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ABSTRACT 
Variability always occurs to be the most frightening phenomena in implementation of various kinds of 
experiments. We desire to control variability and decrease the variance of experiments in order to be 
aware of the accuracy of the constructed models and consequently supply reliable results. Importance 
Sampling, also called Biased Sampling is one of the variance reduction techniques especially used in 
Monte Carlo Methods. This study includes a research to gather the appropriate importance sampling 
density which gives the lowest variance. We illustrate the importance sampling method on an M/M/1 
queuing problem involving a limited waiting capacity of 50 of buffer size and solve it with an efficient C 
coded simulation program. We first execute naïve simulation, afterwards we carried out importance 
sampling method and supplied meaningful decrease in the estimated variance of the case which queue 
length ever exceeds buffer size. By this way, one can calculate any expectation that cannot be calculated 
by analytically. Numerical results indicate that longer tailed proposal distributions provide much more 
meaningful  decrease.  
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TARAFLI ÖRNEKLEME YÖNTEMİ İLE VARYANS AZALTMA 
 
ÖZET 
Değişkenlik veya rassal sayılara bağlı hata çeşitli deneylerde ortaya çıkan en korkutucu problemlerdendir. 
Gerçeğe uygun modeller kurup bunlardan güvenilir sonuçlar elde etmek istenir. Bunun için Monte Carlo 
uygulamalarında tahmini varyansı azaltan Taraflı Örnekleme (Importance Sampling) yöntemi 
kullanılabilir. Bu çalışmada en az varyansı veren dağılımlar bulunmaya çalışılmıştır. Bunun için basit bir 
M/M/1 kuyruk sistemi benzetim modellemesi ile analiz edilmiş ve 50 birimlik bir  ön tamponıun dolup 
aşılma olasılığı bulunmaya çalışılmıştır. Önce basit Monte Carlo benzetim modeli daha sonar Taraflı 
Örnekleme benzetim modeli kullanılarak sonuçlar alınmıştır ve sayısal sonuçlar daha uzun kuyruğa sahip 
dağılımların daha olumlu sonuç verdiğini göstermiştir. 
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1. INTRODUCTION 
 
Simulations driven by random inputs will produce random outputs. If we can 
somehow reduce the variance of an output random variable of interest without 
disturbing its expectation, we should have greater precision in means of smaller 
confidence intervals. The classical Monte Carlo method is a random number based 
approach to estimate physical quantities that are hard to compute exactly. Monte 
Carlo methods are used for numerically approximating integrals and have many 
application areas such as global optimization, nuclear shielding, and computational 
chemistry. Many problems in these areas can be formulated as integrals over a single 
model distribution or highly multi-modal distributions in the result of expectations 
which can be shown as 

 

[ ( )] ( ) ( )
dR

E q X q x f x dxθ = = ∫                      (1.1) 

 
where X= 1( ,..., )dX X denote a vector of iid random variables in dR , having a 
joint density function (or joint mass function in the discrete case) of  

1( ) ( ,..., )df x f x x=  and q(x) is an arbitrary real valued function in the sampled 
region. The accuracy of this estimation depends strongly on quality of sampling 
which can be improved in two ways: increasing the cardinality of sampling or 
introducing some kind of selection rules that make it more representative, (Dupuis, 
2005).  
 
To make Monte Carlo calculations faster and improve the accuracy, a biased 
sampling with weight coefficients, so called importance sampling, is used. The 
contribution of importance sampling is to introduce definite selection rules to 
generate the most likely samples or configurations and hence to obtain more 
accurate values of statistical averages, (Touzig et al., 2003). The basic idea is to 
compute a correction factor to the importance sampling estimates, based on sample 
weights accumulated during sampling. With proper weights the correction factor 
compensates for statistical fluctuations and lead to a lower variance. Very 
commonly used variance reduction techniques are importance sampling, 
stratification, common random numbers, antithetic variates and control variates. 
First two methods reflect the idea of using weighted sampling based on a priori 
qualitative or quantitative information in an attempt to reduce variance whereas 
others concentrate on introducing correlation to reduce variance.  
 
