth-
ods (based on GM/WF) used currently [7] for initial value problems
fall into this category. The assumption of constant time derivatives
necessitates extremely small time increments during the integra-
tion of ODEs in time. The issues of stability, accuracy and lack
of time accuracy of evolution are all well known in the space-time
decoupled approaches. Majority of the currently used methods of
approximation for phase change processes fall into this category.
The non-concurrent treatment in space and time in space-time de-
coupled methods is contrary to the physics in which all dependent
variables exhibit simultaneous dependence on space coordinates
and time. In a large majority of published works on phase change
processes, often the distinction between the mathematical models
and the computational approaches is not clear either i.e. elements
of the methods of approximation are often introduced during the
development of the mathematical models. As a consequence, it
is difficult to determine if the non-satisfactory numerical solutions
are a consequence of the methods of approximation used or the
deficiencies in the mathematical models.

The space-time coupled methods on the other hand maintain
simultaneous dependence of the dependent variables on space co-
ordinates and time [6, 8, 9]. In these methods the discretizations
in space and time are concurrent as required by the IVPs. These
methods are far superior to the space-time decoupled methods in
terms of mathematical rigor as well as accuracy. Whether to choose
space-time finite difference, finite volume or finite element method

depends upon the mathematical nature of the space-time differen-
tial operator and whether the computational strategy under consid-
eration will yield unconditionally stable computations, will permit
error assessment, and will yield time accurate evolution upon con-
vergence.

1.3 Scope of Work

The work presented here considers development of mathemati-
cal models and their numerical solutions for solid-liquid and liquid-
solid phase transition of homogeneous, isotropic, and incompress-
ible matter. In the phase transition region [Ts,Tl ] the matter is as-
sumed to be homogeneous and isotropic and the transport proper-
ties are assumed to be continuous and differentiable with their re-
spective values at the solid and liquid states. Three groups of math-
ematical models are considered for phase transition initial value
problems. Numerical studies are presented using the mathematical
models groups one and three.

The first group of mathematical models are based on the as-
sumptions of stress free media and zero velocity in all phases. With
these assumptions the mathematical models in Lagrangian and Eu-
lerian descriptions are identical. We consider these mathematical
models in R1 and R2. The mathematical models in this case con-
sist of the energy equation and heat flux(es), a system of first order
nonlinear PDEs in temperature and heat flux(es). By substituting
heat flux(es) into the energy equation the mathematical model can
be reduced to a single non-linear diffusion equation in tempera-
ture. In the derivation of the energy equation the specific total en-
ergy is expressed in terms of storage and latent heat of fusion. The
Fourier heat conduction law is assumed to hold. In the solid and
liquid phases the transport properties (ρ , cp, k, L f ) are assumed
to be constant. In the transition region the solid-liquid mixture is
assumed to be isotropic and homogeneous. The transport proper-
ties are assumed to vary in a continuous and differentiable manner,
described by a third or a fifth degree polynomial with continuous
temperature derivatives at the boundaries of the transition region
between the solid and liquid phases. With this approach the phase
change process is a smooth process in which the transition region
provides the smooth interface. We remark that if we assume both
phases to be incompressible, then a change in density during phase
change must be accompanied by a change in volume. In the present
work we consider phase change studies in R1 and R2 assuming (i)
the density ρ to be constant during the phase transition and (ii) the
density to be a function of temperature i.e. variable with continuous
and differentiable distribution between the states. Additionally, the
influence of temperature dependent density in the transition region
on the speed of propagation of the transition region is also inves-
tigated. Mathematical models and numerical studies are presented
in R1 and R2 for solid-liquid and liquid-solid phase change when
stress field and velocity field are zero.

In the second group of mathematical models stress and veloc-
ity fields are considered to be nonzero. In this case the mathe-
matical models change drastically compared to the first group of
models. This is due to the fact that in solid regions Lagrangian
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description is essential because we need to monitor displacements,
have measures of strain, and restrict transport of material particles
to describe solid continua. On the other hand the fluid media re-
quires arbitrary transport which precludes displacement and strain
measures. The transition region is even more complex. In gen-
eral, the mathematical models must consist of complete Navier-
Stokes equations: continuity equation, momentum equations, en-
ergy equation, and the constitutive equations for both solid and
liquid phases. In the liquid phase, the Eulerian description with
transport is ideally suited for deriving mathematical models using
conservation and balance laws. In such descriptions material par-
ticle displacements are ignored and hence not monitored. Instead,
the evolving state of the matter is monitored at fixed locations. In
the case of fluids this approach is satisfactory as the stress field
does not depend on strain, hence material point displacements are
not needed. In the case of solid matter, the Lagrangian description
is obviously ideal to derive the mathematical models. In this de-
scription the material points are the grid points that experience dis-
placement during evolution. In the case of ice as a solid medium,
it is reasonable to assume the matter to be hyperelastic and hence
the use of constitutive theories based on strain energy density func-
tion (such as generalized Hooke’s law) is appropriate. If we as-
sume fluid to be Newtonian fluid then standard Newton’s law of
viscosity for incompressible media can be used as the constitutive
theory for the liquid phase. In the transition region, a mushy zone
of solid-liquid mixture, the mathematical model based on balance
and conservation laws is not that straightforward to construct. In
the present work we discuss various alternate approaches of deriv-
ing mathematical models for the transition region, their benefits,
and shortcomings. Use of the mathematical models based on con-
servation and balance laws for solid-liquid and liquid-solid phase
change and their validity are discussed and evaluated for solid and
liquid, as well as the transition region.

The third group of mathematical models are derived based on
the assumption that the stress field is constant and the velocity field
is zero in the solid region but nonzero in the liquid region. In the
transition zone, the stress and the velocities are assumed to make
transition from nonzero state in the fluid to constant stress state
and zero velocity in the solid phase based on the temperature in the
transition zone. These mathematical models permit phase transi-
tion studies in the presence of flow, are consistent description based
on continuum mechanics, and hence provide correct interaction be-
tween the solid and fluid media. Numerical studies are presented
in R1 and R2 to demonstrate various features of the mathematical
models presented here. Computed solutions in R1 are also com-
pared with sharp-interface theoretical solution.

Computed mathematical solutions reported in the paper are al-
ways converged and are independent of mesh size and degree of
local approximation. In all cases the integrated sum of squares of
the residuals are small (O(10−6) or lower), confirming good accu-
racy of the reported solutions.

2 MATHEMATICAL MODELS

In this section we consider details of the three groups of mathemat-
ical models described in section 1.3.

2.1 First group of mathematical models for
phase change based on zero stress and ve-
locity fields and free boundaries

These mathematical models constitute the first group of mathe-
matical models. When the media are stress free, the velocity field is
zero, and the boundaries are free the mathematical model for phase
change reduces to linear or nonlinear diffusion equation regardless
of the choice of dependent variables. In the published works there
is a lot of confusion in the presentations of these models regard-
ing the choice of conflicting notations, representation of physics,
and even consistency of derivations. These models are generally
classified as sharp-interface models, enthalpy models, phase field
models, smooth-interface models, etc. We show that the energy
equation resulting from the first law of thermodynamics is the same
in all of these models. What differs is (i) the choice of dependent
variable(s) and (ii) the manner in which the phase transition physics
is incorporated. We present two basic forms of the energy equa-
tion that are used in the mathematical models mentioned above.
Overbar on quantities indicates that the description is Eulerian with
transport.

Energy Equation

Following [23] for a compressive and dissipative medium, we
can derive the following energy equation from the first law of ther-
modynamics in Eulerian description with transport when the stress
field and the velocity are not zero. Assuming sources and sinks to
be absent

ρ̄
Dē
Dt

+∇̄∇∇∇∇∇∇∇∇·········q̄qqqqqqqq− tr
([

σ̄
(0)][D̄])= 0 ∀(x̄xxxxxxxx, t)∈Ωx̄xxxxxxxxt =Ωx̄xxxxxxxx×Ωt (1)

ρ̄ is density, ē is specific internal energy, q̄qqqqqqqq is the heat vector,
[σ̄ (0)] is the contravariant Cauchy stress tensor, and [D̄] is the sym-
metric part of the velocity gradient tensor, all in the current con-
figuration at time t. Equation (1) can also be written in terms of
specific enthalpy h̄. Recall that

h̄ = ē+
p̄
ρ̄

(2)

in which p̄ is thermodynamic pressure. Thus

ρ̄
Dē
Dt

= ρ̄
Dh̄
Dt
− ρ̄

D
Dt

( p̄
ρ̄

)
or

ρ̄
Dē
Dt

= ρ̄
Dh̄
Dt
− Dp̄

Dt
+

p̄
ρ̄

Dρ̄

Dt
∀(x̄xxxxxxxx, t) ∈Ωx̄xxxxxxxxt = Ωx̄xxxxxxxx×Ωt

(3)
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Consider decomposition of [σ̄ (0)] into equilibrium stress p̄[I]
and deviatoric stress [dσ̄ (0)]

σ̄σσσσσσσσ
(0) =−p̄IIIIIIIII + dσ̄σσσσσσσσ

(0) (4)

Using (4)

tr
([

σ̄
(0)][D̄])=−tr

(
p̄
[
D̄
])

+ tr
([

dσ̄
(0)][D̄])

=−p̄∇̄∇∇∇∇∇∇∇∇ ········· v̄vvvvvvvv+ tr
([

dσ̄
(0)][D̄]) (5)

Furthermore, from continuity

Dρ̄

Dt
+ ρ̄∇̄∇∇∇∇∇∇∇∇ ········· v̄vvvvvvvv = 0 ∀(x̄xxxxxxxx, t) ∈Ωx̄xxxxxxxxt = Ωx̄xxxxxxxx×Ωt (6)

Substituting from (6) for Dρ̄

Dt in (3)

ρ̄
Dē
Dt

= ρ̄
Dh̄
Dt
− Dp̄

Dt
+

p̄
ρ̄

(
− ρ̄∇̄∇∇∇∇∇∇∇∇ ········· v̄vvvvvvvv

)
or

ρ̄
Dē
Dt

= ρ̄
Dh̄
Dt
− Dp̄

Dt
− p̄∇̄∇∇∇∇∇∇∇∇ ········· v̄vvvvvvvv ∀(x̄xxxxxxxx, t) ∈Ωx̄xxxxxxxxt = Ωx̄xxxxxxxx×Ωt

(7)

Substituting from (5) and (7) into (1)

ρ̄
Dh̄
Dt
− Dp̄

Dt
− p̄∇̄∇∇∇∇∇∇∇∇ ········· v̄vvvvvvvv+∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq+p̄∇̄∇∇∇∇∇∇∇∇ ········· v̄vvvvvvvv− tr

([
dσ̄

(0)][D̄])
∀(x̄xxxxxxxx, t) ∈Ωx̄xxxxxxxxt = Ωx̄xxxxxxxx×Ωt

(8)

ρ̄
Dh̄
Dt
− Dp̄

Dt
+∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq− tr

([
dσ̄

(0)][D̄]) ∀(x̄xxxxxxxx, t) ∈Ωx̄xxxxxxxxt = Ωx̄xxxxxxxx×Ωt

(9)
Dp̄
Dt in (9) is often neglected if compressibility is not significant.

ρ̄
Dh̄
Dt

+∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq− tr
([

dσ̄
(0)][D̄]) ∀(x̄xxxxxxxx, t) ∈Ωx̄xxxxxxxxt = Ωx̄xxxxxxxx×Ωt (10)

Equations (1) and (10) are two fundamental forms of the energy
equation in specific internal energy ē and specific enthalpy h̄ when
the medium is compressible and the stress field and the velocity
field are not zero.

Stress free medium with zero velocities

When the medium is stress free and the velocity field is zero
then

D
Dt

=
∂

∂ t
and dσ̄σσσσσσσσ

(0) = 0 = D̄DDDDDDDD (11)

Furthermore, with these assumptions Eulerian and Lagrangian
descriptions are the same, hence the overbar on all quantities can
be omitted. Thus, (1) and (10) reduce to

ρ
De
Dt

+∇∇∇∇∇∇∇∇∇ ·········qqqqqqqqq = 0 ∀(xxxxxxxxx, t) ∈Ωxxxxxxxxxt = Ωxxxxxxxxx×Ωt (12)

ρ
Dh
Dt

+∇∇∇∇∇∇∇∇∇ ·········qqqqqqqqq = 0 ∀(xxxxxxxxx, t) ∈Ωxxxxxxxxxt = Ωxxxxxxxxx×Ωt (13)

For this case h = e as obvious from (2) when p = 0. In the
energy equations (12) and (13) the simplest constitutive theory for
heat vector is of course Fourier heat conduction law.

qqqqqqqqq =−k∇∇∇∇∇∇∇∇∇T ∀(xxxxxxxxx, t) ∈Ωxxxxxxxxxt = Ωxxxxxxxxx×Ωt (14)

in which k is the thermal conductivity for homogeneous isotropic
matter. Equations (12) and (14) or (13) and (14) form the basis for
phase transition mathematical models in the absence of stress field
and velocity field.

Various methods published in the literature differ in the manner
in which the phase change physics is incorporated in (12) and (13).

Remarks

(1) First we note that since h = e, the specific enthalpy and the
specific energy models are the same. From now onwards, we
will use (12) to present further details.

(2) The fundamental issue is the physics for e we wish to consider
during the phase change. We consider two possibilities.

