

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Yıl: 6 Sayı:12 Güz 2007/2 s. 1-20

TIMETABLING OF FACULTY LECTURES USING
SIMULATED ANNEALING ALGORITHM

Tunçhan CURA∗

ABSTRACT

In this study, a faculty-course timetabling problem is solved by using a Simulated Annealing based
algorithm. In this sort of problems, both the objectives and the constraints are usually highly institution-
specific. Thus, there is not a single commonly used tool to solve this planning problem. Since the
problems are institution-specific, the results of this study have not been compared to those of the studies
which are published already. Comparing with the many of the studies, the most important difference of
this study is to take the lecturer seniority into consideration. This study separates the problem into two
main components in the solution progress. While the first one is dealing with searching of the lectures
which can be located into the same time interval, the second one is dealing with assigning the lectures to
the most suitable place in the timetable. That algorithm is experimented with 2006-2007 academic year
first term data of Faculty of Business Administration at Istanbul University. The results of proposed
algorithm is compared to those of genetic algorithms and tabu search. Thus, the genetic algorithms
approach can not even find a feasible solution. And the tabu search approach finds worse solutions than
the proposed algorithm.

Keywords: Simulated Annealing, Timetabling, Heuristics Techniques

TAVLAMA BENZETİMİ ALGORİTMASINI KULLANARAK FAKÜLTE
DERSLERİNİN ÇİZELGELENMESİ

ÖZET

Bu çalışmada fakülte derslerinin çizelgelenmesi problemi Tavlama Benzetimi temelli bir algoritma ile
çözülmüştür. Bu tür problemlerde hem amaçlar hem de kısıtlar genellikle kuruma özgüdür. Bu nedenle
böyle bir planlama problemini çözecek ortak bir araç bulunmamaktadır. Problemlerin kuruma özgü
olması nedeniyle çalışmanın sonuçları literatürdeki bir çalışmanın sonuçlarıyla karşılaştırılamamıştır. Bu
çalışmanın literatürde yer alan pek çok çalışmadan en önemli farklarından birisi öğretim üyesi
kıdemlerinin dikkate alınmış olmasıdır. Çözüm sürecinde problem iki ana parçaya ayrılmıştır. Bunlardan
birincisi aynı zaman dilimine yerleştirilebilecek dersleri aramakla ilgilenirken, ikincisi derslerin zaman
çizelgesinde en uygun yerlere yerleştirilmesiyle ilgilenmektedir. Algoritma İstanbul Üniversitesi İşletme
Fakültesi’ nin 2006-2007 Akademik takvimi birinci yarıyıl verileriyle denenmiştir. Önerilen algoritmanın
sonuçları ile genetik algoritmalar ve tabu arama algoritmalarının sonuçları kıyaslanmıştır. Buna göre,
genetik algoritmalar yaklaşımı uygun çözüm dahi bulamamaktadır. Tabu arama yaklaşımı ise daha
başarısız çözümler bulmaktadır.

Anahtar Kelimeler: Tavlama Benzetimi, Çizelgeleme, Sezgisel Teknikler

∗ İstanbul Üniversitesi, İşletme Fakültesi, Sayısal Yöntemler Anabilim Dalı, Avcılar-İstanbul

Tunçhan CURA

1. INTRODUCTION

University course timetabling problems are combinatorial problems, which consist
of scheduling a set of courses within a given number of rooms and time periods.
Solving a real world timetabling problem manually often requires a significant
amount of time, sometimes several days or even weeks (Abdennadher and Marte,
2000). Although many of them are not about specifically university course
timetabling, there have been a lot of research for timetabling. One of the examples
for course timetabling is the study of Henz and Würtz (1996). They suggested the
constraint logic programming approach which is, according to them, competitive or
better than traditional operations research algorithms for many real-world problems.
Burke et al. (2007) investigated a simple generic hyper-heuristic approach upon a set
of widely used constructive heuristics in timetabling. Within the hyper-heuristic
framework, they developed a tabu search approach to search for permutations of
graph heuristics which were used for constructing timetables in exam and course
timetabling problems. Head and Shaban (2007) combined two problems, student
scheduling and course scheduling, which are typically treated as separate tasks.
They build the schedule based on heuristic functions and place the students into
classes simultaneously.

