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ABSTRACT 
 The present study attempts to investigate the effects the 

viscous dissipation on the unsteady temperature 

distribution in the conduction limit for both hydro-

dynamically and thermally fully developed, laminar flow 

of Newtonian fluid between two asymmetrically heated 

infinitely long parallel plates. Utilizing the assumptions 

routinely employed in the literature, we devise here a 

semi-analytical formalism to investigate the temperature 

distribution for two different flow configurations, i.e., the 

poiseuille flow and the simple shear driven flow. In the 

analysis, we give focus to the viscous dissipative effect 

arises because of the two individual aspects in case of 

shear-driven flow: the shear heating produced by the 

movable upper plate along with fluid friction, while only 

due to the internal fluid friction in case of Poiseuille flow. 

Finally, we show the variation of velocity and the 

temperature distribution in the flow field for several non-

dimensional parameters as emerge in the present study, 

and highlight their individual role in delineating the 

temperature distribution in the flow field, which 

essentially alters transient thermal transport characteristics 

of heat in different cases of flow dynamics. 

 

INTRODUCTION 
In the domain of the macroflows, there are so many 

practical applications where heat transfer normally occurs 

in the fluid flow system involving moving boundaries. 

Particularly, in many material processing applications such 

as extrusion, hot rolling, drawing, and continuous casting, 

materials continuously move in a channel. In such 

industrial applications, it is of great importance to 

encounter the heat transfer from the moving boundary to 

the surrounding fluid and vice-versa. However, the moving 

boundary deforms the fluid velocity profile, and shears the 

fluid layer near the boundary, results in local changes in 

velocity gradient. Thus the viscous dissipation effects may 

not be neglected in heat transfer analysis associated with 

moving boundaries [1]. The thermal energy generated due 

to the viscous dissipation is significant near the wall, 

which alters the heat transfer rates following the changes 

in the temperature profile. In order to obtain the actual 

heat transfer rate in the application of moving boundaries, 

it is important to take into account the effects of viscous 

dissipations using accurate velocity distribution. The first 

theoretical work studied by Brinkman [2] concerning the 

heat generation due to viscous dissipation has analyzed the 

effects of viscous heating for the flow of a single phase 

Newtonian fluid through a circular tube. The temperature 

distribution in the thermal entrance region has been 

examined considering the zero temperature of the wall and 

an insulated wall. The temperatures were found to be the 

highest, not surprisingly, within a small area near the wall 

region. The available literatures in the area of convective 

heat transfer have, however, considered the effects of 

viscous dissipation to be important in two cases: flow of 

very viscous fluids and flow in capillary tubes. Cheng and 

Wu [3] have carried out a numerical analysis to study the 

influence of viscous dissipation for the flow of Newtonian 

fluid in a parallel plate channel. The effects of viscous 

dissipation on laminar forced convection for the flow of 

Phan- Thien- Tanner fluid through a pipe and channel 

have been studied by Pinho and Oliveira [4]. Performing 

an analytical study, using a functional analysis method, 

Lahjomri et al. [5] have investigated the effects of viscous 

dissipation on the heat transfer of thermally-developing 

laminar Hartman flow through a parallel plate channel 

with the aid of a magnetic field. In a study of thermal 

development of forced convection in a parallel plate 

channel filled by porous medium, Nield et al. [6] have 

investigated the effects of viscous dissipation with the 
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thermal boundary condition of uniform wall temperature 

including axial conduction effects. Following a Numerical 

study, Duwairi et al. [7] have investigated the heat transfer 

effects of a viscous fluid squeezed and extruded between 

two parallel plates. The study considered constant wall 

temperature and revealed the interactive effects of 

squeezing and extrusion parameters on the velocity, 

temperature profile and on the heat transfer characteristics. 