(a) In the first class of mathematical models we assume that
the release or absorption of latent heat during phase change
occurs at a constant temperature. Referring to figure 1(a)
when the temperature in the solid medium reaches Ts with
specific internal energy es (point B), the addition of latent
heat of fusion L f at constant temperature Ts increases es to
el (point C) at which the state of the matter has changed
from solid to liquid. In case of freezing we go from the
state of the matter at C to B by extracting latent heat of
fusion L f at constant temperature Ts.

In this physics of phase transition the interface between the
solid and the liquid phases is sharp (step change), hence
the mathematical models for e based on this approach are
called ”sharp-interface models.” Step change in e is non-
physical even for the most idealized materials.

Secondly, its numerical simulation poses difficulties due
to non-unique behavior of e at temperature Ts. We present
details of sharp-interface models in a following section.

(b) In the second category of mathematical models for e we as-
sume that phase transition from solid to liquid occurs over
a finite but small range of temperature [Ts,Tl ] and that e is
continuous and differentiable for Ts ≤ T ≤ Tl (figure 1(b)).
The range [Ts,Tl ] can be as narrow or as large as desired.

The obvious advantage in this approach is that the singular
nature of e at Ts (as in figure 1(a)) is completely avoided.
This is of immense benefit in numerical computations of
evolution of phase change problems.
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Figure 1: Sharp- and smooth-interface models for specific internal energy

2.1.1 Sharp-interface models

As described earlier these models for e are based on its behav-
ior during phase transition shown in figure 1(a). We have some
alternative forms of the mathematical models.

Model (a)

In this model we consider

ρ
∂e
∂ t

+∇∇∇∇∇∇∇∇∇ ·········qqqqqqqqq = 0 ∀(xxxxxxxxx, t) ∈Ωxxxxxxxxxt = Ωxxxxxxxxx×Ωt (15)

qqqqqqqqq =−k∇∇∇∇∇∇∇∇∇T ∀(xxxxxxxxx, t) ∈Ωxxxxxxxxxt = Ωxxxxxxxxx×Ωt (16)

e = es +αL f + cp(T −Ts) (17)

α =


0 ; e < es

e− es

L f
; es ≤ e≤ es +L f

1 ; e > es +L f

(18)

Alternatively (16) can be substituted into (15) to obtain

ρ
∂e
∂ t
−∇∇∇∇∇∇∇∇∇ ········· (k∇∇∇∇∇∇∇∇∇T ) = 0 ∀(xxxxxxxxx, t) ∈Ωxxxxxxxxxt = Ωxxxxxxxxx×Ωt (19)

The mathematical model consists of (15) – (18) in dependent
variables e, q, and T , or (17) – (19) in dependent variables e and T .
In the published works specific heat cp is generally considered as a
function of temperature, but in general ρ = ρ(T ), cp = cp(T ), and
k = k(T ) are permissible but can only be used outside the transition
region. Consider equation (17) during phase change, i.e. change in
e from es to el . When α = e−es

L f
and T = Ts, (17) is identically satis-

fied. α = 1 for e > es +L f clearly indicates instantaneous addition
of latent heat. Both models in e, q, T and e, T have been used in
the published works [10–14].

Model (b)

If we assume that cp, k, and ρ are constant in the solid and
liquid regions and have values cps, ks, ρs and cpl , kl , ρl , then we
can write explicit forms of (19) for solid and liquid phases by using
es = cpsT and el = cplT . These equations are augmented by a heat

balance equation at the interface (BC, figure 1(a)).

Solid phase:

ρscps
∂T
∂ t
−∇∇∇∇∇∇∇∇∇ ········· (ks∇∇∇∇∇∇∇∇∇T ) = 0 ∀(xxxxxxxxx, t) ∈Ω

s
xxxxxxxxxt = Ω

s
xxxxxxxxx×Ωt (20)

Liquid phase:

ρlcpl
∂T
∂ t
−∇∇∇∇∇∇∇∇∇ ········· (kl∇∇∇∇∇∇∇∇∇T ) = 0 ∀(xxxxxxxxx, t) ∈Ω

l
xxxxxxxxxt = Ω

l
xxxxxxxxx×Ωt (21)

At the interface:

L f vn =
(
(−ks∇∇∇∇∇∇∇∇∇T )− (−kl∇∇∇∇∇∇∇∇∇T )

)
·········nnnnnnnnn ∀(xxxxxxxxx, t) ∈ Γxxxxxxxxxt = Γxxxxxxxxx×Ωt (22)

Ωs
xxxxxxxxx and Ωl

xxxxxxxxx are solid and liquid spatial domains. Γxxxxxxxxx(t) =
Ωs

xxxxxxxxx
⋂

Ωl
xxxxxxxxx is the interface between the solid and liquid phases. L f

is the latent heat of fusion, nnnnnnnnn is the unit exterior normal from the
solid phase at the interface, and vn is the scalar normal velocity of
the interface in the direction of nnnnnnnnn. Subscripts and superscripts s and
l stand for solid and liquid phases.

When the mathematical model is posed as a system of inte-
gral equations, a complete proof of existence and uniqueness of
the classical solution in R1 was given by Rubinstein in 1947 [11].
For the one dimensional case, analytical solutions to some specific
problems are derived in reference [12] for the temperature distribu-
tion T = T (x, t). When the properties are the same in both phases
(i.e. cps = cpl = 1, ks = kl = 1, ρs = ρl = 1), one example problem
in reference [12] solves for T in the domain x ≥ 0 with initial and
boundary conditions:

T (0, t) = T0

T (x,0) = Θ(x)

T (x, t)x→∞ = T∞

(23)

Then the solution to the sharp-interface model is given by

T (x, t) =C1

erf
(

β

2

)
− erf

(
x

2
√

t + t0

)
erf
(

β

2

) ; x≤ Γx(t)

T (x, t) =C2

erf
(

β

2

)
− erf

(
x

2
√

t + t0

)
erfc
(

β

2

) ; x > Γx(t)

(24)

The interface location Γx(t) is defined by

Γx(t) = β
√

t + t0 (25)

The parameter β is obtained by solving the equation

2√
π

e
β2
4

 C2

erfc
(

β

2

) − C1

erf
(

β

2

)
−β = 0 (26)
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Remarks

(1) One of the major disadvantages of the sharp-interface mathe-
matical models is that the phase change is assumed to occur
at a constant temperature Ts. Thus, e changes from es to el
at constant T = Ts. This is true regardless of the form of the
mathematical models.

(2) The sharp interface creates singularity of e at T = Ts which
poses many obvious difficulties in the computation of the nu-
merical solutions of the associated initial value problem.

(3) It is meritorious to eliminate qqqqqqqqq as a dependent variable as done
in case of (19) as it reduces the number of dependent variables
in the mathematical model. But this reduction is at the cost of
appearance of the second derivative of T with respect to spatial
coordinates in the energy equation, which in context of finite
element methods of approximation requires higher order regu-
larity for the approximation of T .

(4) In addition to eliminating qqqqqqqqq as a dependent variable, the spe-
cific internal energy e can also be substituted in the energy
equation yielding a single nonlinear diffusion equation in tem-
perature T . We postpone details of this until a later section.

(5) It is critical to point out that all sharp-interface models are de-
rived based on a priori existence of the transition front as initial
condition. As a result these models cannot simulate initiation
of the transition front. The models simply simulate propaga-
tion of this front during evolution. This is vital physics that
is necessary in almost every phase change application and is
missing in the sharp-interface approach.

(6) Finally, if one considers computations of the numerical solu-
tions for phase change processes to be essential, then sharp-
interface model of phase change processes are not meritorious.

2.1.2 Smooth-interface models

In smooth-interface models the phase change is assumed to take
place over a finite temperature range [Ts,Tl ] (see figure 1(b)) dur-
ing which e is continuous and differentiable in temperature T. The
range [Ts,Tl ], referred to as transition region consisting of solid-
liquid mixture i.e. a mushy region, can be as narrow or as wide as
desired. At T = Ts the state of the matter is solid whereas at T = Tl
it is pure liquid.

Since the properties ρ , cp, k have different values for solid and
liquid phases, it is often meritorious to consider these as functions
of temperature T with continuous and differentiable behavior for
Ts ≤ T ≤ Tl between their values ρs, cps,ks and ρl , cpl , kl for solid
and liquid states respectively. In the following we present details
of two smooth-interface mathematical models, one based on phase
field approach and the other based on the energy equation (12) with
transition region [Ts,Tl ] in which ρ , cp, k and L f are continuous and
differentiable functions of the temperature T .

Phase field models

The phase field mathematical models of phase change also in-
troduce a finite width variable transition region between the two
states. These models are based on the work of Cahn and Hilliard [4]
and are derived using Landau-Ginzberg theory of critical phenom-
ena [5]. A phase field variable p is introduced which has a value
of −1 for solid phase and +1 in the liquid phase. The length of
the transition region between the solid and the liquid phases is con-
trolled by choosing a value of ξ (figure 2) that corresponds to in-
termediate value of p.

x

p =−1

p = 1

ε ∝ ξ

Figure 2: Expected spatial profile of phase field through a solid-liquid in-
terface

The phase field approach avoids the explicit treatment of the
interface conditions as employed in the sharp-interface models. In-
stead we use a coupled system of nonlinear evolution equations in
temperature T and phase variable p [24]

ρcp
∂T
∂ t
−∇∇∇···∇∇∇···∇∇∇···(k∇∇∇∇∇∇∇∇∇T )+

1
2

L f
∂ p
∂ t

= 0 ∀(xxxxxxxxx, t)∈Ωxxxxxxxxxt =Ωxxxxxxxxx×Ωt (27)

αξ
2 ∂ p

∂ t
−ξ

2
∆p+

∂ f
∂ p

= 0 ∀(xxxxxxxxx, t) ∈Ωxxxxxxxxxt = Ωxxxxxxxxx×Ωt (28)

in which α is related to the kinetic parameter [24], ∆ = ∂ 2

∂x2 +
∂ 2

∂y2 +

∂ 2

∂ z2 , and f = f (p,T ) is referred to as the restoring potential or free
energy potential. Equations (27) and (28) can be interpreted in
a simple way. Equation (28) is a linear time evolution of p gov-
erned by imbalance between the excess interface free energy and
the restoring potential f (p,T ). The energy equation (27) has a
source term 1

2 L f
∂ p
∂ t to account for the latent heat release or absorp-

tion at the moving interface. When the phase field equations (27)
and (28) are employed to simulate real solidification or melting
problems, we expect that sharp-interface conditions are approached
as the interface thickness ξ → 0. The results in phase field mod-
els unfortunately depend largely on thermodynamic consistency of
the potential f (p,T ). The work of Caginalp [25] provides a strong
indication that the sharp-interface limit is attained for all forms of

69



Research Article – JTEN – 2015 – 4

free energy potential f (p,T ) in which T and p coupling is lin-

ear i.e. ∂ 2 f (p,T )
∂ p∂T = 0. Given a specific form of f (p,T ), the en-

tropy/energy/temperature scales must obey the relationships:

∆η = (ηliquid−ηsolid) =
∂ f
∂T

∣∣∣∣liquid

solid
(29)

∆η
∣∣
T=0 =

L f

Tm
(30)

in which η is entropy, ∆η is change in entropy, and Tm is mean tem-
perature. In the Caginalp Potential (CP) model [24], dependence
of f on T is taken into account by adding a simple linear term to
the double well potential in p.

f (p,T ) =
1

8a
(p2−1)2− ∆η

2
pT (31)

The parameter a is chosen such that ∂ f
∂ p exhibits three distinct

roots, near 0 and ±1. From (31) we note that minima of f (p,T ) at
p = ±1 changes as T departs from zero. Figure 3 shows a plot of
p versus f (p,T ) for T = 0, T < 0, and T > 0 (with a = ∆η = 1).

-1.5 -1 -0.5  0  0.5  1  1.5

f(
p
,T
)

Phase Variable, p

T = -0.2
T = 0
T = 0.2

Figure 3: Double-well behavior of restoring potential for various values
of temperature

For a finite value of a, a small amount of latent heat is re-
leased at positions away from the interface. This undesirable ef-
fect fades as a→ 0. Indeed, Caginalp et al. [25–28] have estab-
lished that as ξ → 0 and a→ 0 the phase field equations (27) and
(28) with f (p,T ) defined by (31) produce solutions that approach
sharp-interface limits.

Remarks

(1) The phase field models require free energy potential f (p,T ).
There are some guidelines to establish this but for the most part
the procedure is not deterministic.

(2) As in case of sharp-interface models, here also the interface
must be defined as initial condition. The phase field models
are not capable of initiating phase transition. Obviously, this
is a major drawback of these models. This drawback is due to
the use of double well function f (p,T ).

(3) When the spatial domain is either solid or liquid, the free en-
ergy density functions used presently do not allow initiation of
the transition zone or front due to the presence of two distinct
minima, regardless of the temperature. For example if the spa-
tial domain is liquid and heat is removed from some boundary,
the liquid will remain in the liquid state although the tempera-
ture may have fallen below the freezing temperature.

(4) This drawback of phase field models presents serious problems
in simulating phase transition processes in which initiation and
detection of the location of the transition zone is essential as it
may not be known a priori.

(5) When the phase transition region is specified as initial con-
dition, the phase field models predict accurate evolution i.e.
movement of the transition region.