In this study, it has been tried to solve university course timetabling problem using
simulated annealing (SA) algorithm which is a stochastic heuristic algorithm, and
searches the solution space using a stochastic hill climbing process. In this sort of
problems, both the objectives and the constraints are usually highly institution-
specific. Thus, the results of this study can not be compared to those of any other
study in that area. Note that, almost all of the studies similarly focused on satisfying
lecturer preferences. However, none of them has dealed with lecturer seniorities. In
order to mention the differences of the problem discussed here from the problems of
the other studies, some examples may be given as follows: in the problem which is
studied by Abdennadher and Marte (2000), lecturers must have one hour break
between courses and monday afternoon is reserved for professors; Schimmelpfeng
and Helber (2006) described teaching groups for their problem and assign these
groups to the lectures; MirHassani (2006) included an overload constraint for the
lecturers in his study; the problem which Henz and Würtz (1996) studied has two
unusual constraints which limits some courses to certain time slots and introduces
unavailability times for some lecturers; Avella and Vasil’ev (2005) predefined some
penalty values according to the courses which are scheduled at a given time; and
Daskalaki et al. (2004) included a constraint in which a timetable should
accommodate requests for sessions of consecutive teaching periods. In this regard,
the results of the SA approach has been compared to those of the genetic algorithms
(GA) and tabu search (TS) approaches which have been adapted from similar
studies. The use of SA as a technique for discrete optimization dates back to the
early 1980s. It was heralded with much enthusiasm as it appeared to be both simple
to implement and widely applicable, and as a result of articles in popular scientific
journals researchers from a wide variety of disciplines experimented with it in the
solution of their own problems (Reeves, 1995). Simulated annealing has been used

 2

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Güz 2007/2

in various combinatorial optimization problems and has been particularly successful
in circuit design problems (Kirkpatrick et al., 1983). Timetabling problems are sort
of scheduling problems, since they can be defined as the scheduling of a set of
activities requiring a given amount of resources, and involving groups of people
over a finite time period (Avella and Vasil’ev, 2005). A SA example to the
scheduling problem is the study of Anagnostopoulos et al. (2006). They considered
the traveling tournament problem to abstract the salient features of Major League
Baseball in the United States. They aimed at scheduling Major League Baseball
such that total travel distance should be minimized and home/away game constraints
should be satisfied as well. The study of Loukil et al. (2007) can be mentioned as
another example on this topic. Their study deals with a production scheduling
problem in a flexible job-shop with particular constraints: batch production;
existence of two steps: production of several sub-products followed by the assembly
of the final product; possible overlaps for the processing periods of two successive
operations of the same job. They tried to schedule multi-objective production case
by SA.

In this study, the timetabling problem is based on the rules which must be observed
in Istanbul University Faculty of Business Administration (IUFBA). These rules are
assembled into two categories. First category is that of obligatory rules which make
the solution of the problem erroneous even if one of them is violated. The other
category is that of the rules which are observed the more, the more satisfactory
solution is obtained. Indeed, satisfying lecturer desires is the only rule for this
category. These categories may be, respectively, called hard constraints which
usually relate to operational limitations that can not be bypassed in the real world
and soft constraints which are deemed desirable (Burke and Newall, 2004).
Obligatory rules are as follows:

1. Each lecture must be assigned to only one room and one day. In other words, each
lecture must be assigned to a single timeslot. Although actual lengths of lectures
vary, each lecture must initially be assigned to one hour which will be the starting
time of the lecture.

2. The lengths of the lectures and school hours must be taken into consideration
while assigning the lectures. For example if the school hours are from 9 am to 5 pm
and the length of the lecture is 3 hours, this lecture can not be assigned to 4 pm since
it would have exceed the official school hours.

3. More than one lecture can not be assigned to a given room at the same time
interval.

4. A lecturer can not have more than one lecture assigned in a given time interval.

5. To allow students to choose alternative lectures from the same department, some
predefined lectures must not overlap. In addition to this, the lectures of the same
class must not overlap as well.

 3

Tunçhan CURA

6. At least half of the total school hours in each day must be filled with lectures.

The rest of the paper organized as follows: Section 2 presents the mathematical
formulation of above problem; Section 3 identifies the main SA structure; Section 4
presents two other comparative methods which are GA and TS; Section 5 gives an
application of developed algorithms; and section 6 gives a brief conclusion.