In a study, the effect of viscous heating on the stability 

of Taylor-Couette flow has been investigated 

experimentally by White and Muller [8]. The analysis of 

laminar forced convection in a pipe for Newtonian fluid of 

constant properties has been performed by Aydin [9,10] 

by taking the effect of viscous dissipation into account. In 

Part-1, both hydro-dynamically and thermally fully 

developed convection has been studied, while Part-2 of the 

study has considered the hydro-dynamically developed but 

thermally developing case. In both cases, two different 

types of thermal boundary condition have been 

considered, namely, constant heat flux (CHF) and constant 

wall temperature (CWT). The variations of dimensionless 

radial temperature and Nusselt number have been obtained 

for different values of Brinkman number under both wall 

heating and cooling. The analytical work done by Aydin 

and Avci [11] has dealt with the convective heat transfer 

problem for the plane Poiseuille flow with an emphasis on 

the viscous dissipation effect. The energy equation has 

been solved for thermally developed and developing cases 

separately with the boundary condition of CWT and CHF, 

respectively. In both cases, the flow has been considered 

to be hydrodynamically developed. It has been found from 

the study that with the increasing intensity of viscous 

dissipation (increase in Brinkman number), the heat 

transfer decreases up to a critical value, and that is 

attributed to the internal heat generation due to the viscous 

dissipation effect. In another work, Aydin and Avci [12] 

have studied the laminar forced convective heat transfer 

problem in a Couette- Poiseuille flow with an emphasis on 

the viscous dissipation effect. In a recent study, Francisa 

and Tso [13] have extended the work of Aydin and Avci 

[11] and have investigated the viscous dissipation effects 

on fixed parallel plates with constant heat flux boundary 

condition. Various analytical expressions of Nusselt 

number as a function Brinkman number has been obtained 

by several researchers as apparent from the reported 

investigation. The survey shows the effects of viscous 

dissipation on laminar heat transfer on a Poiseuille flow in 

stationary parallel plates for Newtonian as well as non-

Newtonian fluids. The steady state laminar heat transfer to 

a plane Poiseuille-Couette flow of a Newtonian fluid with 

simultaneous pressure gradient and axial movement of one 

of the plates has been investigated by Hudson and Bankoff 

[14] and Sestak and Rieger [15].  

All the research mentioned above have dealt with the 

effect of viscous dissipation on convective heat transfer in 

a Poiseuille flow and combined Couette-Poiseuille flow 

for a hydro-dynamically fully developed flow between two 

parallel plates, considering both the thermally fully 

developed and developing cases. To the Authors 

knowledge, no work, so far, has been reported till date 

wherein the limiting temperature profile for an unsteady 

simple shear driven and Poiseuille flow has been 

delineated giving the intricate interactions of different 

dimensionless parameters including the effect of viscous 

dissipation in a comprehensive way. 

 The objective of this paper is to explore the 

temperature distribution in the conduction limit for an 

unsteady fully developed simple shear driven and Plane 

Poiseuille flow of a Newtonian fluid between two 

asymmetrically heated parallel plates, which in essence 

predicts the thermal transport characteristics of heat in the 

conduction limit.  For this, a detailed study is carried out 

to investigate the effect of viscous dissipation on the 

limiting temperature profile between two parallel plates 

subjected to the unequal constant temperature thermal 

boundary condition. In the analysis part, we have used two 

definitions of Eckert number based on the temperature 

difference between two plates, as well as detailed the 

intermediate steps to facilitate the checking by interested 

audience in the research community.  

NOMENCLATURE 

p
C  specific heat at constant pressure, J/kg K 

E  Eckert number,  
0

2 TTCV
LpC
  

i  number of nodal points 

k  thermal conductivity of fluid, W/m K 

L  length as shown in Figs. 1 and 2, m 

Pr Prandtl number,   

t  time, s 

0
T  temperature of the lower plate, K 

L
T  temperature of the upper plate, K 

U  dimensionless velocity, 
Cx

VV  

C
V  reference velocity, m 

x
V  velocity in the x-direction, m 

x  Coordinate in the x-direction, m 

X  dimensionless Coordinate in the x-direction, 

Lx  

y  Coordinate in the y-direction, m 

Y  dimensionless Coordinate in the y-direction, 

LY  

Greek Letters 

  thermal diffusivity, 
p

Ck  , m
2
/s 

  viscosity parameter, 
p

C , K s/m
2
 

  Kinematic viscosity,  , m
2
/s 

  dimensionless temperature,    
00

TTTT
L
  

  Fourier number, 2Lt  

  