Mathematical models used in the present work: smooth-
interface models (first group of models)

The mathematical models used in the present work presented
in this section are derived based on the assumptions that the tran-
sition region between the liquid and solid phases occurs over a
small temperature change (width of the transition region [Ts,Tl ]) in
which specific heat, thermal conductivity, density, and latent heat
of fusion and hence specific internal energy change in a continuous
and differentiable manner. Figures 4(a),(b),(c),(d),(e) show distri-
butions of ρ , cp, k, L f , and e in the transition region [Ts,Tl ] between
the solid and liquid phases. The range [Ts,Tl ] i.e. the width of the
transition region, can be as narrow or as wide as desired by the
physics of phase change in a specific application. The transition
region is assumed to be homogeneous and isotropic. This assump-
tion is not so detrimental as in this case the constitutive theory only
consists of the heat vector due to the zero velocity field and zero
stress assumptions.

The mathematical models derived and presented here are same
in Lagrangian as well as Eulerian description, and are based on the
first law of thermodynamics using specific total energy and the heat
vector augmented by the constitutive equation for the heat vector
(Fourier heat conduction law) and the statement of specific total
energy incorporating the physics of phase transition in the smooth
interface zone between liquid and solid phases.
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Figure 4: ρ , cp, k, L f and e in the smooth interface transition region be-
tween the solid and liquid phases as functions of Temperature
T

First Law of Thermodynamics:

In the absence of sources and sinks we have

ρ
De
Dt

+∇∇∇∇∇∇∇∇∇ ·········qqqqqqqqq = 0 ∀(xxxxxxxxx, t) ∈Ωxxxxxxxxx×Ωt = Ωxxxxxxxxx× (0,τ) (32)

Assuming Fourier heat conduction law as constitutive theory
for qqqqqqqqq, we can write

qqqqqqqqq =−k(T )∇∇∇∇∇∇∇∇∇T ∀(xxxxxxxxx, t) ∈Ωxxxxxxxxx×Ωt = Ωxxxxxxxxx× (0,τ) (33)

The specific internal energy e is given by

e =
∫ T

T0

cp(T )dT +L f (T ) (34)

Hence

∂e
∂ t

=
∂

∂T

(∫ T

T0

cp(T )dT +L f (T )
)

∂T
∂ t

= cp(T )
∂T
∂ t

+
∂L f

∂ t
(35)

Substituting (35) into (32)

ρ(T )cp(T )
∂T
∂ t

+ρ(T )
∂L f (T )

∂ t
+∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqq = 0

∀(xxxxxxxxx, t) ∈Ωxxxxxxxxx×Ωt = Ωxxxxxxxxx× (0,τ)
(36)

If Q(T ) represents any one of the quantities ρ(T ), cp(T ), k(T ),
and L f (T ), then we define

Q(T ) =

 Qs ; T < Ts
Q(T ) ; Ts ≤ T ≤ Tl

Ql ; T > Tl

(37)

We use the following for Q(T )

Q(T ) = c0 +
n
∑

i=1
ciT i ;Ts ≤ T ≤ Tl (38)

when n = 3, Q(T ) is a cubic polynomial in T . The coefficients c0
and ci, i = 1,2,3 in (38) are calculated using the conditions:

at T = Ts : Q(Ts) = Qs ,
∂Q
∂T

∣∣∣∣
T=Ts

= 0

at T = Tl : Q(Tl) = Qs ,
∂Q
∂T

∣∣∣∣
T=Tl

= 0

(39)

when n = 5, Q(T ) is a 5th degree polynomial in T . The coefficients
c0 and ci, i = 1, ...,5 in (38) are calculated using the conditions:

at T = Ts : Q(Ts) = Qs ,
∂Q
∂T

∣∣∣∣
T=Ts

=
∂ 2Q
∂T 2

∣∣∣∣
T=Ts

= 0

at T = Tl : Q(Tl) = Qs ,
∂Q
∂T

∣∣∣∣
T=Tl

=
∂ 2Q
∂T 2

∣∣∣∣
T=Tl

= 0

(40)

Remarks

(1) By letting Q to be ρ , cp, k and L f , dependence of these prop-
erties on temperature can be easily established.

(2) In case of L f we note that L f (Ts) = 0 and L f (Tl) = L f (value
of latent heat of fusion).

(3) Thus all transport properties including latent heat of fusion are
explicitly defined as functions of temperature T in the transi-
tion region.

We note that

∂L f (T )
∂ t

=

(
∂L f (T )

∂T

)(
∂T
∂ t

)
(41)

Hence, (36) can be written as(
ρ(T )cp(T )+ρ(T )

∂L f (T )
∂T

)
∂T
∂ t

+∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqq = 0 (42)

and

qqqqqqqqq =−k(T )∇∇∇∇∇∇∇∇∇T ∀(xxxxxxxxx, t) ∈Ωxxxxxxxxx×Ωt = Ωxxxxxxxxx× (0,τ) (43)

Equations (42) and (43) are smooth-interface mathematical
model in dependent variables T and q. ρ(T ), cp(T ), k(T ), and
L f (T ) are defined using (37)-(40). By substituting q from (43) into
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(42), we obtain a single nonlinear diffusion equation for smooth
interface phase change model.(

ρ(T )cp(T )+ρ(T )
∂L f (T )

∂T

)
∂T
∂ t
−∇∇∇···∇∇∇···∇∇∇···

(
k(T )∇∇∇∇∇∇∇∇∇(T )

)
= 0 (44)

or (
ρ(T )cp(T )+ρ(T )

∂L f (T )
∂T

)
∂T
∂ t

− ∂k(T )
∂T

3

∑
i=1

(
∂T
∂xi

)2

− k(T )∆T = 0
(45)

where ∆ = ∂ 2

∂x2
1
+ ∂ 2

∂x2
2
+ ∂ 2

∂x2
3
. x1 = x, x2 = y, and x3 = z have been

used for convenience. Equation (45) is the final form of the math-
ematical model in temperature T .

Remarks

(1) The mathematical models presented in this section can be writ-
ten in alternate forms. These are summarized in the following
based on choice of dependent variables.

Model A: Dependent Variable T
If we consider T as the only dependent variable, then the math-
ematical model is given by (45) i.e.(

ρ(T )cp(T )+ρ(T )
∂L f (T )

∂T

)
∂T
∂ t
− ∂k(T )

∂T

3

∑
i=1

(
∂T
∂xi

)2

− k(T )∆T = 0 ∀(xxxxxxxxx, t) ∈Ωxxxxxxxxxt = Ωxxxxxxxxx×Ωt

(46)

This model requires higher order regularity of approximations
of T in finite element processes of calculating numerical so-
lutions for T . This is due to second order derivatives of the
temperature with respect to spatial coordinates appearing in
(46).

Model B: Dependent Variables T , qqqqqqqqq
In this case the mathematical model consists of equations (42)
and (43).(

ρ(T )cp(T )+ρ(T )
∂L f

∂T

)
∂T
∂ t

+∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqq = 0

qqqqqqqqq =−k(T ) ·········∇∇∇∇∇∇∇∇∇T

 (47)

This is a system of first order partial differential equations in T
and q, hence lower order regularity on both q and T compared
to T in Model A.

Model C: Dependent Variables T , L f
In the mathematical model, rather than replacing L f (T ) with
an expression, a function of T , we could also consider L f as a

dependent variable and use L f (T ) =G(T ) as addition equation
in which G(T ) is functional relationship of L f on T .(

ρ(T )cp(T )+ρ(T )
∂L f

∂T

)
∂T
∂ t

− ∂k(T )
∂T

3

∑
i=1

(
∂T
∂xi

)2

− k(T )∆T = 0

L f = G(T )


(48)

This model is second order in T but first order in L f .

Model D: Dependent Variables T , qqqqqqqqq, and L f
In this case we consider the mathematical model (47), but also
introduce L f as a dependent variable.(

ρ(T )cp(T )+ρ(T )
∂L f

∂T

)
∂T
∂ t

+∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqq = 0

qqqqqqqqq =−k(T )∇∇∇∇∇∇∇∇∇T

L f = G(T )

 (49)

This is a first order model in T , q, and L f .

(2) The mathematical models given in remark (1) are all valid
models. We present more discussion on these models in the
section on numerical studies.

2.2 Second group of mathematical models for
phase change based on nonzero stress and
velocity fields in all phases

When the media are not stress free and the velocity field is
not zero, the mathematical models for phase change processes re-
quire use of all conservation and balance laws for solid and liquid
phases, as well as the transition region. The mathematical models
must incorporate the physics of solid, liquid, and transition regions
and their interactions during the evolution of the phase change pro-
cess. In the approach discussed here the mathematical models for
all phases are strictly based on conservation and balance laws and
the transition region is assumed to be a smooth interface between
the solid and the liquid phases. We consider details of the models
for all three phases and present discussion regarding their validity
and use in determining phase change evolution.

2.2.1 Liquid Phase

If we assume (for simplicity) the liquid phase to be incompress-
ible Newtonian fluid with constant properties, then the mathemat-
ical model for this phase is standard continuity, momentum equa-
tions, energy equation, and the constitutive theories for contravari-
ant deviatoric Cauchy stress tensor and heat vector in Eulerian de-
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scription with transport. In the absence of body forces, we have

ρ̄l∇̄∇∇∇∇∇∇∇∇ ········· v̄vvvvvvvv = 0

ρ̄l

(
∂ v̄i

∂ t
+ v̄ j

∂ v̄i

∂ x̄ j

)
+

∂ p̄
∂ x̄i
−

∂dσ̄
(0)
i j

∂ x̄ j
= 0

ρ̄l c̄pl

(
∂ T̄
∂ t

+ v̄vvvvvvvv ·········∇̄∇∇∇∇∇∇∇∇T̄
)
+∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq− dσ̄

(0)
ji D̄i j = 0

dσ̄
(0)
i j = 2µ̄D̄i j

q̄qqqqqqqq =−k̄l∇̄∇∇∇∇∇∇∇∇T̄


(50)

p̄ is mechanical pressure assumed positive when compressive.
ρ̄l , c̄pl , k̄l , µ̄ are the usual constant transport properties of the
medium. We remark that x̄xxxxxxxx are fixed locations at which the state
of the matter is monitored as time elapses i.e. x̄xxxxxxxx location is oc-
cupied by different material particles for different values of time.
In this mathematical model material point displacements are not
monitored.

2.2.2 Solid Phase

In the solid phase the most appropriate form of the mathemat-
ical model can be derived using conservation and balance laws in
Lagrangian description.

Hyperelastic Solid

If we assume the solid phase to be hyperelastic solid matter,
homogeneous, isotropic, and incompressible with infinitesimal de-
formation and constant material coefficients, then we have the fol-
lowing for continuity, momentum equations in the absence of body
forces, energy equation, and the constitutive equations (using σσσσσσσσσ for
stress tensor).

ρ0 = ρs as |J|= 1

ρs
∂vi

∂ t
−

σi j

∂x j
= 0

ρscps
∂T
∂ t

+∇∇∇ ···qqq∇∇∇ ···qqq∇∇∇ ···qqq = 0

σi j = Di jklεkl

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
vi =

∂ui

∂ t
qqqqqqqqq =−ks∇∇∇∇∇∇∇∇∇T



∀(xxxxxxxxx, t) ∈Ωxxxxxxxxxt = Ωxxxxxxxxx×Ωt (51)

In this description the locations xxxxxxxxx are locations of material
points, hence the deformation of the material points is monitored
during evolution. We note that we can also introduce the stress de-
composition σσσσσσσσσ =−pIIIIIIIII+ dσσσσσσσσσ with tr(dσσσσσσσσσ) = 0 in R3, tr(dσσσσσσσσσ)− p = 0
in R2, and tr(dσσσσσσσσσ)− 2p = 0 in R1 as additional equation relating

mechanical pressure p to dσσσσσσσσσ . With this decomposition this math-
ematical model appears to have the same dependent variables (but
not necessarily the same physical meaning) as the one for fluid in
Section 2.2.1.

Hypoelastic Solid

If we assume the solid phase to be hypo-thermoelastic solid
matter, isotropic, homogeneous, and incompressible with constant
material coefficients then the mathematical model can be derived
in Eulerian description with transport. The constitutive theory for
the stress tensor for such materials is a rate theory of order one in
stress and strain rate tensors i.e. convected time derivative of or-
der one of the stress tensor is related to the convected time deriva-
tive of order one of the conjugate strain tensor. If we consider
σ̄σσσσσσσσ

(0) =−p̄IIIIIIIII+ dσ̄σσσσσσσσ
(0) decomposition then we have the following for

continuity, momentum and energy equations, and the constitutive
equations.