2. FORMULATION OF THE PROBLEM

The problem in this study can be stated as follows: The number of lectures, the
number of lecturers and the number of different rooms are denoted by J, I and L,
respectively. Lectures can be assigned to any school day. Each day consists of 8
hours. Thus, D = 5, H = 8, and they denote the number of days and hours of
timetable respectively. Yj denotes the length of lecture j (j=1,…,J), Ci denotes the
seniority coefficient of lecturer i (i=1,…,I). The coefficients of veteran lecturers will
be greater. Thus, the probability of satisfying their wishes will increase, and Pidh
denotes the desire coefficient (a higher value indicating a higher preference) of
lecturer i for day d (d=1,…,D) and hour h (h=1,…,H).

max ∑∑ (A) ∑∑∑ ∑
= = = = =

+

=
×××

J

1j

I

1i

D

1d

H

1h

L

1l

}H),hYmin{(

hh
jldhiidhji

j

*
SCPX

subject to (1) ∑∑∑
= = =

==
L

1l

D

1d

H

1h
jldh .J,...,1j,1S

.D,...,1d,L,...,1l,H,...,1h,J,...,1j,Hjldh ====≤β (2)

.jj,J,...,1j,H,...,hh,D,...,1d

,L,...,1l,H,...,1h,J,...,1j,S

ldhjldhjjldh ****

≠===

===β≤×β
 (3)

.,,...,1

,,...,,,...,1,,...,1

,,...,1,,...,1,

**

*

jjJj

HhhDdLl

HhJjXXXS ijldhjjiijdhljjldh

≠=

===

==×≤××× ββ

 (4)

.jj,J,...,1j

,H,...,hh,D,...,1d,L,...,1l

,H,...,1h,J,...,1j,ZZS

**

*

jjldhjjjldhjjldh ******

≠=

===

==×β≤××β

 (5)

.D,...,1d

,L,...,1l,H,...,1h,J,...,1j,S)Yh(jldhjjldh

=

===×+=β
 (6)

 4

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Güz 2007/2

}.H),hYmin{(,hh,D,...,1d

,L,...,1l,H,...,1h,J,...,1j,S

j
*

jldhdh*

+==

====α
 (7a)

 .D,...,1d,
2
HH

1h
dh =⎥⎥

⎤
⎢⎢
⎡≥∑α

=
 (7b)

 (8) }.1,0{,S dhjldh ∈α

where Xji = 1 if i lectures j, otherwise Xji = 0, αdh = 1 if a lecture is assigned to any
room on day d and at hour h, otherwise αdh = 0, Z j* j = 1 if lecture j* and lecture j can
not overlap, otherwise Z j* j = 0, and Sjldh = 1 if lecture j is assigned to room l on day
d and at hour h, otherwise Sjldh = 0.

It can obviously be seen that such a mathematical model is not easily implemental.
Indeed, it may require a computer with very high level of specifications and
software with very high level of performance. However, this model is helpful to
explain the problem.

As previously mentioned, the problem has two categories of rules. The first one is
dialing with satisfying the lecturer desires, which is represented by (A) in the model.
Second category is discussed as follows:

1. Obligatory rule 1 is imposed by (1),
2. Obligatory rule 2 is imposed by (2),
3. Obligatory rule 3 is imposed by (3),
4. Obligatory rule 4 is imposed by (4),
5. Obligatory rule 5 is imposed by (5),
6. Obligatory rule 6 is imposed by (7a) and (7b),

in this model.

3. THE MAIN SA STRUCTURE

As mentioned before, some of the lectures can not overlap. In order to avoid
overlapping of these lectures, assigning each lecture to a unique day-hour pair may
be considered, if there is enough available space in the timetable. However, the time
period is limited to one week (5 days × 8 hours a day) while the number of lectures
is 133 for the test problem, which makes such an assignment impossible.

Inspired by the partitioning approach of Abdullah et al (2007), this study employs
some subsets (vectors) in solution progress: maximum L lectures may overlap in a
given time interval as long as all the constraints are satisfied. Suppose that there are

 5

Tunçhan CURA

K vectors, denoted by bk (k=0,…, K-1), and each of them has maximum L elements
denoted by bk,l (l=0,…,L-1). So, the index l represents room number. Lectures will
be assigned to each bk,l. Of course there should be no restriction for the lectures to be
located into a given bk. A variable hourk is used for limiting the maximum hour of a
lecture in bk. For example, a 3-hour lecture can not be located into bk where hourk =
2. Fig. 1 shows a sample bk vector where L = 15. Since bk,0 = 40, lecture 40 is
assigned to bk, bk,2 and bk,4 are empty as to the Figure 1.