 

PROBLEM FORMULATION AND ANALYSIS 

 Physical Considerations. For the analysis, we consider a 

channel between two parallel plates of infinite length, 
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height L and width b as shown in Fig. 1. Fluid is flowing 

in the axial ( x ) direction, while the flow is influenced by 

the movement of the upper plate. The flow is considered to 

be both hydro-dynamically and thermally fully developed. 

The no-slip boundary conditions are assumed to be valid 

at both the plates for both hydro-dynamically and 

thermally. In addition to the consideration of fully 

developed flow, few more assumptions considered for the 

study are: newtonian fluid; incompressible fluid flow; 

there is no heat generation and thermo-physical properties 

are constant; axial conduction is neglected in the fluid and 

through the wall.   

 

Fig. 1. Schematic diagram describing the case of shear 

driven flow problem. 
 

Analysis of the problem. The relevant equations specific 

to the problem considered in the present study are the 

incompressible continuity, momentum and energy 

equations. The governing equations are as follows: 

Continuity Equation: 

   0 xVx                                                                   (1) 

Momentum Equation: 

     22 yVtV xx                                                  (2) 

Energy Equation: 

The prime focus of the present study is to delineate the 

temperature distribution in the conduction limit including 

the effect of viscous dissipation in the analysis. This, 

essentially allow us to discard the advective term in the 

energy equation, while the viscous dissipation term is 

taken into account. The governing transport equation of 

thermal energy for the problem considered in the present 

study looks like the following form as given by 

    
222 yVyTtT x        (3) 

where pck   , pc  and the last term on the 

right hand side of the above equation is the viscous 

dissipation term. To solve the governing transport 

equations as mentioned above, it is essential to define the 

necessary initial and boundary conditions very 

commensurate to the problem considered here.  However, 

we define the initial and boundary conditions for the 

problem considered in the present study as given below. 

    Initial conditions:     

   
0x

o

V

T T

 


 

for   0t                                               (4a) 

    Boundary conditions:  

 

 

0

;

0 ;

0

0
0

L

x

L

x

V for shear driven flow
V

y L for poiseuille flow

tT T

V
y

T T

 
 

   


  


 
    

                                                                                                                           

                                                                                                           (4b) 

Unsteady Shear-Driven Flow: Upper plate is moving 

and lower plate fixed. We consider a case where the 

upper plate is moving at constant speed LV , while the 

lower plate is fixed. Furthermore, we assume that the 

upper plate is at constant temperature LT and the lower 

plate temperature is 0T . However, in order to express Eqs. 

(2) and (3) in a non-dimensional framework, it is essential 

to define the non-dimensional parameters suitably. From 

the physical considerations discussed above, following 

non-dimensional parameters are chosen: 

    x

C

V
U

V
 ,

y
Y

L
 , 0

0L

T T

T T






 and 

2L

t
  .  (5) 

It is to be noted here that the term CV  in Eq. (5) is the 

reference velocity used to normalise the flow velocity. For 

a shear driven flow, we consider the velocity of the upper 

plate as the reference velocity. However, with the aid of 

the above non-dimensionless parameters, Eq. (2)-(3) may 

be normalised to yield the following: 

    
2

2
Pr

U U

Y

 


 
                                 (6) 

    
22

2
.

U
Pr E

Y Y

 



   
   

   
                  (7) 

where Pr  is the Prandtl Number and 

 
0

2 TTCVE
LpC
  is the Eckert Number based on the 

temperature difference between two plates.  

    In order to obtain the temperature distribution in the 

flow field, we need to solve the above set of equations 

[Eqs. (5-6)] get the temperature profile. However, to do 

that we utilize the boundary conditions as given in Eqs. 