ρ̄s∇̄∇∇∇∇∇∇∇∇ ········· v̄vvvvvvvv = 0

ρ̄s

(
∂ v̄i

∂ t
+ v̄ j

∂ v̄i

∂ x̄ j

)
+

∂ p̄
∂ x̄i
−

∂dσ̄
(0)
i j

∂ x̄ j
= 0

ρ̄sc̄ps

(
∂ T̄
∂ t

+ v̄vvvvvvvv ·········∇̄∇∇∇∇∇∇∇∇T̄
)
+∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq = 0

dσ̄
(1)
i j = D̃i jklγ

(1)
kl

q̄qqqqqqqq =−k̄s∇̄∇∇∇∇∇∇∇∇T̄


(52)

σ̄σσσσσσσσ
(1) is the first convected time derivative of the deviatoric con-

travariant Cauchy stress tensor and γ(1) is the first convected time
derivative of the Almansi strain tensor, a contravariant measure of
strain. It has been shown [29] that for thermo-hypoelastic solids the
continuity equation in (52) must be replaced by tr(dσ̄σσσσσσσσ

(0))= 0 in R3,
tr(dσ̄σσσσσσσσ

(0))− p̄ = 0 in R2, and tr(dσ̄σσσσσσσσ
(0))−2p̄ = 0 in R1 as additional

equation relating mechanical pressure p̄ to dσ̄σσσσσσσσ
(0). We note that in

hypoelastic solids, strain rate produces stress as opposed to strain
as in the case of hyperelastic solids. Secondly, such a model allows
transport which is not present in the deformation of thermoelastic
solids.

2.2.3 Transition Region

In the transition region the consideration of the physics of phase
transformation and how we account for it in the development of the
mathematical model determines the ultimate outcome of the details
of the mathematical model. The following approaches are used or
are possibilities.

(a) We can assume the transition region as a homogeneous, satu-
rated mixture of fluid and solid constituents with appropriate
volume fractions based on temperature. In this approach the
solid particles are always mobile, which poses problems as we
approach the solid phase. The choice of Lagrangian or Eu-
lerian description (with transport) is also not straightforward.
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This approach has not been used in phase transition applica-
tions.

(b) We assume that freezing or melting in the transition region cre-
ates a porous media with variable permeability. This approach
has been used but not in conjunction with the full Navier-
Stokes equations.

(c) Some variations of mixture theory with various approxima-
tions are possible.

Remarks

It is perhaps more straightforward to illustrate the problems as-
sociated with these mathematical models and their use in phase
transition if we consider sharp interface between solid and liquid
regions. In this case purely solid phase is in contact with purely
liquid phase. We consider the following:

(1) Lagrangian description with hyperelastic solid assumption is
ideal for the solid phase and the Eulerian description with
transport is suitable for the liquid phase. In the Lagrangian
description the locations xxxxxxxxx are the positions of the material par-
ticles that undergo evolution and thus we have displacements
of each material particle in time during evolution.

On the other hand, in Eulerian description with transport the
locations x̄xxxxxxxx are fixed locations that are occupied by different
material particles for different values of time. Thus, in this ap-
proach we do not have displacement history of each material
particle in time during evolution.

At the interface between the solid and the liquid regions, these
two mathematical models do not provide interaction. This has
been established by Surana et al. [30]. Forcing these mathe-
matical models to interact will produce spurious behavior.

(2) We could consider hypoelastic solid description (Eulerian de-
scription with transport) for the solid phase and the Eulerian
description with transport for the liquid phase. In this case,
interaction between the two phases is intrinsic in the mathe-
matical model and is mathematically consistent.

However the hypoelastic solids have transport which is not the
case for solid phase and the first order rate constitutive theory
is nonphysical for solid phase as it could yield zero stress in
the absence of strain rates. The presence of transport for the
solid phase is also problematic during the liquid to solid phase
change.

Thus when the stress field and the velocity field are not zero
the current mathematical models for solid and liquid phases do
not permit interaction of the solid and liquid phases (see Surana
et al. [30]).

2.3 Third group of mathematical models for
phase change: the stress field is assumed
to be constant and velocity field is assumed
zero in the solid phase but both are nonzero
in the liquid phase and transition region

The mathematical models in section 2.2 fail to provide inter-
action between the phases. We note that the main source of this
problem is that not all dependent variables in the two descriptions
describe the same physics. For example velocities in Lagrangian
description are time rate of change of displacements of a material
point, whereas in Eulerian description the velocities at a location
are velocities of different material points for different values of
time. Since we want to consider phase transition in the presence
of flow, the mathematical models for fluid derived based on con-
servation and balance laws must remain intact. In the solid region
we have displacements, their time derivatives (velocities) and stress
(dependent on displacements) in Lagrangian description. These
quantities do not have the same physical meaning in case of fluid
using Eulerian description with transport, thus must be eliminated
if we seek interaction the two media without changing the mathe-
matical model for fluid. This gives rise to constant stress field and
zero velocity field in the solid region. In the transition zone the ve-
locity field must transition from nonzero state at the liquid bound-
ary to zero state at the solid boundary, and the stress must assume
a constant value. Thus in this approach only the energy equation
provides the connecting link between the solid and transition re-
gions. In the solid region, the energy equation has no transport
terms (due to Lagrangian description) and no dissipation terms as
the solid phase is thermoelastic, but these would have been zero
even otherwise as the velocity field and divergence of the stress
field are zero. In the liquid region we have energy equation with
transport as well as dissipation, both of which approach zero in the
transition region as the state evolves from liquid to solid and hence
yields the desired energy equation for the solid phase.

Thus, in this approach we assume that the solid phase has con-
stant stress field and the velocity field is zero in this phase but in
the liquid phase we consider full Navier-Stokes equations based on
conservation and balance laws. Some aspects of the approach dis-
cussed here are also found in [17, 19–21] but differ significantly in
the specific details of the mathematical model and numerical com-
putations of the evolution. We consider that the solid and liquid
phases have smooth interface in which all transport properties vary
in a continuous and differentiable manner as in Section 2.1.2. We
consider details of the mathematical models in the following.

Liquid Phase

For this phase we consider standard Navier-Stokes equations in
Eulerian description (with transport) as used for fluids (constitutive
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theory for stress based on Newton’s law of viscosity).

ρ̄l∇̄∇∇∇∇∇∇∇∇ ········· v̄vvvvvvvv = 0

ρ̄l

(
∂ v̄i

∂ t
+ v̄ j

∂ v̄i

∂ x̄ j

)
+

∂ p̄
∂ x̄i
−

∂dσ̄
(0)
i j

∂ x̄ j
= 0

ρ̄l c̄pl

(
∂ T̄
∂ t

+ v̄vvvvvvvv ·········∇̄∇∇∇∇∇∇∇∇T̄
)
+∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq− dσ̄

(0)
ji D̄i j = 0

dσ̄
(0)
i j = 2µ̄D̄i j

q̄qqqqqqqq =−k̄l∇̄∇∇∇∇∇∇∇∇T̄


(53)

Solid Phase

Since in the solid phase the stress field is assumed constant
and the velocity field is assumed zero, the mathematical model for
this phase only consists of the energy equation and the constitu-
tive theory for heat vector. In the absence of the velocity field and
stress field, there is no distinction between the Lagrangian and the
Eulerian descriptions, but we use overbar to provide transparency
between this description and the one given by (53).

∇̄∇∇∇∇∇∇∇∇ ········· dσ̄σσσσσσσσ
(0) = 0

ρ̄sc̄ps
∂ T̄
∂ t

+∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq = 0

q̄qqqqqqqq =−k̄s∇̄∇∇∇∇∇∇∇∇T̄

 ∀(x̄xxxxxxxx, t) ∈Ωx̄xxxxxxxxt = Ωx̄xxxxxxxx×Ωt (54)

In this region we note that the momentum equations in (53)
must be satisfied for zero velocity field with zero pressure gradi-
ent. From the first set of equations in (54) we note that a constant
deviatoric Cauchy stress field is admissible. The values of the con-
stant stresses in the solid region are determined by the values of the
stresses at the solid-liquid interface. In other words, the constant
of integration in the first set of equations in (54) is determined us-
ing the values of the stresses at the solid-liquid interface. Since the
stress gradients are zero in the solid region, the stress values in the
solid region remain constant and their values are same as those at
the liquid-solid interface (see numerical studies in section 3.5).

Transition Region

In the transition region from liquid to solid the mathematical
model transitions from (53) to (54) or vice versa. As in Sec-
tion 2.1.2, we consider a transition region [T̄s, T̄l ] in temperature.
In this region we assume that k̄, c̄p, ρ̄ transition from solid to liquid
values in a continuous and differentiable manner as described in
Section 2.1.2. Let f̄l and f̄s be the liquid and solid fractions with
f̄s = 1− f̄l and 0 ≤ f̄l ≤ 1 in the transition region. We also as-
sume that release or absorption of latent heat of fusion L f is also
continuous and differentiable in the transition region.

Combined Mathematical Model

The mathematical models for solid, liquid, and transition
phases can be combined into a single mathematical model.

f̄l ρ̄(T̄ )∇̄∇∇∇∇∇∇∇∇ ········· v̄vvvvvvvv = 0

f̄l ρ̄(T̄ )
(

∂ v̄i

∂ t
+ v̄ j

∂ v̄i

∂ x̄ j

)
+ f̄l

∂ p̄
∂ x̄i
−

∂dσ̄
(0)
i j

∂ x̄ j
= 0

ρ̄(T̄ )
(

c̄p(T̄ )+
∂ L̄ f (T̄ )

∂ T̄

)(
∂ T̄
∂ t

+ f̄lv̄vvvvvvvv ·········∇̄∇∇∇∇∇∇∇∇T̄
)

+∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq− f̄l
(

dσ̄
(0)
ji D̄i j

)
= 0

f̄l
(

dσ̄
(0)
i j

)
= 2µ̄D̄i j

q̄qqqqqqqq =−k̄(T̄ )∇̄∇∇∇∇∇∇∇∇T̄



(55)

where

f̄l = 1 ; liquid phase
f̄l = 0 ; solid phase

0≤ f̄l ≤ 1 ; T̄s ≤ T̄ ≤ T̄l

(56)

From (55) and (56) we note that in the solid phase f̄l = 0, hence
continuity equation is identically zero, ∂ L̄ f

∂ T̄ = 0 and the others re-
duce to

∂dσ̄
(0)
i j

∂ x̄ j
= 0

ρ̄sc̄ps
∂ T̄
∂ t

+∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq = 0

q̄qqqqqqqq =−k̄s∇̄∇∇∇∇∇∇∇∇T̄

D̄i j = 0


∀(x̄xxxxxxxx, t) ∈Ωx̄xxxxxxxxt = Ωx̄xxxxxxxx×Ωt (57)

Comparing (57) with (53) we note that v̄ = 0 and thus D̄i j = 0,

and
∂d σ̄

(0)
i j

∂ x̄ j
= 0, therefore (53) reduces to (57), which is same as

(54). Presence of the first equation in (57) is essential as it ensures

that it is oscillation free so that
∂d σ̄

(0)
i j

∂ x̄ j
= 0 would hold precisely

everywhere in the solid phase. Thus the challenge in the mathe-
matical model (55),(56) is to ensure that D̄i j = 0 is achieved in the
solid phase which would ensure that v̄ and its gradients as well as
the gradients of dσ̄σσσσσσσσ

(0) are zero in the solid phase. The momen-
tum equation in (55) (or (57)) when satisfied for zero velocity field
ensures that ∇∇∇···∇∇∇···∇∇∇···dσ̄σσσσσσσσ

(0) is identically zero and oscillation free in the
solid phase.

This mathematical model is used in the present work to present
numerical studies for phase change when the stress field and the
velocity field in the liquid phase are not zero.
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3 NUMERICAL SOLUTIONS OF EVO-
LUTIONS OF PHASE CHANGE INI-
TIAL VALUE PROBLEMS

The mathematical models describing the phase change evolu-
tions are nonlinear partial differential equations. Based on the work
of Surana et al. [6, 8, 9], space-time least squares finite element
processes for an increment of time with time marching are ideally
suited for obtaining numerical solutions of phase change evolution.
See [6, 8, 9, 31] for details. First we nondimensionalize the mathe-
matical models derived in section 2 (only those used in this work).

The numerical solutions presented here for all model problems
are converged solutions that are independent of h and p for min-
imally conforming k [32–34]. For every increment of time, the
integrated sum of squares of the residuals for the space-time dis-
cretization are always of the order of O(10−6) or lower, ensuring
that the governing differential equations are satisfied in the point-
wise sense as the space-time integrals are Riemann for the space-
time discretizations.

3.1 Dimensionless form of the mathematical
models used in the present work

In the following we present dimensionless form of the mathe-
matical models of phase change based on: (i) the assumption that
stress field and velocity field are zero in solid, liquid, and transition
phases, and (ii) the assumption that in the solid phase the stress
field and velocity field are zero but in the liquid phase full Navier-
Stokes equations constitute the mathematical model.

In both models the transition zone of width [Ts,Tl ] in tempera-
ture is assumed homogeneous and isotropic in which ρ , cp, k make
transition from solid to liquid phase and vice versa in a continuous
and differentiable manner.

In order to nondimensionalize the mathematical models we
choose reference quantities to obtain dimensionless dependent and
independent variables and other quantities. The quantities with hat
( ˆ ) are with their usual dimensions, quantities with zero subscript
are reference quantities and the quantities without hat ( ˆ ) are di-
mensionless quantities. We define

xi = x̂i/L0 , vi = v̂i/v0

µ = µ̂/µ0 , p = p̂/p0

dσ
(0)
i j = dσ̂

(0)
i j /τ0 , L f = L̂ f /L f 0

k = k̂/k0 , cp = ĉp/cp0 , ρ = ρ̂/ρ0

T = (T̂ −T0)/T0 , t = t̂/t0 , qqqqqqqqq = q̂qqqqqqqq/q0

(58)

3.1.1 Mathematical model based on the assumption of
zero stress and zero velocity field in all phases (first
group of models)

Recall the following mathematical model presented in Section
2.1.2.