In the case of K = 15, table 1 shows a sample timetable matrix to where all of the b
vectors are assigned and is denoted by sd,h in this study (d=0,…,D-1; h=0,…,H-1). If
bk is not assigned to sd,h then sd,h = -1. However, a preceding element (bk) of sd,h may
overflow through current element (bk

*) dependent on hourk. For example, if s0,0 is 13
and hour13 is 3 then b13 will overflow through s0,2 as seen in table 1. However, there
will not be an overlapping in that case, since s0,2 is empty (s0,2=-1).

SA algorithm which is developed for this study swaps the cells in s and it swaps
lectures among bk to maximize objective function explained in (A).

Table 1. A Sample s Matrix

 Day

1(d=0)

Day

2(d=1)

Day

3(d=2)

Day

4(d=3)

Day

5(d=4)

Hour 1(h=0) 13 2 8 4 3

Hour 2(h=1) -1 -1 -1 -1 -1

Hour 3(h=2) -1 11 -1 5 10

Hour 4(h=3) 1 -1 6 -1 -1

Hour 5(h=4) -1 -1 -1 -1 -1

Hour 6(h=5) 9 7 -1 14 12

Hour 7(h=6) -1 -1 0 -1 -1

Hour 8(h=7) -1 -1 -1 -1 -1

 6

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Güz 2007/2

Figure 1. A Sample b Vector

3.1. Defining the Number of b Vectors

Let X be the number of different lecture lengths. Thus, each different length, the
number of lectures with this length and the number of bk where hourk equals this
length are denoted by λx, δx and µx (x=1,…,X) respectively. For example, if there are
3 lectures and their lengths are 2 hours, 2 hours and 3 hours successively, then the
number of different lengths (X) will be 2 (λ1=2 hours and λ2=3 hours), and δ1 will be
2 and δ1 will be 1.

It is assumed that the proportion between the number of lectures with a specific
length and the number of bk where hourk equals that length must be direct for the test
problem. If it is supposed that X is 2 and µ*

1, µ*
2 represent the number of b vectors

for only one day, following equations will be obtained:

λ1 µ*
1 + λ2 µ*

2 ≤ H (9)

J/
J/

J/
J/

1

*
12*

2
2

1
*
2

*
1

δ
μδ

=μ⇒
δ
δ

=
μ

μ (10)

Eq.(11) is obtained with the help of Eq. (9) and Eq. (10).

 7

Tunçhan CURA

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

∑
δλ

×
δ

=μ⇒
⎟
⎠
⎞

⎜
⎝
⎛ δλ

+
δλ

×
δ

≤μ

=

X

1a

aa

x*
x

2211

1*
1

J

H
J

round

JJ

H
J

 (11)

where (12) H
X

1x

*
xx ≤∑ μλ

=

In order to ensure Eq. (12), µ*

x values might have to be adjusted by reducing one
each. As explained above, µ*

x is calculated for one day in Eq. (11). Hence, µ*
x must

be multiplied by D to obtain final µx value for whole timetable. The number K of b

vectors will be after all. ∑μ
=

X

1x
x

For the test problem X = 2, λ= {2, 3}, δ = {37, 96}, J = 133, D = 5, and H = 8 in this
study. Thus, K will be 15 and set of hour will be {2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3}, according to calculation above.

3.2. Filling the b Vectors with Lectures

After defining K and hourk, next step will be filling each bk with lectures. Each bk is
filled with randomly selected lectures initially. Therefore, that would most probably
cause errors which are violations of the obligatory rules 4 and 5.

In this study, a fitness function is used for measuring the compatibility between
lecture j and vector bk. This functions’ value is a rational number between 0 and 1.
As the fitness functions’ value approaches to the unity the compatibility between j
and bk increases while it decreases as the fitness function’ value approaches to 0.
The fitness function is defined as:

⎪
⎩

⎪
⎨

⎧

≤
ε+−−θ−

ε+θ−

>

=
kj

k,ok,jk

kk,j

kj

1 hourYif
qqL

g

hourYif0

)o,k,j(f (13)

where θk is the number of empty elements in bk, ε is a very small number to avoid
division by zero error, o is a lecture, qj,k=1 if j exists in bk, otherwise 0, qo,k =1 if o
exists in bk, otherwise 0 and gj,k is the number of compatible elements with j in
vector bk, it includes empty elements but excludes j and o. In other words, if bk
contains lecture j currently or lecture o is in bk and it is compatible with j, gj,k will

 8

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Güz 2007/2

not enclose them. The “compatibility of two lectures” is yielded when these lectures
can overlap without violating the rules 4 and 5.