7(a)–(b). In a non-dimensional form, the above set of 

boundary conditions may be expressed as given below: 

    Initial conditions:  
0

0

U



 


 

 for   0         (8a) 

    Boundary conditions: 

       

1
1;

1
0

0
0;

0

U
Y

U
Y






 
  

 
 

    

                                  (8b) 

Solving Eq. (6) with the boundary conditions given in Eq. 

(8a,b), the expression of the velocity distribution obtained 

is presented below [16–23]: 

L 

VL 

y 

x 
Temperature, Lower Plate 

Fluid Flow 

Temperature, TL Upper Plate 
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       2 2

1

12
. .sin( )

n

n Pr

n

U Y e n Y
n

 










                         (9) 

In order to obtain deeper insight about the thermal 

transport characteristics of heat, next, we appeal to obtain 

the temperature distribution in the flow field . The 

temperature distribution in the conduction limiting 

considering the effect of viscous dissipation into account 

can be obtained on solving Eq. (7). In order to do so, we 

use the boundary conditions as given in Eqs. (8a) and (b) 

and plug in the closed form of expression of the velocity 

distribution [Eq. (9)] into the energy equation. After 

plugging the velocity distribution into the energy equation 

and having a bit manipulations of simple algebra, equation 

(9) takes the form as given by 

   
 2 2

.

22

2
1

1 2 1 . cos( )
rn Pn

n

Pr E e n Y
Y

  









   
        

   

                                                                     (10) 

Following Taylor series central difference and implicit 

schemes, the above equation can be expressed as  

 
























 

 m

i

m

i

m

i

m

i
Y

Y

112

2

1

2
1

1






      

              















 






2

1

Pr
cos121Pr

22

n

i

nn
YneE m  

  

                                                                       (11) 

It is important to mention here that the term Y   in above 

equation can be expressed as  

       11  iY ,   YiYi  1                  (12) 

Where i is the number of nodal points and From Eq. (11), 

and using the boundary conditions given in Eq.(8a,b) we 

can delineate the variation of limiting temperature 

distribution in the flow field towards the understanding of 

the thermal transport characteristics of heat in an unsteady 

viscous dissipative shear driven flow between two 

asymmetrically heated parallel plates. We discuss the 

parametric variation of the temperature distribution in the 

results and discussions section of the present paper. In the 

next sub-sections, we make an attempt to obtain the 

temperature distribution in a plane poiseuille flow. 

 
Unsteady Poiseuille Flow. In this section, we demonstrate 

our application considering the case of a plane poiseuille 

flow. We remain stick to the other conditions unlike the 

previous case except the movement of the upper plate. We 

assume that the fluid is bounded by two parallel plates 

fixed at y=-Land Y=L as shown in Fig. 2. We also consider 

that the fluid is initially at rest and an axially applied 

pressure gradient set the fluid in motion suddenly along 

the x-direction. We use the following dimensionless 

parameters to cast the governing equations into the 

corresponding non-dimensional form. 

    x

m

V
U

V
 ,

y
Y

L
 , 0

0L

T T

T T






 and 

2L

t
  .                 (13) 

In above equation, 
mV is the mean velocity of the flow. 

Using above scales, we arrive at the following set of the 

non-dimensional governing equations as written below: 

    
2

2

1 1

2

U U

Pr Y

 
 

 
                  (14) 

    
22

2

U
E Pr

Y Y

 



   
    

   
                 (15) 

where Pr



  is the Prandtl Number and 

2

0( )

m

P L

V
E

C T T



 is 

the Eckert Number based on the temperature difference 

between two plates. Equations (14)–(15) are subject to the 

following boundary conditions 

   Boundary conditions:  

    
0

1; 0
1

U
Y 




   



                              (16b) 

     Initial conditions:  
0

0

U



 


 

 for   0                (16a) 

The solution of Eq. (14) with the above set of boundary 

conditions yields the velocity distribution in the flow field 

as 

     