ρ̂ ĉp
∂ T̂
∂ t̂

+∇̂∇∇∇∇∇∇∇∇ · q̂qqqqqqqq+ ρ̂
∂ L̂ f

∂ t̂
= 0 ∀ (x̂xxxxxxxx, t) ∈ Ωx̂xxxxxxxxt (59)

q̂qqqqqqqq =−k̂∇̂∇∇∇∇∇∇∇∇T̂ ∀ (x̂xxxxxxxx, t) ∈ Ωx̂xxxxxxxxt (60)

Using (58) in (59) and (60), we obtain

ρcp
∂T
∂ t

+

(
q0t0

L0ρ0cp0T0

)
∇∇∇∇∇∇∇∇∇ ·········qqqqqqqqq+

(
L f 0

cp0T0

)
ρ

∂L f

∂ t
= 0 (61)

qqqqqqqqq =−
(

1
q0

)(
k0T0

L0

)
k∇∇∇∇∇∇∇∇∇T (62)

If we choose

q0 = k0T0/L0 (63)

Then, (61) and (62) can be written as

ρcp
∂T
∂ t

+

(
t0k0

L2
0ρ0cp0

)
∇∇∇∇∇∇∇∇∇ ·········qqqqqqqqq+

(
L f 0

cp0T0

)
ρ

∂L f

∂ t
= 0 (64)

qqqqqqqqq =−k∇∇∇∇∇∇∇∇∇T (65)

Since the velocity field is assumed zero, t0 cannot be defined
using L0 and v0. We can choose the following:

t0 = L2
0ρ0cp0/k0 , L f 0 = cp0T0 (66)

Using (66), the mathematical model (64) and (65) reduces to

ρcp
∂T
∂ t

+∇∇∇∇∇∇∇∇∇ ·········qqqqqqqqq+ρ

(
∂L f

∂T

)
∂T
∂ t

= 0 (67)

qqqqqqqqq =−k∇∇∇∇∇∇∇∇∇T (68)

Equations (67) and (68) are a system of first order PDEs in T and
qqqqqqqqq in which reference time t0 and reference latent heat of fusion L f 0
are defined by (66). Alternatively, if we substitute qqqqqqqqq from (68) into
(67), then we obtain a single PDE in temperature T .

ρcp
∂T
∂ t
−∇∇∇···∇∇∇···∇∇∇···(k∇∇∇∇∇∇∇∇∇T )+ρ

(
∂L f

∂T

)
∂T
∂ t

= 0 (69)

Equation (69) contains up to second order derivatives of temper-
ature T in space coordinates. The mathematical models (67) and
(68) as well as (69) can be used in numerical studies, but the choice
of local approximations for minimally conforming approximation
spaces differ in the two. Since L f = L f (T ),

∂L f
∂T is strictly deter-

ministic. Other mathematical models (Model C and Model D) pre-
sented in Section 2.1.2 have similar dimensionless forms.
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3.1.2 Mathematical model when the stress field is as-
sumed constant and the velocity field is assumed
zero in the solid phase but nonzero in both the liq-
uid and transition regions (third group of models)

Recall the mathematical model given by (55) and (56)

f̄l ˆ̄ρ( ˆ̄T ) ˆ̄
∇∇∇∇∇∇∇∇∇ ········· ˆ̄vvvvvvvvv = 0

f̄l ˆ̄ρ( ˆ̄T )
(

∂ ˆ̄vi

∂ t̂
+ ˆ̄v j

∂ ˆ̄vi

∂ ˆ̄x j

)
+ f̄l

∂ ˆ̄p
∂ ˆ̄xi
−

∂d ˆ̄σ (0)
i j

∂ ˆ̄x j
= 0

ˆ̄ρ( ˆ̄T )
(

ˆ̄cp( ˆ̄T )+
∂ ˆ̄L f (

ˆ̄T )

∂ ˆ̄T

)(
∂ ˆ̄T
∂ t̂

+ f̄l ˆ̄vvvvvvvvv ········· ˆ̄
∇∇∇∇∇∇∇∇∇ ˆ̄T
)

+ ˆ̄
∇∇∇∇∇∇∇∇∇ ········· ˆ̄qqqqqqqqq− f̄l

(
d ˆ̄σ (0)

ji
ˆ̄Di j
)
= 0

f̄l
(

d ˆ̄σ (0)
i j

)
= 2 ˆ̄µ ˆ̄Di j

ˆ̄qqqqqqqqq =− ˆ̄k( ˆ̄T ) ˆ̄
∇∇∇∇∇∇∇∇∇ ˆ̄T



(70)

where
f̄l = 1 ; liquid phase
f̄l = 0 ; solid phase

0≤ f̄l ≤ 1 ; ˆ̄Ts ≤ ˆ̄T ≤ ˆ̄Tl

(71)

Dimensionless forms of (70) and (71) can be obtained using
(58):

f̄l ρ̄(T̄ )∇̄∇∇∇∇∇∇∇∇ ········· v̄vvvvvvvv = 0

f̄l ρ̄(T̄ )
(

∂ v̄i

∂ t
+ v̄ j

∂ v̄i

∂ x̄ j

)
+ f̄l

(
p0

ρ0v2
0

)
∂ p̄
∂ x̄i

−
(

τ0

ρ0v2
0

)
∂dσ̄

(0)
i j

∂ x̄ j
= 0

ρ̄(T̄ )
(

1
Ec

c̄p(T̄ )+
L f 0

v2
0

∂ L̄ f (T̄ )
∂ T̄

)(
∂ T̄
∂ t

+ f̄lv̄vvvvvvvv ·········∇̄∇∇∇∇∇∇∇∇T̄
)

+
1

ReBr
∇̄∇∇∇∇∇∇∇∇ ········· q̄qqqqqqqq− f̄l

(
τ0

ρ0v2
0

)(
dσ̄

(0)
ji D̄i j

)
= 0

f̄l
(

dσ̄
(0)
i j

)
=

(
µ0v0

L0τ0

)
2µ̄D̄i j

q̄qqqqqqqq =−k̄(T̄ )∇̄∇∇∇∇∇∇∇∇T̄



(72)

where
f̄l = 1 ; liquid phase
f̄l = 0 ; solid phase

0≤ f̄l ≤ 1 ; T̄s ≤ T̄ ≤ T̄l

Re =
ρ0v0L0

µ0
; Reynolds Number

Br =
µ0v2

0
k0T0

; Brinkman Number

(73)

Remarks

(1) We keep in mind that in the solid phase the momentum equa-
tions must be satisfied for zero velocity field and constant stress

field i.e. in the solid phase ∂ v̄i/∂ x̄ j = 0 and ∂ dσ̄
(0)
i j /∂ x̄ j = 0

must hold in the solid phase.

(2) Based on (1), it may be possible to redefine new dependent
variables so that during numerical computations, conditions in
(1) are also satisfied with this choice. This indeed is the case
as shown in the model problems in section 3.5.1.

3.2 Computational methodology for computing
evolution of IVP describing phase change

The mathematical models describing phase change are a system
of nonlinear partial differential equations. Numerical solutions are
computed using space-time least squares finite element processes
for a space-time strip (in R1) or a space-time slab (in R2) the with
time marching. The mathematical models utilized in the computa-
tional studies are a system of PDEs. In case of R1, the space-time
domain of a space-time strip for an increment of time is discretized
using nine-node p-version space-time elements. In case of R2, the
space-time slab is discretized using 27-node p-version space-time
elements. Local approximations of class C0 and C1 in space and
time are in the computations.

For an increment of time i.e. for a space-time strip or a slab,
solution of the non-linear algebraic systems is obtained using New-
ton’s linear method with line search. Newton’s linear method is
considered converged when the absolute value of each component
of δ I = {g} is below a preset threshold ∆, numerically computed
zero. ∆≤ 10−6 has been used in all numerical studies. Discretiza-
tion and p-levels (considered to be uniform in space and time) are
chosen such that the least squares functional I resulting from the
residuals for the entire space-time strip or slab is always of order
of O(10−6) or lower and hence good accuracy of the evolution is
always ensured.

3.3 1D phase change model problems

We consider three model problems. In the first model problem
we present a comparison of the smooth-interface solutions (present
approach) with the theoretical solution obtained using the sharp-
interface method. In the other two model problems we consider
solid-liquid and liquid-solid phase change.

3.3.1 Model Problem 1: Comparison of Sharp- and
Smooth-Interface Solutions

The sharp interface solution [12] has only been reported for
constant material coefficients. When the material coefficients vary,
i.e. are a function of temperature, the theoretical solution of the
resulting mathematical model has not been reported, perhaps due
to complexity. We choose ρ = 1, cp = 1, k = 1, and L f = 1. The
spatial domain consists of 0≤ x≤ 1. Figure 5 shows a space-time
strip Ωxt = [0,1]× [0,∆t]. The space-time domain Ωxt is discretized
using a uniform mesh of 500 p-version nine node space-time ele-
ments. The spatial domain [1,4]× [0,∆t] is discretized using a 30
element uniform mesh. The spatial domain 1 ≤ x ≤ 4 is added to
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0 ≤ x ≤ 1 to approximate the boundary condition at x = ∞ in the
theoretical solution with x = 4 in the computed solution.

mesh

Solid Liquid

Solid−Liquid Interface Location

70 element uniform
430 element uniform mesh

t

x
x = 0 x = 0.14 x = 1

t = 0

t = ∆t

T (1, t) = T (t)T (0, t) =−0.085

T = T (x,0): IC

Figure 5: Schematic of first space-time strip, BCs, IC, and spatial dis-
cretization

The initial conditions on temperature T at t = 0 are defined
piecewise by the following.

Θ(x) =C1
erf
(
β/2

)
− erf

(
x/2
√

t0
)

erf
(
β/2

) ; x≤ Γx(0)

Θ(x) =C2
erf
(
β/2

)
− erf

(
x/2
√

t0
)

erfc
(
β/2

) ; x > Γx(0)

(74)

In the theoretical solution for sharp-interface (23)–(26), the fol-
lowing coefficients are used.

C1 =−0.085 C2 =−0.015
t0 = 0.1246 β = 0.396618 (75)

The mathematical model (69) is used for computing smooth-
interface solutions. For smooth-interface solutions the transition
region is defined by [Ts,Tl ] = [−0.001,0.001]. p-levels in space
and time are chosen to be 7, with solutions of class C1 in space and
time. Figure 6 shows a plot of the initial condition at t = 0.
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Figure 6: Initial condition Θ(x) at t = 0, temperature distribution from the
theoretical solution of the sharp-interface model

In the smooth-interface solutions we also use ρ = 1, cp = 1,
k = 1, and L f = 1 i.e. constant material coefficients regardless of
phase. The evolution is computed using ∆t = 0.01 for 100 time
steps i.e. up to t = 1.0. The latent heat L f is expressed as a poly-
nomial in temperature T in the transition zone. Generally a cubic
or fifth degree polynomial in T for L f is found adequate (equations
(37)–(40)). Evolution of temperature and latent heat for 0 ≤ t ≤ 1
from smooth interface and comparison with sharp-interface solu-
tion are shown in figures 7 and 8. Interface location versus time t
from smooth and sharp interface locations are compared in figure 9.
Center of the transition region is considered as interface location in
smooth interface solution.

From figures 7–9 we note that smooth-interface solutions are in
good agreement with sharp-interface solutions. The sharp-interface
theoretical solution is only possible for constant ρ , cp, and k,
whereas smooth-interface solutions are possible for variable ρ , cp,
and k. Smooth-interface solutions with transitions in material coef-
ficients due to phase change describes physics of phase transitions
more precisely.
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Figure 7: Model Problem 1: Evolution of temperature using smooth-
interface model and sharp-interface theoretical solution,
C11(Ω̄e

xt), p = 7,∆t = 0.01
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Figure 8: Model Problem 1: Evolution of latent heat (smooth interface),
C11(Ω̄e

xt), p = 7,∆t = 0.01
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Figure 9: Model Problem 1: Interface location as a function of time,
C11(Ω̄e

xt), p = 7,∆t = 0.01

3.3.2 Transport properties and reference quantities for
liquid-solid and solid-liquid transition numerical
studies with zero stress and velocity fields in all
phases

In all numerical studies using zero velocity and zero stress field
for the entire domain, we consider the liquid phase to be water and
the solid phase to be ice with the following properties.

Water: ρ̂l = 62.38 lbm/ f t3

ĉpl = 1.006 Btu/lbm R

k̂l = 9.01×10−5 Btu/s f t R

L̂ f l = 143.6 Btu/lbm

µ̂ = 0.12×10−2 lbm/ f t s

Ice: ρ̂s = 57.16 lbm/ f t3

ĉps = 0.4896 Btu/lbm R

k̂s = 3.57×10−4 Btu/s f t R

L̂ f s = 0.000 Btu/lbm

Ê = 6.05×106 lbm/ f t s2

ν = 0.33

Transition region:

In the transition region ρ(T ), cp(T ), k(T ) and L f (T ) are as-
sumed to vary in a continuous and differentiable manner between
the temperatures Ts and Tl defining the transition region between
solid and liquid phases.