In this article we address the problem of selection of high computational importance 
sampling density (so called proposal density). The article is organized in four main 
sections. Section 2 gives the method of importance sampling in detail. Section 3 
gives two different applications of importance sampling on an M/M/1 queuing 
system. And finally conclusions are set in section 4. 
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2. IMPORTANCE SAMPLING 
 
Importance sampling (IS) is used for numerically approximating integrals besides 
viewed as a variance reduction technique. The idea behind IS is that certain values 
of the input random variables in a simulation have more impact on the parameter 
being estimated than others. If these important values are emphasized by sampling 
more frequently, then the estimator variance can be reduced. Hence, the basic 
methodology in IS is to choose a distribution which encourages the important 
values. This use of a biased distribution will result in a biased estimator. However, 
the simulation outputs are weighted to correct for the use of the biased distribution, 
and this ensures that the new IS estimator is unbiased. We can demonstrate the 
application of IS by using equation (1.1) with a mathematical approach as 

 

( ) ( )
[ ( ) ] ( ) ( )

( ) ( )dg R

f X f x
E q X q x g x dx

g X g x
θ = = ∫                   (2.1) 

 
where g(x) is the proposal density such that g(x)=0 whenever f(x)=0 and always be 
of one sign. gE  emphasizes that random vector X has joint density g(x). Technique 
of importance sampling is applicable for only rare events in wide sampling space. If 
the volume to be sampled is large, but can be characterized by small probabilities 
over most parts, IS can be carried out by approximating the probability distribution, 
f(x), by proposal density, g(x), and generating randomly x (forms a vector of iid 
variables) according to g(x), then weighting each result at the same time by 
w(x)=f(x)/g(x). The basic idea is to compute the correction factor, w(x), to the IS 
estimates, based on sample weights accumulated during sampling. With proper 
weights the correction factor will compensate for statistical fluctuations and lead to a 
lower variance, (Bekaert et al.,2000). To supply this it is obvious that w(x) should be 
approximately constant, (Hörmann et al., 2005). Although the likelihood ratio 
f(X)/g(X) will usually be small in comparison to 1, average weight is obviously 1. 
That is because q(x) is an indicator function that has the value of 1 when the target 
condition (X>k, k∈R) is supplied and zero otherwise, (Sminchisescu et al., 2002). 

( ) ( )
( ) [ ] ( ) ( ) 1.0

( ) ( )d dg R R

f X f x
w X E g x dx f x dx

g X g x
= = = =∫ ∫                       (2.2) 

 
2.1. Tilted Densities 
Tilted densities are so useful in selecting a proposal density at the very beginning of 
the search. A density function of the form  
 

( )
( )

( )

tx

t

e f x
f x

M t
=                                           (2.3) 
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is a tilted density of  f ,  where t−∞ < < ∞  and 
 

( ) [ ] ( )tx tx
fM t E e e f x dx= = ∫                                         (2.4)

        
is the moment generating function of one dimensional density f. A random variable 

with density tf tends to be larger than f when t>0, and tends to be smaller when t<0, 

(Ross, 2002). 
 
2.2. Conventional Biasing Methods 
There are many kinds of biasing methods; following two methods are most widely 
used in the applications of importance sampling. 
 
i) Scaling : Shifting probability mass into the event region X>k by positive scaling 
of the random variable X with a number greater than unity has the effect of 
increasing the variance (mean also) of the density function. This results in a heavier 
tail of the density, leading to an increase in the event probability. For random 
variable aX, a>1 we can have 1

( ) ( )
x

g x f
a a

=
 by transformation. While scaling 

shifts probability mass into the desired event region, it also pushes mass into the 
complementary region which is undesirable. If X is a sum of n random variables, the 
spreading of mass takes place in an n dimensional space. The consequence of this is 
a decreasing importance sampling gain for increasing n, and is referred to 
dimensionality effect. 
 
ii) Translation : This technique employs translation of the density function (and 
hence random variable) to place much of its probability mass in the rare event 
region. Translation does not suffer from a dimensionality effect and has been 
successfully used in several applications. It often provides better simulation gains 
than scaling. In biasing by translation, the simulation density is given by 

( ) ( ), 0g x f x b b= − >  where b is the amount of shift and is to be chosen to 

minimize the variance of the importance sampling estimator. 
 