 For k = 0 to K - 1
 For l = 0 to L – 1
 If bk,l ≠ 0 then
 Search the such that f1(bk,l, k*, -1) - f1(bk,l, k, -1) is *k

b
 maximum and f1(bk,l, k*,-1) > f1(bk,l, k,-1)

 If k* is found, search lecture l*
 in bk

* such that f1(, k, bk,l) is
maximum

** l,kb

 and f1(, k, bk,l) ≥ f1(, k*, -1) ** l,kb ** l,kb

 If l* is found, swap bk,l and ** l,kb

 End if
 End For
 End For

Figure 2. An Algorithm for Error Reducing

Until all of the b vectors have no error (violations of rule 4 and 5), an algorithm
which is called error reducer algorithm is used for assembling compatible lectures
into the proper bk. Figure 2 shows the sketched algorithm.

3.3. The Energy Function

In this paper, the energy function is derived from the objective function (A). In a
similar manner, the b vectors and the s matrix are used for calculating the energy
function which will be maximized by the SA solver algorithm. Since b vectors are
located in s matrix, each of them is assigned to a unique d, h pair. Thus, the
calculation of the energy function of bk for a given d, h pair will be as:

∑ ∑ ×=
−

=

+

=

1L

0l

hourh

hh
Xh,d,X2

k

* l,kbl,kb
CP)h,d,k(f (14)

where Xj (X0=0) is a number which represents the lecturer who lectures j, Pi, d, h (P0, d,

h=0) and Ci (C0= 0) have already been explained for (A) and they are used in the
same purpose here. If Yj < hourk and j is located in bk then sliding j within hourk will
be allowed to satisfy preferences of lecturer of j. In this study, the energy function is
described as:

 9

Tunçhan CURA

∑−

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ ∑

⎪⎩

⎪
⎨
⎧

≥−−

−=
=

−

=

−

=

−

=

1D

0d
65

1D

0d

1H

0h h,d43h,d2

h,d

)d,s(ff

0sif)h,d,s(f)h,d,s(f)h,d,s(f
1sif0

)s(f
 (15)

f5 = γ × M (16)

M}0,Hhourhmax{)h,d,s(f
h,ds3 ×−+= (17)

∑
⎪⎩

⎪
⎨
⎧

×−+

−=
=

+

+=

h,ds

*
h,d

*hourh

1hh
*

s

h,d
4 M)hhourh(

1sif0
)h,d,s(f otherwise (18)

⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢

⎢

⎡

ε+∑
⎪⎩

⎪
⎨
⎧ <θ∧−≠

ε+
=ζ

×
⎭
⎬
⎫

⎩
⎨
⎧

ζ−⎥⎥
⎤

⎢⎢
⎡=

−

=

1H

0h

sh,ds

6

otherwise0

L1sifhour
Hwhere

M0,
2
Hmax)d,s(f

h,dh,d

 (19)

M = J × max{Y1, ...,Yj} × max{C1, ...,CI} × max{P1,0, 0, ..., PI,D,H} + 1 (20)

where θk is number of empty elements in bk and γ is total error count as already
mentioned. That is, γ is the total count of rule 4 and 5 violations in all b vectors. M is
a huge number to penalize violations of the obligatory rules. It is calculated as seen
in Eq. (20) for this study. This penalization approach is similarly used in some
integer programming formulations of the university course timetabling problems
(Schimmelpfeng and Helber, 2006; Avella and Vasil’ev, 2005; MirHassani, 2006;
Daskalaki et al., 2004). Most commonly, the objective functions of the models
contain penalizations of the violations with respect to some weights.

While Eq. (16) is penalizing the violations of the rules 4 and 5; Eq. (17), Eq. (18)
and Eq. (19) are penalizing violations of the rules 2, 3 and 6 respectively.

 10

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Güz 2007/2

3.4. The Cooling Schedule and Acceptance Probability Function

Classical SA which is also called Boltzman annealing is taken as basis in this study.
Its acceptance probability function is P(Tr). This function controls accepting new
solution snew and bnew with energy function value f (snew) while current solution is sold
and bold with energy function value f (sold) and the current temperature is Tr.

The rate at which the temperature parameter is reduced is vital to the success of any
annealing process. This is governed by the number of repetitions at each temperature
and the rate at which the temperature is reduced. The theory suggests that the system
should be allowed to move very close to its stationary distribution at the current
temperature before temperature reduction, and that the temperature should converge
gradually to a value of zero. It also suggests that, in order to achieve this, a number
of iterations exponential in problem size will be necessary at each temperature
(Reeves, 1995).