Reference quantities:

Regardless of solid-liquid or liquid-solid phase transition we
consider the following reference quantities:

ρ0 = ρ̂s , k0 = k̂s , cp0 = ĉps

T0 = (32◦F +459.67) = 491.67 R , L0 = 0.25 f t

L f 0 = cp0T0 = 240.72 Btu/lbm

t0 =
L2

0ρ0cp0

k0
= 4.899×103 s = 81.65min

3.3.3 Model Problem 2: 1D Liquid-Solid Phase Change;
Initiation and Propagation of Phase Transition

In this model problem we consider 1D liquid-solid phase
change with variable material coefficients and to demonstrate the
ability of the proposed formulation in initiating phase transition as
well as in simulating its evolution as time elapses. Numerical solu-
tions are calculated and compared for constant density (ρ̂ = ρ̂l in
all phases) as well as variable density. Figure 10 shows space-time
strip Ω̄xt = [0,1]× [0,∆t], initial conditions, and boundary condi-
tions.

x̂ =0 x̂ =0.25 ft
t̂ =0

t̂

Liquid mediumT̂ (0, t̂) =496.6 R

t̂ = ∆t̂

T̂ (x̂,0) =496.6 R

x̂

dT̂
dx̂

∣∣∣∣
x̂=0.25,t̂

(a) Space-time strip

x =0
T (x,0) =0.010 x =1

t =0

t

Liquid medium

t = ∆t

T (0, t) =0.010

x

dT
dx

∣∣∣∣
x=1,t

(b) Dimensionless space-time strip

t =0
t

t = ∆t

dT
dx

∣∣∣∣
x=1,t

dT
dx

=−0.1

dT
dx

=0

(c) Boundary condition dT
dx at x = 1

Figure 10: Liquid-solid phase transition: space-time strip, boundary con-
ditions, and initial condition

We consider solutions of class C11 with p-level of 9 in space
and time. With this choice the space-time integrals are Riemann
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in time but Lebesgue in space. This choice functions quite well
in simulating the evolution (low residuals). We choose the phase
transition zone [Ts,Tl ] to be [−0.001,0.001]. A different (smaller
or larger) choice of transition zone width in temperature does not
alter the location of the center of the transition region.
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(a) Evolution of temperature, 0.0≤ t ≤ 0.2
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(b) Evolution of temperature, 0.0≤ t ≤ 4.8

Figure 11: Model Problem 2: Evolution of temperature for liquid-solid
phase change, C11(Ω̄e

xt), p = 9,∆t = 0.04

Computed numerical results are presented in figures 11–15.
Figures 11(a), 12(a), 13(a), 14(a), 15(a) show plots of T , L f , ρ , cp,
and k versus x during initial stages of the evolution (0 ≤ t ≤ 0.2).
Continuous extraction of heat from the right boundary progres-
sively lowers the temperature at the boundary and in the neigh-
borhood of the boundary which eventually results in the initiation
of phase change. Variations in L f (T ), cp(T ), k(T ) and ρ(T ) fol-
low changes in temperature during evolution. From figure 11(a) we
note that both constant and variable densities yield almost the same
evolution of the temperature during initial stages of the evolution.

Figures 12(a), 14(a), and 15(a) show differences in the evolution of
L f , cp, and k for constant and variable densities even in the very
early stages of the evolution. Constant density results lag variable
density solutions.
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(a) Evolution of latent heat, 0.0≤ t ≤ 0.2
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(b) Evolution of latent heat, 0.0≤ t ≤ 4.8

Figure 12: Model Problem 2: Evolution of latent heat for liquid-solid
phase change, C11(Ω̄e

xt), p = 9,∆t = 0.04

Figures 11(b), 12(b), 13(b), 14(b), 15(b) show fully formed
phase change transition region (liquid to solid) beginning with
t = 0.8 and its propagation during evolution (0.8 ≤ t ≤ 4.8). For
most space-time strips during time marching using ∆t = 0.04,
I < O(10−6) and |(gi)|max ≤ 10−6 ensure accurate evolution that
satisfies GDE quite well over the entire space-time domain of each
space-time strip. Evolutions of all quantities are smooth and free of
oscillations. The influence of variable density can be seen clearly
in these graphs. The variable density results lead constant density
evolution and the difference between them increases as the evolu-
tion proceeds.
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From figure 11(b) we clearly observe linear heat conduction in
liquid and solid phases (constant but different slopes of T versus x)
separated by smooth transition region.
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Figure 13: Model Problem 2: Evolution of density for liquid-solid phase
change, C11(Ω̄e

xt), p = 9,∆t = 0.04

If we define the center of the transition zone as the location x
of the phase front, then using the results in figures 11–15 we can
plot a graph of location x versus time t marking the location of the
phase change front in time.

Figure 16 shows such a plot for the results presented in fig-
ures 11–15. The transition region width for these numerical stud-
ies consist of [Ts,Tl ] = [−0.001,0.001]. It is also obvious from fig-
ures 11–16 that the choice of constant density in all phases (ρ = ρl
used here), as is commonly used in the published works, will pro-
duce results that do not agree with the actual physics of phase
change (variable density).

The differences in the computed solutions for constant and vari-
able density are noticeable. We note that the center of the phase
transition zone for variable density case is ahead of the constant
density case during the entire evolution and the difference between
the two increases as the evolution proceeds.
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(a) Evolution of specific heat, 0.0≤ t ≤ 0.2
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(b) Evolution of specific heat, 0.0≤ t ≤ 4.8

Figure 14: Model Problem 2: Evolution of specific heat for liquid-solid
phase change, C11(Ω̄e

xt), p = 9,∆t = 0.04

Similar studies were repeated for [Ts,Tl ] = [−0.002,0.002] i.e.
double the width of the transition zone, with virtually no change in
the location of the center of the transition region.

The phase transition evolution for this model problem cannot
be simulated using sharp-interface and phase field approaches as
this model problem requires initiation of phase transition that is
not possible in sharp-interface and phase field models.
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(a) Evolution of thermal conductivity, 0.0≤ t ≤ 0.2
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(b) Evolution of thermal conductivity, 0.0≤ t ≤ 4.8

Figure 15: Model Problem 2: Evolution of thermal conductivity for
liquid-solid phase change, C11(Ω̄e

xt), p = 9,∆t = 0.04
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3.3.4 Model Problem 3: 1D Solid-Liquid Phase Change;
Initiation and Propagation of Phase Transition

In this section we present solid-liquid phase change studies us-
ing model A, similar to those presented in section 3.3.3 for liquid-
solid phase change. The space-time least squares formulation for a
time strip (corresponding to an increment of time) with time march-
ing is used to compute the evolution. Figure 17 shows a schematic
of the space-time strip corresponding to the first increment of time,
BCs and ICs, as well as dimensionless space-time domain and the
dimensionless quantities.

x̂ =0 x̂ =0.25 ft
t̂ =0

t̂

Solid mediumT̂ (0, t̂) =484.3 R

t̂ = ∆t̂

x̂

T̂ (x̂,0) =484.3 R

dT̂
dx̂

∣∣∣∣
x̂=0.25,t̂

(a) Space-time strip

x =0
T (x,0) =−0.015 x =1

t =0

t

Solid medium

t = ∆t

T (0, t) =−0.015

x

dT
dx

∣∣∣∣
x=1,t

(b) Dimensionless space-time strip

t =0
t

t = ∆t

dT
dx
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x=1,t

dT
dx

=0.1

dT
dx

=0

(c) Boundary condition dT
dx at x = 1

Figure 17: Solid-liquid phase transition: space-time strip, boundary con-
ditions, and initial condition

Minimally conforming spaces are the same as described in sec-
tion 3.3.3. Due to smoothness of the evolution, we choose k1 = 2
and k2 = 2 i.e. T e

h of class C11(Ω̄e
xt), therefore the integrals in the

STLSP are Lebesgue in x but Riemann in t. The space-time strip
(∆t = 0.04) is discretized using 100 nine node space-time C11(Ω̄e

xt)
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finite elements. Numerical studies were considered for the first
space-time strip with phase change to determine adequate p-level
for this discretization by starting with p-level of 3 (both in space
and time) and incrementing it by two. At p-level of nine, I is of the
order of 10−6 or lower and |(gi)|max ≤ 10−6 were achieved for all
time steps.

This ensures converged Newton’s linear method with line
search as well as accurate evolution in the entire space-time do-
main. The numerical solutions computed using these values of h,
p and k for [Ts,Tl ] = [−0.001,0.001] are shown in figures 18–22.
It may appear that presenting details of the evolutions of various
quantities here is redundant in view of liquid-solid phase change
model problem already considered, but this is not the case. In this
case transition is from solid to liquid, thus evolutions of transport
properties are quite different and hence essential to examine the
resulting evolution of the solution.
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(a) Evolution of temperature, 0.0≤ t ≤ 0.8
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(b) Evolution of temperature, 0.0≤ t ≤ 19.2

Figure 18: Model Problem 3: Evolution of temperature for solid-liquid
phase change, C11(Ω̄e

xt), p = 9,∆t = 0.04

Figures 18(a), 19(a), 20(a), 21(a), 22(a) show plots of T , L f ,
ρ , cp, and k versus x during the initial stages of the evolution
(0 ≤ t ≤ 0.8). Continuous addition of heat from the right bound-
ary progressively raises the temperature at the boundary and in the
neighborhood of the boundary which eventually results in the initi-
ation of phase change. Variations in L f (T ), cp(T ), k(T ) and ρ(T )
follow changes in temperature during evolution. From figure 18(a)
we note that both constant and variable densities yield almost the
same temperature distribution in the initial stages of the evolution.
Figures 19(a), 21(a), and 22(a) show differences in the evolutions
of L f , cp, and k for constant and variable density cases. As ex-
pected, variable density solutions lag constant density results, op-
posite of liquid-solid phase transition in section 3.3.3, model prob-
lem 2.
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(a) Evolution of latent heat, 0.0≤ t ≤ 0.8
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(b) Evolution of latent heat, 0.0≤ t ≤ 19.2

Figure 19: Model Problem 3: Evolution of latent heat for solid-liquid
phase change, C11(Ω̄e

xt), p = 9,∆t = 0.04
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Figures 18(b), 19(b), 20(b), 21(b), 22(b) show fully formed
phase change transition region (solid to liquid) beginning with
t = 3.2 and its propagation during evolution (3.2 ≤ t ≤ 19.2).
For each space-time strip during time marching using ∆t = 0.04
; I < O(10−6) and |(gi)|max ≤ 10−6 ensure accurate evolution that
satisfies GDE quite well over the entire space-time domain of each
space-time strip. All evolutions are smooth and free of oscilla-
tions. The influence of variable density can be seen more clearly
in these graphs. The variable density evolution lags the constant
density evolution for all values of time, and the difference between
them increases as evolution proceeds. Here also we clearly observe
linear heat conduction in the solid and liquid phases (constant but
different slopes of T versus x) separated by a smooth transition re-
gion.
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(b) Evolution of density, 0.0≤ t ≤ 19.2

Figure 20: Model Problem 3: Evolution of density for solid-liquid phase
change, C11(Ω̄e

xt), p = 9,∆t = 0.04

Similar to the liquid-solid studies presented in section 3.3.3, it
is possible to use the solutions shown in figures 18–22 to follow
the location of the phase transition front during the evolution. Fig-
ure 23 shows the location of the center of the transition zone for
constant and variable densities. In contrast to similar results for
liquid-solid phase transition shown in figure 16, here we note that
the center of the phase transition zone for variable density case lags
the constant density case during the entire evolution and the differ-
ence between the two increases as evolution proceeds.

The phase transition for this model problem also cannot be sim-
ulated using sharp-interface and phase field models as this model
problem requires initiation of phase transition that is not possible
in sharp-interface and phase field models.
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(a) Evolution of specific heat, 0.0≤ t ≤ 0.8
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(b) Evolution of specific heat, 0.0≤ t ≤ 19.2

Figure 21: Model Problem 3: Evolution of specific heat for solid-liquid
phase change, C11(Ω̄e

xt), p = 9,∆t = 0.04
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(a) Evolution of thermal conductivity, 0.0≤ t ≤ 0.8
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(b) Evolution of thermal conductivity, 0.0≤ t ≤ 19.2

Figure 22: Model Problem 3: Evolution of thermal conductivity for solid-
liquid phase change, C11(Ω̄e

xt), p = 9,∆t = 0.04
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Figure 23: Model Problem 3: Interface location as a function of time,
C11(Ω̄e

xt), p = 9,∆t = 0.04

3.4 2D Phase Change Model Problems

In this section we consider liquid-solid and solid-liquid phase
change in R2 using the mathematical model (47) (Model B).

3.4.1 Model Problem 4: 2D Liquid-Solid Phase Change

In these numerical studies, we choose Model B, a system of first
order PDEs that permits use of C0 local approximation in space and
time. We consider a two dimensional domain in R2 consisting of a
one unit square. A schematic of the domain, boundary conditions,
and initial conditions are shown in figure 24. A constant heat flux
is applied to each boundary (heat removal), except for the first time
step in which heat flux changes continuously from zero at t = 0 to
the constant value at t = ∆t.
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(b) Dimensionless space-time slab

Figure 24: 2D liquid-solid phase transition: space-time slab, boundary
conditions, and initial condition

A graded spatial discretization of the [1× 1] spatial domain
shown in figure 25 is constructed. Table 1 provides discretization
details of regions A, B, C and D. All four boundaries contain uni-
form heat flux q = −0.1 (cooling) for t ≥ ∆t. Evolution is com-
puted (56 time steps) using p-level of 3 in space and time with
∆t = 0.0025 for the first 8 time steps and ∆t = 0.01 for the remain-
ing time steps. For this discretization, the C00 local approximation
with p=3 yield I of O(10−6) or lower, confirming good accuracy
of the solution. |gi|max ≤ 10−6 is used for convergence check in
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the Newton’s linear method. For most time increments Newton’s
linear method with line search converges in 5-10 iterations.