 

 

















 



 4

Pr12
exp

12

132
1

22

1
33

2 



n

n
YU

n

n

 

                                                        







 


2

12
cos

Yn       (17) 

On the other hand, using the above velocity distribution 

and following the Taylor series central difference scheme 

we attempt to solve the thermal energy equation as given 

in Eq. (15). Finally, we arrive at the following expression, 

which in essence depicts the limiting temperature 

distribution in the flow field as given by 

   



 



2112

1 16
2Pr





 i

m

i

m

i

m

i

m

i YE
Y

 

          

 

 

   







 











 







 2

12
cos

4

Pr12
exp

12

1
22

0
2

im

n

n
Ynn

n


 (18) 

  

The solution of Eq. (18) with the thermal boundary 

conditions given in Eq. (16) capitulate the limiting 

temperature distribution in the flow field, which we will 

see in the next section. 
 

RESULTS AND DISCUSSIONS 

In an effort to bring out the effect of viscous dissipation on 

the temperature profile, we present here some particular 

cases to investigate the thermal characteristic of heat in the 

limiting condition. Using the semi-analytical technique 

described above, we obtain the expressions of the 

temperature profile for both the cases of flow 

configurations. Moreover, those expressions turn out to be 

most important to analyze the objective of the present 

study. In this section, we present several plots and briefly 

discuss them. 
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Variation of velocity and limiting temperature in an 

unsteady Shear-Driven flow. Figure 3 illustrates the 

dimensionless velocity distribution in the flow field 

specific to the case when the upper plate is moving at 

constant speed. A closer look at Fig. 3 reveals that the 

moment at which the upper plate starts to move in the 

axial direction, the fluid layer adjacent to the upper plate 

also starts moving with the movable upper plate, while 

majority of the fluid in the flow field remain stationary. 

However, with increasing time, the entire flow field 

responses with the movement of the upper plate as one 

can find from the non-zero velocity of the fluid layer 

located even very close to the stationary lower plate, 

which is intuitive and quite expected. Interestingly, with 

the further increase in time, to be more specific at a 

particular value of 2  , the velocity profile becomes 

linear irrespective of the value of Prandtl number Pr , 

which is suggestive of reaching a steady state velocity 

profile in the flow field. Therefore, it can be inferred 

from the above figure that the solution becomes steady 

when magnitude of the dimensionless time is greater or 

equal to 2 for all types of Newtonian fluid. 

 The variation of non-dimensional temperature 

distribution in the conduction limit specific to the case of 

shear flow condition and including the effect of viscous 

heating has been delineated in Fig 3. To highlight the 

individual effect of different parameters, materialized 

during non-dimensionalisation of the thermal energy 

equation, on the limiting temperature profile, we display 

several plots of the temperature considering different 

values of  Pr , E  and   as one can clearly see on closely 

looking at Fig. 4. It is important to mention here that, 

unlike the case of velocity distribution, the limiting 

temperature profile also becomes steady and fully 

developed at 2  . It is seen from the above figure that 

for the value of 1E   and at the steady state condition 

( 2  ), the dimensionless fluid temperature increases 

almost in a linear fashion from zero at the lower plate to 

satisfy the boundary conditions imposed at the upper 

plate. The limiting temperature profile in a steady state 

condition and for a given value of Pr , however, increases 

with increasing value of Eckert number E . Moreover, the 

temperature profile at a relatively higher E  no longer 

remain linear; rather the profile initially shows an 

increasing trend then attains a maximum value very close 

to the upper plate and, finally, meet the upper plate 

temperature following a gradual increasing trend as one 

can observe from Fig. 4. The increasing trend of the 

dimensionless temperature with the increasing value of 

E  for a given Pr  as seen up to the location of 0.8Y   

in the flow field is essentially because of the enhanced 

effect of viscous dissipation. Conversely, the movement 

of the upper plate carries away the adjacent fluid layer 

along with it to satisfy the no slip boundary condition 

and, hence, a drop in the fluid temperature nearer at the 

upper plate is observed as reflected in the above figure. 