Dhawan suggested a cooling schedule (Yeh and Fu, 2007) which has performed the
best for SA algorithm in this study. It is defined as

)1rln(
T

T 0
r +
= , r = 1, 2, ..., ∞ (21)

where T0 is the initial temperature and it has been set to 25 empirically for this
study. The stopping condition has been met when Tr = 3.5.

The underlying design concept is that at a high temperature, it is quite probable to
find a solution distant from the real global minimum having only a fewer energy
function values than the current value. Normally, this kind of new solution will
always be accepted. To reduce these undesirable moves, the acceptance probability
function is defined as (Yeh and Fu, 2007)

rT/fr
e1

1)T(P
Δ+

= (22)

where ∆f = f (snew) – f (sold), since the energy function searches global maximum in
this study, ∆f is defined as ∆f = f (sold) – f (snew).

 11

Tunçhan CURA

4. SA AND SOME OTHER HEURISTICS FOR TIMETABLING PROBLEM

Since the problem is institution specific, there is not a commonly used solver tool
for the university-course timetabling problem. In addition to this, the IUFBA test
data is such huge that the model described in Eq. (A) – Eq. (8) can not be solved by
any known software (e.g. Lingo 8.0). Thus, it is not possible to compare the results
of this study to those of a previously proposed method or to those of reliable
software.

In addition to SA, the most commonly used metaheuristic algorithms for this sort of
problems are GA and TS. In order to compare the results of this study to those of the
both, a similar structural design has been adapted into each of them.

Note that all the parameters mentioned in this study have been determined
empirically for each one of the benchmark algorithms. That is, each algorithm has
been tested individually for different parameter values. The parameter values which
ensure the best solution are accepted and given in this paper. Thus, analyses are
made with respect to those parameter values in section 5 and section 6.

4.1. The Solver SA Algorithm

It has been shown that all the obligatory rules are observed by penalizing the
violations except for rule 1. Since the lectures are assigned to only one bk,l initially,
there can be no repetition of any given lecture. Thus, whenever the energy function
reaches a value that is greater or equal to zero, all of the obligatory rules would be
observed, if the punitive number M is defined as seen in Eq. (20). Fig. 3 shows the
solver SA algorithm.

In this algorithm, three additional terms which are ratio, centers and shaking take
place. These terms are discussed successively as follows:

ratio: This is a variable which can have rational values between 0 and 1.

Initially it has the value 1, but it is reduced by cooling schedule progressively.

centers: There are three center variables: centerforb, centerford, and centerforh.

These all determine the selections for swapping operations. Initial center values are
randomly set as follows:

centerforb = round{random(0, 1) × (K – 1)} (23)

centerford = round{random(0, 1) × (D – 1)} (24)

centerforh = round{random(0, 1) × (H – 1)} (25)

 12

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Güz 2007/2

Create initial s and b
Create initial centers
Set ratio = 1
Set best_s = s
Set best_b = b
Set error = count of total errors for b
Set besterror = error
Set energy = f(s)
Set bestenergy = energy
while Tr > 3.5
 for counter = 0 to 1500
 Set bswapped = false
 Set lectureswapped = false
 if random(0, 1) < 0.000033 then
 energy = bestenergy
 error=besterror
 b = best_b
 s = best_s
 centerforb = bestcenterforb
 centerforh = bestcenterforh
 centerford = bestcenterford
 Else if
 random (0, 1) < 0.000033 then
 shake centers
 End if
 if besterror > 0 and
 random(0,1) < 0.0001 then
 Call error reducer algorithm for b
 Else if random(0,1) < 0.71 then
 Select d1

*, h1
*, d2

*, h2
* randomly

 depending on centers
 Set bswapped = true
 End if
 if bswapped = False or
 random(0, 1) < 0.71 then
 select k1

*, k2
* randomly depending

 on cenerforb
 Set lectureswapped = true
 End if
 if bswapped = true then

 swap and *
1

*
1 h,ds *

2
*
2 ,hds

 End if

 if lectureswapped = true then
 select l1

*, l2
* randomly

 swap and *
1

*
1 l,kb *

2
*
2 l,kb

 End if
 error = count of total errors for b
 Δf = energy - f(s)
 if Δf < 0 or
 random(0,1) < P(Tr) then
 energy = energy – Δf
 Else
 if bswapped = true then

 swap and

*
1

*
1 h,ds *

2
*
2 ,hds

 End if
 if lectureswapped = true then
 swap and *

1
*
1 l,kb *

2
*
2 , lkb

 End if
 End if
 if bestenergy < energy then
 if lectureswapped = true then
 centerforb = round{(k1