Evolution of temperature T and latent heat L f calculated using
variable density are shown in figures 26 and 27 using carpet plots
for different values of time. Similar plots were generated for ρ ,
cp, k but are not shown for the sake of brevity. The carpet plots
show evolutions to be oscillation free. Evolution and propagation
of phase transition is demonstrated more clearly by using x,y plots
of temperature and latent heat at the centerline and at the boundary.

Figure 28(a) shows evolution of temperature at x = 0.5 (cen-
terline) as a function of y for t = 0.01, 0.2, 0.5. Evolution of tem-
perature T as a function of y at x = 0.0 (boundary) us shown in
figure 28(b) for the same values of time. The evolution of latent
heat L f for the same locations and for the same values of time are
shown in figures 29(a) and (b). From figure 28(a) we observe that
at t = 0.01, the phase transition has not initiated along the center-
line. At t = 0.2, the portions of the domain closer to the boundary
are experiencing phase transition. At t = 0.5, a significant length
along y near the boundaries is in the transition zone with some por-
tion near freezing. At the boundary, the situation is quite different
(figure 28(b)). At t = 0.01 the phase transition has not initiated

yet. At t = 0.2 the entire boundary is in the transition zone except
very small portions near y = 0 and y = 1 that have solidified. At
t = 0.5 a significant portion of the boundary is completely frozen.
Graphs of latent heat in figures 29(a) and (b) confirm these obser-
vations discussed here using figures 28(a) and (b). Graphs of the
evolutions of ρ , cp, and k confirm these observations made from
figures 28 and 29 and hence are not included.

Evolutions are smooth and show that the differences between
those with variable density and constant density are not as sig-
nificant as for studies in R1 for the values of time reported here.
As evolution proceeds, we expect more deviations between the
two. As in the case of liquid-solid phase transition in R1, here
also the evolution with variable density leads the constant den-
sity evolution (more visible in figure 28(b) and 29). These studies
demonstrate the strength of the work in moving front in R2 without
front tracking techniques. In these numerical studies we have used
[Ts,Tl ] = [−0.004,0.004].

This model problem also cannot be simulated using phase field
and sharp interface models due to the same reason as in the case of
model problems in R1. Symmetry of the evolution is quite obvious
from figures 26 and 27.

Table 1: Spatial discretization for model problems in R2

Number of Number of Element length Element length Number of
Region x elements y elements in x, hex in y, hey Total Elements

A 12 12 0.0167 0.0167 144

B 6 12 0.1000 0.0167 72

C 12 6 0.0167 0.1000 72

D 6 6 0.1000 0.1000 36

x =1
x

x =0

A A

A AB

B

C CD

y =0

y =1

x =0.2 x =0.8

y =0.2

y =0.8

y

Figure 25: Spatial discretization for model problems in R2
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(a) t = 0.02 (b) t = 0.1

(c) t = 0.2 (d) t = 0.3

(e) t = 0.4 (f) t = 0.5

Figure 26: Model Problem 4: Evolution of temperature for liquid-solid phase change in R2, C00(Ω̄e
xxxxxxxxxt), p = 3, ∆t = 0.0025 for 0 ≤ t ≤ 0.02 and

∆t = 0.01 for t ≥ 0.02
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(a) t = 0.02 (b) t = 0.1

(c) t = 0.2 (d) t = 0.3

(e) t = 0.4 (f) t = 0.5

Figure 27: Model Problem 4: Evolution of latent heat for liquid-solid phase change in R2, C00(Ω̄e
xxxxxxxxxt), p = 3, ∆t = 0.0025 for 0≤ t ≤ 0.02 and ∆t = 0.01

for t ≥ 0.02
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(a) Evolution of temperature at the centerline
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(b) Evolution of temperature at the boundary

Figure 28: Model Problem 4: Evolution of temperature for liquid-solid
phase change in R2, C00(Ω̄e

xt), p = 3, ∆t = 0.0025 for 0≤ t ≤
0.02 and ∆t = 0.01 for t ≥ 0.02

3.4.2 Model Problem 5: 2D Solid-Liquid Phase Change

Here we also consider a two dimensional domain in R2 con-
sisting of a one unit square. A schematic of the domain, boundary
conditions, initial conditions and reference quantities are shown in
figure 30. A constant heat flux is applied to each boundary, except
for the first time step in which the heat flux changes continuously
from zero at t = 0 to the constant value at t = ∆t.

The graded discretization for the [1×1] spatial domain is same
as in section 3.4.1, shown in figure 25, with details of regions A,
B, C and D in Table 1. All four boundaries maintain uniform heat
flux q = 0.1 (heating). Evolution is computed (50 time steps) using
p-level of 3 in space and time with ∆t = 0.01.
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(a) Evolution of latent heat at the centerline
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(b) Evolution of latent heat at the boundary

Figure 29: Model Problem 4: Evolution of latent heat for liquid-solid
phase change in R2, C00(Ω̄e

xxxxxxxxxt), p = 3, ∆t = 0.0025 for 0 ≤
t ≤ 0.02 and ∆t = 0.01 for t ≥ 0.02

For this discretization, the C00 local approximations with p=3
yield I of O(10−6) or lower, confirming good accuracy of the solu-
tion. |gi|max ≤ 10−6 is used for convergence check of the Newton’s
linear method. For most time increments Newton’s linear method
with line search converges in 5-10 iterations. In these studies we
have used [Ts,Tl ] = [−0.004,0.004].

Carpet plots similar to model problem 4 were also generated
for this model problem with behaviors similar to model problem 4
and hence are not included here. Two dimensional line x,y plots of
temperature T and latent heat L f are presented to demonstrate the
phase transition more clearly.
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Figure 30: 2D solid-liquid phase transition: space-time slab, boundary
conditions, and initial condition

Figure 31(a) shows evolution of temperature at x = 0.5 (cen-
terline) as a function of y for t = 0.01, 0.2, and 0.5. Evolution of
temperature T as a function of y at x = 0.0 (boundary) is shown in
figure 31(b) for the same values of time. The evolutions of latent
heat L f for the same locations and for the same values of time are
shown in figures 32(a) and (b). From the evolution of temperature
in figure 31(a) we note that at t = 0.01, the phase transition has
not been initiated at the centerline. For t = 0.2 the entire region
0 ≤ y ≤ 1 is in the transition zone [Ts,0]. At t = 0.5 the entire
zone 0≤ y≤ 1 is still in the transition zone, but some portions near
the boundaries are in [0,Tl ]. At the boundary (x = 0, 0≤ y≤ 1) the
evolution of the temperature is quite different than at the centerline.
From figure 31(b) we find that at t = 0.01, the phase transition has
not commenced yet except in a small portion near y = 0 and y = 1
(horizontal boundaries at y = 0 and y = 1). At t = 0.2 the entire
length 0 ≤ y ≤ 1 is in the transition zone [0,Tl ]. At t = 0.5 a sig-
nificant portion of 0 ≤ y ≤ 1 near y = 0 and y = 1 is completely
liquid.

Graphs of latent heat L f in figures 32(a) and (b) confirm these
observations. In figure 32(b) we note that at time t = 0.5 the
straight line portions of the graph near y = 0 and y = 1 meaning

constant L f further confirm completely liquid state of the matter.

Graphs of the evolutions ρ , cp, and k show evolutions that are
in agreement with the evolutions of T and L f shown in figures 31
and 32 and hence are omitted for the sake of brevity.

In this case also the evolutions are smooth and show that the
differences between the evolutions with variable and constant den-
sity are not as significant as for studies in R1 for the values of time
reported here. As evolution proceeds we expect more deviations
between the two evolutions. As in case of solid-liquid phase transi-
tion in R1, here also the variable density evolution lags the constant
density evolution (more visible in figures 31 and 32).

This model problem also cannot be simulated using sharp-
interface or phase field approaches as it requires initiation of phase
transition.
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(a) Evolution of temperature at the centerline
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(b) Evolution of temperature at the boundary

Figure 31: Model Problem 5: Evolution of temperature for solid-liquid
phase change in R2, C00(Ω̄e

xxxxxxxxxt), p = 3, ∆t = 0.01
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(a) Evolution of latent heat at the centerline
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(b) Evolution of latent heat at the boundary

Figure 32: Model Problem 5: Evolution of latent heat for solid-liquid
phase change in R2, C00(Ω̄e

xxxxxxxxxt), p = 3, ∆t = 0.01

3.5 Phase Transition Numerical Studies in the
Presence of Flow

In this section we present numerical studies using mathemat-
ical model based on constant stress and zero velocity in the solid
phase but nonzero velocity and stress field in the liquid and transi-
tion regions. The details of the mathematical model are presented
in Section 2.3. In the following we present numerical results for
fully developed flow between parallel plates in which the plates are
being cooled to initiate and propagate liquid-solid phase transition.

3.5.1 Model Problem 6: Fully Developed Flow Between
Parallel Plates

For this case we only need to consider evolution along any ver-
tical line between the plates. The flow is pressure driven i.e. ∂ p̄

∂ x̄1
is

given where x̄1 is the direction of the flow. If we choose x̄1 = x̄ and
x̄2 = ȳ, v̄1 = ū, dσ̄

(0)
x1x2 = dσ̄

(0)
xy , then the dimensionless form of the

mathematical model presented in section 72 (combined model) for
this model problem reduces to
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+
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

(76)

where
f̄l = 1 ; liquid phase
f̄l = 0 ; solid phase

0≤ f̄l ≤ 1 ; T̄s ≤ T̄ ≤ T̄l

(77)

If we choose τ0 = ρ0v2
0, characteristic kinetic energy, then (76)

reduces to

f̄l
∂ p̄
∂ x̄
− ∂ dσ̄

(0)
xy

∂ ȳ
= 0

ρ̄

(
c̄p(T̄ )

Ec
+

L f 0

v2
0

∂ L̄ f

∂ T̄

)
∂ T̄
∂ t

+
1

ReBr
∂ q̄y

∂ ȳ
= 0

f̄l
(

dσ̄
(0)
xy
)
=

µ̄

Re
∂ ū
∂ ȳ

q̄y =−k̄(T̄ )
∂ T̄
∂ ȳ



(78)

where
f̄l = 1 ; liquid phase
f̄l = 0 ; solid phase

0≤ f̄l ≤ 1 ; T̄s ≤ T̄ ≤ T̄l

(79)

By substituting q̄y in the energy equation we can eliminate q̄y
as a dependent variable. We designate this as Model (a).

Model (a)

f̄l
∂ p̄
∂ x̄
− ∂ dσ̄

(0)
xy

∂ ȳ
= 0

ρ̄

(
c̄p(T̄ )

Ec
+

L f 0

v2
0

∂ L̄ f

∂ T̄

)
∂ T̄
∂ t

− 1
ReBr

(
∂ k̄(T̄ )

∂ T̄

(
∂ T̄
∂ ȳ

)2

+ k̄(T̄ )
∂ 2T̄
∂ ȳ2

)
= 0

f̄l
(

dσ̄
(0)
xy
)
=

µ̄

Re
∂ ū
∂ ȳ


(80)
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The mathematical model consists of (80) and (79) with ū, dσ̄
(0)
xy ,

and T̄ as dependent variables.

Model (b)

An alternate form of (80) can be derived by first substituting

dσ̄
(0)
xy =

µ̄

Re
∂ ū
∂ ȳ

in the momentum equation and then recasting the

momentum equation as a system of first order equations that en-
force ∂ ū

∂ ȳ = 0 in the solid region. We obtain the following:

Re f̄l
∂ p̄
∂ x̄
− µ̄

∂ d τ̄
(0)
xy

∂ ȳ
= 0

ρ̄

(
c̄p(T̄ )

Ec
+

L f 0

v2
0

∂ L̄ f

∂ T̄

)
∂ T̄
∂ t

− 1
ReBr

(
∂ k̄(T̄ )

∂ T̄

(
∂ T̄
∂ ȳ

)2

+ k̄(T̄ )
∂ 2T̄
∂ ȳ2

)
= 0

f̄l
(

d τ̄
(0)
xy
)
=

∂ ū
∂ ȳ


(81)

This mathematical model consists of (81) and (79). In this

model d τ̄
(0)
xy , hence ∂ ū

∂ ȳ and f̄l
∂ p̄
∂ x̄ = 0, and therefore ∂ d τ̄

(0)
xy

∂ ȳ = 0 holds
in the solid region. This model is obviously an alternate way to
achieve the desired physics of constant stress and zero velocity in
the solid phase as in (80) and (79).

We consider both models (a) and (b) in the numerical calcula-
tions of the evolution.