 
3. APPLICATION OF IMPORTANCE SAMPLING ON AN M/M/1  
    QUEUING SYSTEM 
 
We implement a simulation of M/M/1 queue in the C program and had one million 
replications for each of a total of 15 long-run experiments. We investigate the 
behavior of the single server system that customers come into a poison process in 
accordance and served during an exponentially distributed time in FCFS queue 
discipline. The buffer size is fixed to 50 for 1000 limited arrivals. The goal is that to 
reduce the estimated variance of the case which buffer size ever exceeds 50 via IS 

method or in other words we desire to estimate θ  in equation [ ( 50)]E q Xθ = >  
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more accurately by using equation (2.1) instead of equation (1.1). In the first subtitle 
below we deal with a tilted exponential proposal density for exponential inter arrival 
times and a translated Pareto proposal density for exponential service times.  
 

Table 1. Comparison of Naive Simulation & Importance Sampling for Tilted 
Exponential Proposal Density. 

                                            Mean        Variance       Weight 

ρ =0.80 
 naive simulation  0.000554      0.000554  
 is λ =0.85 tilted rate 0.000448      0.000532       0.996387 
 is λ=0.82 tilted rate 0.000500      0.000305       0.989788 
ρ =0.85 
 naive  simulation  0.005517       0.005487  
 is λ =0.90 tilted rate 0.005543       0.012338      1.000641 
 is λ =0.87 tilted rate 0.005576       0.003921      0.999768 
ρ =0.90 
 naive simulation  0.041661       0.039925 
 is λ=0.95 tilted rate 0.041761       0.108903      0.997965 
 is λ=0.92 tilted rate 0.041604       0.030433      1.002034 
ρ =0.95 
 naive simulation  0.194171       0.156469 
 is λ =0.97 tilted rate 0.193781       0.139327      0.999893 

 
3.1. Tilted Exponential Proposal Density 
We illustrate IS method on a queuing system and simulate it for different traffic 
intensity values (ρ=.80, .85, .90, .95). First we executed naïve simulation and 
calculated mean and variance for binomial random variable. Then we carried out IS 
method for two tilted exponential densities with 2% and 5% rate increments in order 
to have longer tails. For constant service rate µ=1, we change the arrival rate λ’s for 
different ρ values (as ρ=λ/µ). The related parameters are shown below for both 
original and proposal densities. The results for estimated mean, variance and 
average weight are shown in Table 1. 

( ) f x

ff x e
λ

λ
−

= , ( ) g x

gg x e
λ

λ
−

=  where 1.02*g fλ λ= , and  1.05*g fλ λ=  

 
3.2 Translated Pareto Proposal Density 
In order to increase the probability of buffer overload or in other words to make it 
more visualize, we can also increase the service times instead of decreasing the inter 
arrival times. We applied translated Pareto proposal density as 

1( ) ( ) , 0, 0, 0g x x
x

αα β
α β

β β
+= > > >

+
 α and β are shape and scale 

parameters respectively. When 0,x µ α β= = . So we selected the parameters 

likewise to fit exponential service density accurately. We have µ =1, so α=β. The 
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results can be found in Table 2. When we compare Table 1 and Table 2 we can 
conclude that it is better to select longer tailed distributions in advance. 

 
Table 2. Comparison of Naive Simulation & Importance Sampling for 

Translated Pareto Proposal Density. 
                                            Mean        Variance       Weight 

ρ =0.80 
  naive simulation              0.000554      0.000554  
  is α=20 β=20                   0.000346      0.000305      0.980622 
ρ =0.85 
  naive  simulation 0.005517       0.005487  
  is α=20 β=20                   0.002276       0.001523     1.004464 
ρ =0.90 
  naive simulation              0.041661       0.039925 
  is α=20 β=20                   0.013295       0.010563      0.996148 
ρ =0.95 
  naive simulation  0.194171       0.156469 
  Is α=20 β=20                   0.170268       0.119723      0.983216 

 
 
 
4. CONCLUSIONS 
 
Fundamental idea is that the sampling process is distorted in order to take into 
account the weighting of the underlying distribution. A key issue in order to achieve 
small errors on the obtained result is a suitable strategy of sampling the available 
one dimensional or multidimensional space. The term “importance sampling” also 
refers to choosing the proposal density so that the sampled values lie in the region 
that is important for the value of the integral. Numerical results indicate that it is 
better to select longer tailed distributions that fit the original density accurately. For 
complex problems finding samplable approximating distributions occurs to be a hard 
job, so it is then useful to look at sequential samplers based on distributions derived 
from the original density. The rewards for a good distribution can be huge run-time 
savings; the penalty for a bad distribution can be longer run times than for a general 
Monte Carlo simulation without any special techniques. 
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