* + k2
*) / 2}

 bestcenterforb = centerforb
 End if
 if bswapped = true then
 centerforh = round{(h1

* + h2
*) / 2)}

 centerford = round{(d1
* + d2

*) / 2)}
 bestcenterforh = centerforh
 bestcenterford = centerford
 End if
 bestenergy = energy
 besterror = error
 best_s = s
 best_b = b
 End if
 End for
 if bestenergy < 0 then Set r = 0
 r = r + 1
 Tr = T0 / ln(r + 1)
 ratio = min{2 / ln(r + 1), 1}
End while

Figure 3. The Solver SA Algorithm for The Problem

In this study, whenever a random selection occurs for bk or sd,h; the domain of the
selection would be focused on these center values as follows:

 13

Tunçhan CURA

ℓ= round {random (-ratio × 0.5 × (K-1), ratio × 0.5 × (K-1))} + centerforb (26)

∂= round {random (-ratio × 0.5 × (D-1), ratio × 0.5 × (D-1))} + centerford (27)

Ω= round {random (-ratio × 0.5 × (H-1), ratio × 0.5 × (H-1))} + centerforh (28)

⎩
⎨
⎧

<+
≥−

=
0ifK

0if)1K(mod
k*

n
ll

ll
 (29)

⎩
⎨
⎧

<∂+∂
≥∂−∂

=
0ifD

0if)1D(mod
d*

n (30)

⎩
⎨
⎧

<Ω+Ω
≥Ω−Ω

=
0ifH

0if)1H(mod
h*

n (31)

shaking: This is an operation to randomly change the places of centers. The

probability of shaking is 0.000033.

There are some probabilities in the algorithm. All of these are determined
empirically. The swapping probability of both b and s at the same time is 0.71 ×
0.71 ≈ 0.5 as seen in Figure 3.

4.2. Genetic Algorithms

GA is a population-based evolutionary heuristic, where every possible solution is
represented by a specific encoding, often called individual (Colorni et al., 1998).
First developments in GA field took place nearly 40 years ago. However, most early
applications were in the realm of artificial intelligence – game playing and pattern
recognition for instance. Some of the early researches focused on function
optimization. Recently, many GA studies have taken place in Operational Research
area. GAs were developed initially by Holland and his associates in the 1960s and
1970s. Goldberg gives an interesting survey of some of the practical work carried
out in this era. The name genetic algorithm originates from the analogy between the
representation of complex structure by means of a vector of components, and the
idea, familiar to biologists, of the genetic structure of a chromosome (Reeves, 1995).

With respect to the structural design of this study, a GA is formed where population
size is 30 and the possibility of mutation operation is set to 0.005. Each individual
consists of two groups of chromosomes which represent b vectors and s matrix
denoted by sb (the number of genes in sb is K × L) and ss (the number of genes in ss
is D × H) respectively. This separated design ensures the number of lectures not to
directly affect the chromosome lengths. That is because lectures are factors which
increase the search space dramatically (Beligiannis et al., in press).

 14

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Güz 2007/2

In many cases it has been observed that increasing the number of crossover points
has improved the performance of GA (Reeves, 1995). Thus, the two-point crossover
operator in which two parts of the first parent are copied and the rest between is
taken in the same order as in the second parent is employed. Following example
shows how the crossover operator works:

sb1 = {2, 0, 0, 0, 0, 1, 3, 0, 5, 0, 0, 0, 0, 4, 0} (crossover points = {4, 9})

sb2 = {0, 0, 2, 1, 0, 0, 0, 0, 4, 5, 3, 0, 0, 0, 0}

ss1 = {-1, -1, -1, 1, -1, -1, 0, 2, -1} (crossover points = {1, 5},

ss2 = {-1, 1, -1, -1, 2, -1, 0, -1, -1}

sboffspring = {2, 0, 0, 1, 0, 0, 0, 5, 3, 0, 0, 0, 0, 4, 0}

ssoffspring = {-1, 1, -1, -1, -1, -1, 0, 2, -1}

where K = 3, L = 5, J = 5, D = 3 and H = 3.