From these mathematical models it is clear that ∂d τ̄
(0)
xy

∂ ȳ = 0 in

the solid region. This of course implies that d τ̄
(0)
xy =C1, a constant,

in the solid region. We note that a constant d τ̄
(0)
xy with f̄l = 0 and

∂ ū
∂ ȳ = 0 satisfies the last equation in the models (a) and (b) (i.e. last
equation in (80) and (81)). Value of C1 is dictated by the deviatoric
shear stress at the solid-liquid interface. Only when the deviatoric
shear stress at the liquid-solid interface becomes zero is d τ̄

(0)
xy in

the solid region zero. In conclusion, a constant d τ̄
(0)
xy in the solidi-

fied region is supported by the mathematical model. Its magnitude
is largest at the initiation of freezing and is progressively reduced
upon continued growth of the solidified region, eventually becom-
ing zero when the entire flow domain is solidified.

Transport Properties

Once again, the solid phase is considered to be ice and the liq-
uid phase is water, with the same properties that are listed in section
3.3.2. The reference and the dimensionless quantities are given as:

ρ0 = ρ̂s , k0 = k̂s , cp0 = ĉps

L0 = 0.25 f t , v0 = 1.0 f t/s

q0 = 1.42 Btu/ f t2 s , T0 = (32◦F +459.67) = 491.67 R

t0 = 0.25 s , ∆t = 50.0

∆t̂ = 12.5s , µ0 = µ̂ , τ0 = E0 = ρ0v2
0 = 57.16 lbm/ f t s2

in addition to:

Re =
ρ0L0v0

µ0
; Reynolds number

Ec =
v2

0
cp0T0

; Eckert number

Br =
µ0v2

0
k0T0

; Brinkman number

Figures 33(a)-(c) show a schematic of the problem and space-
time strips for an increment of time ∆t from the lower plate to the
center of the flow. Boundary conditions and initial condition are
also shown in figures 33(b),(c). The lower plate is subjected to
a temperature gradient of 0 to 0.3 (continuous and differentiable;
cubic) for the first increment of time and held fixed thereafter as
shown in figure 33(d). Figure 33(e) shows a 40 element uniform
discretization for the space-time strip. Evolution is computed using
the space-time discretization of figure 33(e) with time marching us-
ing solutions of class C11 in space and time with uniform p-levels
of 9 in space and time.

The temperature range for the transition zone is chosen to be
[T̄s, T̄l ] = [−0.003,0.003]. ρ̄ , c̄p, k̄, and L̄ f are assumed to be con-
tinuous and differentiable functions of temperature in the transition
zone.

Fixed ∆t of 50.0 is considered during time marching. For com-
parison purposes, evolution is also computed using constant den-
sity (ρ̄ = ρ̄l).

Numerical Results Using Model (b)

Figure 34 shows evolution of ū for t = 0 (IC), t = 1000, 2500,
and 4000 for constant as well as variable density. Progressive in-
crease in the solid zone that initiates at the plate is clearly observed
as the evolution proceeds. With progressively increasing solid zone
the flow height is progressively reduced. Since the flow is pressure
driven ( ∂ p̄

∂ x̄ = −6.7182× 10−5, constant), this results in the pro-
gressive reduction in the flow rate. In other words, as evolution
proceeds, the effective H

2 is progressively reduced.

Similar plots of temperature T̄ and d τ̄
(0)
xy are shown in figures 35

and 36. In the solidified region as expected we observe linear heat
conduction and constant deviatoric Cauchy shear stress of the same
magnitude as at the solid-liquid interface.

Figures 37-40 show evolutions of L̄ f , ρ̄ , c̄p, k̄ for variable as
well as constant density for the same values of time. Smooth-
interface approach in the transition region and the mathematical
model work exceptionally well.
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(a) Schematic of model problem 6

t̂

t̂ = ∆t̂

ˆ̄u = 0

Ĥ = 0.25 f t = 3in ∆t̂ = 12.5sec
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(e) Space-time discretization

Figure 33: 2D solid-liquid phase transition: space-time slab, boundary
conditions, and initial condition
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Figure 34: Model Problem 6: Evolution of velocity ū versus ȳ using
model (b), C11(Ω̄e

xt), p = 9,∆t = 50
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Figure 35: Model Problem 6: Evolution of temperature T̄ versus ȳ using
model (b), C11(Ω̄e

xt), p = 9,∆t = 50
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Figure 36: Model Problem 6: Evolution of d τ̄
(0)
xy versus ȳ using model (b),

C11(Ω̄e
xt), p = 9,∆t = 50
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Figure 37: Model Problem 6: Evolution of latent heat L̄ f versus ȳ using
model (b), C11(Ω̄e

xt), p = 9,∆t = 50
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Figure 38: Model Problem 6: Evolution of density ρ̄ versus ȳ using model
(b), C11(Ω̄e

xt), p = 9,∆t = 50
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Figure 39: Model Problem 6: Evolution of specific heat c̄p versus ȳ using
model (b), C11(Ω̄e

xt), p = 9,∆t = 50
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Figure 40: Model Problem 6: Evolution of thermal conductivity k̄ versus
ȳ using model (b), C11(Ω̄e

xt), p = 9,∆t = 50

Evolutions are continuous and differentiable and are free of os-
cillations. As expected, variable density evolution leads constant
density evolution.

Since in this model problem the flow is pressure driven, with
continued evolution it is possible to freeze the entire height H

2 that
corresponds to ∂ p̄

∂ x̄ = 0, zero velocity field, and zero flow rate.

Figures 41–43 show evolution of ū, T̄ , d τ̄
(0)
xy for 0≤ t ≤ 25000.

At t = 25000, the height H
2 is completely frozen with zero velocity

and zero deviatoric Cauchy shear stress dσ̄
(0)
xy .

In figure 43, the graphs AA1B1, AA2B2, AA3B3, AA4B4, and
AB5 are shear stress distributions in the liquid-solid phases during
evolution. The constant value of the stress in the solid region is dic-
tated by the shear stress at the liquid-solid interface. As evolution
proceeds the shear stress in the solid region progressively decreases
(as expected due to reduced flow rate) and eventually becomes zero
when the entire width H/2 solidifies.

It is interesting to observe the behavior of temperature T̄ be-
yond t = 23000, at which the majority of H

2 is frozen but a small
portion at the centerline still remains in the transition and liquid
regions. Another six time increments (t = 23300) still show a very
small portion of H

2 in the transition region. After another time step
(t = 23350) the domain H

2 is completely frozen. ∂ T̄
∂ ȳ condition at the

centerline (due to symmetry) is responsible for the T̄ versus ȳ be-
havior (not a straight line as in linear heat conduction) at t = 23350
and beyond.

Figure 41 also shows a comparison of the calculated veloc-
ities with the theoretical solution for pressure-driven fully de-
veloped flow between parallel plates calculated using the same
∂ p̄
∂ x̄ (−6.7182× 10−5) and the non-frozen part of H

2 . Extremely
minor deviations between the two are due to not being able to de-
fine the completely frozen height clearly as the transition region
separates the liquid and solid regions.
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Figure 41: Model Problem 6: Evolution of velocity ū versus ȳ using
model (b), C11(Ω̄e

xt), p = 9,∆t = 50
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Figure 42: Model Problem 6: Evolution of temperature T̄ versus ȳ using
model (b), C11(Ω̄e

xt), p = 9,∆t = 50
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Figure 43: Model Problem 6: Evolution of d τ̄
(0)
xy using model (b),

C11(Ω̄e
xt), p = 9,∆t = 50

Numerical Results using Model (a)

Numerical studies similar to those presented for model (b) are
also conducted for model (a). A comparison of the results from

models (b) and (a) is shown in figures 44 and 45. Evolution of
deviatoric Cauchy shear stress dσ̄

(0)
xy is shown in figure 46.
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Figure 44: Model Problem 6: Evolution of velocity ū versus ȳ using
model (a), C11(Ω̄e

xt), p = 9,∆t = 50
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Figure 45: Model Problem 6: Evolution of temperature T̄ versus ȳ using
model (a), C11(Ω̄e

xt), p = 9,∆t = 50
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Figure 46: Model Problem 6: Evolution of deviatoric Cauchy shear stress
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xy using model (a), C11(Ω̄e

xt), p = 9,∆t = 50
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Results from the two mathematical models compare well.

Remarks

(1) Phase transition in the presence of flow is simulated quite ac-
curately using Model (b) as well as Model (a) but requires as-
sumption of constant stress field and zero velocity field in the
solid medium. In the transition region, the stress field and the
velocity field transition from non-constant and nonzero values
in the liquid region to constant and zero values in the solid re-
gion based on temperature T ∈ [Ts,Tl ]. It is only with these
assumptions that it is possible to establish interaction between
different phases.

(2) Model (a) is preferable as in this case the mathematical model
directly results from the conservation and balance laws and the
constitutive theories for the deviatoric Cauchy stress tensor and
heat vector from the second law of thermodynamics.

(3) It is noteworthy that even though phase transition physics in
the transition region is quite complex, the assumption of homo-
geneity and isotropy with continuous and differentiable transi-
tion in the transport properties over the range [T̄s, T̄l ] is quite
effective in simulating the evolutions of the expected physics.

(4) Application of the mathematical model in section 3.1.2 (gen-
eral case of Model (a)) is straightforward for phase transition
studies in R2 and R3. The mathematical model and the com-
putational procedure provide a straightforward means of phase
transition initiation and its evolution in R1, R2, and R3 in the
presence of nonzero stress and velocity fields in the liquid and
transition regions but with the assumption of constant stress
and zero velocity field in the solid region.

4 Summary and Conclusions

Summary and conclusions from the work presented in this pa-
per are given in the following.

(1) Various modeling approaches have been discussed and the as-
sociated mathematical models have been presented.

(2) It is established that out of all the mathematical models pre-
sented in the paper, the following two groups of mathemati-
cal models are in compliance with conservation and balance
laws and provide correct interaction physics between all three
phases.

(a) The models derived based on zero stress and zero velocity
fields in all phases.

(b) The models derived based on constant stress field and zero
velocity field in the solid region, complete conservation
and balance laws in fluid region, and the stresses and ve-
locities making transition based on temperature from the
two states in the transition region.

(3) Numerical studies for model problems in R1 and R2 are pre-
sented based on space-time finite element method derived
using space-time residual functional using the mathematical
models described in (2). All numerical solutions reported in
this paper are converged solutions corresponding to space-time
residual functionals of the order of O(10−6) or lower. When
the space-time integrals are Riemann, such low values of the
space-time residuals ensure that the computed solutions satisfy
GDEs in pointwise sense during the entire evolution.

(4) Smooth-interface approach avoids complex physics of transi-
tion region without affecting speed of propagation of the phase
transition region. The transition region [Ts,Tl ] can be as narrow
or as wide as desired.

(5) The smooth-interface approach presented here is highly mer-
itorious over sharp-interface and phase field approaches as it
permits initiation of phase transition and its subsequent evo-
lution, whereas in sharp-interface and phase field methods a
priori existence of phase transition is essential as initial con-
dition i.e. these methods cannot simulate initiation of phase
transition. This is a serious handicap in these methods. In most
applications of interest, initiation of phase transition is essen-
tial as when and the precise conditions under which it occurs
may not be known a priori.

(6) The published works on sharp-interface and phase field meth-
ods for phase transition generally consider constant density.
The work presented here demonstrates that the variable density
is necessary in the mathematical models to incorporate cor-
rect physics in the mathematical model. Incorporating ρ = ρs,
ρ = ρl in the liquid and solid regions and ρ = ρ(T ) in the tran-
sition region, as done in the case of variable density used in the
present work, is more realistic description of actual physics.
It is demonstrated in the numerical studies that with variable
density phase transition evolutions lead constant density evo-
lutions for liquid-solid phase transition but lags for solid-liquid
phase transition. It is shown in liquid-solid as well as solid-
liquid phase transitions the distance between the locations of
the center of the transition zones between variables and con-
stant density cases increases as the evolution proceeds.

(7) Space-time finite element processes based on residual func-
tionals with local approximation in Hk,p(Ω̄e

xt) spaces for a
space-time strip or slab with time marching work perfectly in
computing accurate evolutions. This computational framework
provides means of incorporating higher order global differen-
tiability approximations in space and time as well as increasing
p-levels for desired accuracy.

(8) The first group of mathematical models (2a) is ideal for phase
transition studies in R1, R2, and R3 with zero stress, zero ve-
locity, and free boundaries assumptions in all phases. Numeri-
cal studies and comparison with sharp-interface approach con-
firm this.
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(9) The second group of models (2b) based on constant stress and
zero velocities in the solid region are ideal for phase transition
studies in the presence of flow without the assumption of con-
stant stress and zero velocity fields in the liquid and transition
regions. These groups of models are essential in establishing
interaction between the solid, transition, and liquid phases such
that the interaction is intrinsic and consistent (based on contin-
uum mechanics principles) in the mathematical model. This
model ensures that no artificial or external means are needed at
the interface boundaries between the phases. Fully developed
pressure-driven flow between parallel plates is an impressive
illustration of the capabilities of these models that can be used
in R2 and R3 to perform simulation of complex solidification
(or melting) processes in phase transition applications.

(10) We remark that sharp-interface and phase field models do not
permit initiation of phase transition but require its specification
as initial condition. The models presented here permit initia-
tion of liquid-solid and solid-liquid phase transition as well as
its propagation during evolution without using any special or
artificial means in the mathematical models or the numerical
computations.
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