 It is interesting to observe from the figure under focus 

is that, a point exists in the flow field where two different 

steady state ( 2  ) temperature profile obtained for the 

same value of 2Pr =  but at different E , intersects each 

other. Moreover, for the combination of 2; 2Pr    an 

anomaly of increasing trend of temperature even at lower 

value of E  ( 1E = )  as seen up to the location of 0.8Y   

in the flow field is somewhat interesting albeit the natural 

trend of decreasing temperature for the same value of E  

is observed afterwards till the upper plate. This 

anomalous behaviour of the dimensionless temperature as 

observed up to location of  0.8Y   is attributable to the 

interactive effects of the Eckert number E  and Prandtl 

number Pr  on the viscous dissipation effect. However, 

the movement of the upper plate results in the decrease in 

the fluid temperature, which one can clearly see from the 

fact that the dimensionless temperature closer to the 

upper plate decreases. Notably, the decreasing rate of 

temperature for lower value of E  becomes faster in 

comparison to the same obtained at higher value of E . 

 

Variation of velocity and limiting temperature in an 

unsteady Poiseuille flow. In this section we show the 

variation of dimensionless velocity and temperature 

distribution for the case of unsteady poiseuille flow of 

Newtonian fluid between two asymmetrically heated 

parallel plates. In Fig. 5, we depict the variation of 

dimensionless velocity for different values of Prandtl 

number. It is worth mentioning that the velocity profile 

corroborates the fully developed profile at 2  .  As Pr  

increases, the axial velocity at a given location in the flow 

field increases and the velocity profile essentially overlay 

with the fully developed profile leaving relatively higher 

magnitude of boundary layer thickness, which is as 

expected.
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Fig. 2 Schematic diagram describing the case of plane Poiseuille Flow problem 
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Figure 6 displays the variation of dimensionless 

temperature profile for different values of Prandtl number 

Pr  and Eckert number E .  Notably, for a given Pr , the 

relatively higher fluid temperature as observed with 

increasing value of Eckert number E  is essentially 

attributable to the viscous dissipation effect owing to 

fluid frictional heating. On the other hand, the effect of 

decreasing value of Pr is getting reflected more clearly 

on the variation of dimensionless temperature profile as 

manifested in terms of an increasing value of the thermal 

boundary layer thickness. Actually, a precise look at Figs. 

5 and 6 clearly gives us a direct comparison between the 

magnitude of thermal and hydrodynamic boundary layer 

thickness, which, in turn, explores the undeviating 

consequences of the effect of Prandtl number on the 

limiting temperature profile as delineated above. 

 

CONCLUSIONS  

In the present work, we investigate the influences of the 

viscous dissipation on the limiting temperature profile for 

an unsteady shear driven and Poiseuille flow of 

Newtonian fluid between two asymmetrically heated 

parallel plates. We have presented a semi-analytical 

formalism in an exhaustive way to solve the governing 

transport equation of energy for the case of unequal but 

constant temperature thermal boundary conditions. We 

have demonstrated the interplay between different non-

dimensional parameters in dictating the limiting 

temperature profile. The influential role of viscous 

dissipation is found to be of great importance in the 

variation of temperature distribution in the flow field; 

hence an emphasis on viscous dissipation is given to 

include the effect of shear stress induced by the axial 

movement of the upper plate in addition to the effect of 

viscous dissipation due to the internal fluid heating in 

case of shear driven flow and the fluid frictional heating 

in case of plane Poiseuille flow. 
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Fig. 4 Variation of dimensionless temperature for different 

values of Pr, E and  in a shear-driven flow condition 

Fig. 3 Variation of dimensionless velocity for different 

values of Pr and  in a shear-driven flow condition 

Fig. 6 Variation of dimensionless temperature for 

different values of Pr, E and  in a Poiseuille flow 

condition 

Fig. 5 Variation of dimensionless velocity for 

different values of Pr and  in a Poiseuille flow 

condition 
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