4.3. Tabu Search

TS is a higher-level metaheuristic procedure for solving discrete and continuous
optimization problems. TS has its antecedents in methods designed to cross
boundaries of feasibility or local optimality normally treated as barriers, and
systematically to impose and release constraints to permit exploration of otherwise
forbidden regions. The modern form of tabu search derives from Glover. Seminal
ideas of the method are also developed by Hansen (Reeves, 1995). Zhao and Zeng
(2008) studied a metaheuristic method which is combination of TS, SA and greedy
search algorithm for optimizing transit networks, including route network design,
vehicle headway, and timetable assignment. Causmaecker et al. (2008) studied
university course timetabling. They developed a TS based metaheuristic and their
work consists of a multistage approach to solve a non-weekly recurring real world
timetabling problem with overlapping time slots. In order to generate a TS algorithm
for the university course timetabling problem, this study uses a similar
hyperheuristic of Burke at al. (2003) which can be outlined by the following
pseudocode:

Do

1- Select heuristic, e, with highest rank and apply it

1- h1: Swap randomly selected elements between two random b vectors and

 Swap elements of two random timeslots of s

1- h2: Swap randomly selected elements between two random b vectors

 15

Tunçhan CURA

1- h3: Swap elements of two random timeslots of s

2-1 if Δf > 0 then re = re + 1

2-2 else re = re – 1 and include e in TABULIST

Until stopping condition is met

Where Δf =f (snew) – f (sold) and re is the rank of heuristic e. This approach describes
three movements which are denoted by h1, h2, and h3. Thus, this algorithm uses a
sort of short term memory, which bars recent bad movements listed in TABULIST.

5. Applications and Discussions

The proposed algorithm has been tested with the 2006 – 2007 academic year, first
term course timetabling data of IUFBA. The desire coefficient matrix consists of
integer numbers between 0 and 5. There are three distinct seniority coefficient
values which are 25, 5 and 1. These values correspond to the professors, to the
associate professors and to the other academic staff respectively. The number of
lecturers is 72.

Algorithm is tested on a Pentium M 2.13 computer. The average time of solving
procedure is 1.74 minutes. Figure 4 and Figure 5 show the progression of the
algorithm. As to the Figure 4, algorithm rapidly (in 37 iterations) finds positive
solutions which mean feasible ones with the help of error reducer sub algorithm.
However, it finds the most satisfactory solution relatively slowly (see Figure 5).

Table 2 gives a comparative summary of the results. Only the lecturers who make
wishes are involved in those statistics, others are not involved since it doesn’t matter
for them where their lectures are assigned to. For each group of lecturers the mean
desire coefficient and standard deviation of desire coefficients are given in Table 2.
GA approach finds infeasible solutions. When compared to SA, it is seen that the TS
approach finds not only less satisfactory solutions, but also more variant solutions,
that is, mean desire coefficient does not represent satisfaction of all the lecturers in
the group correctly. If the professors are considered, it will be seen that the standard
deviation / mean is equal to 0.41 for SA approach, while it is 1.09 for TS approach.

 16

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Güz 2007/2

f(s)<0

-1200000

-1000000

-800000

-600000

-400000

-200000

0
0 5 10 15 20 25 30 35

iterations

f(s
) energy

bestenergy

Figure 4. Progression of the Algorithm for First 37 Iterations

f(s)>=0

14000

14200

14400

14600

14800

15000

15200

15400

38 238 438 638 838 1038 1238 1438

iterations

f(s
) energy

bestenergy

Figure 5. Progression of the Algorithm After 37th
 Iteration

 17

Tunçhan CURA

Table 2. Desire Satisfaction Table of Lecturers

Seniority

coefficient

SA Approach GA Approach∗∗∗

TS Approach

 μ∗
 σ∗∗ μ σ μ σ

25(for

professors)

4.117647 1.699447 1,003268

1,832142

1,98366

2,172379

5(for

associate

professors)

3.655172 1.767052 1,034483

1,586207

1,36782

1,727277

1(for the

other

academic

staff)

2 2.020726 0,986111

1,665219

1,87847

2,166063

6. CONCLUSION

According to the results of application given in table 2, the GA algorithm has not
reached a feasible solution, in other words, rules 4 and 5 have been violated. The
error reducer sub-algorithm could not be adapted into the GA approach. However, it
has produced much lesser satisfactory solution than SA approach. That sub-
algorithm could be embedded into the TS approach and it has reached a non-violated
solution which is still less satisfactory than that of the SA approach.

The mean desire coefficient of assigned lectures is 4.12 for professors in IUFBA. In
other words, professor desires are satisfied with a proportion of 0.82 (4.12 / 5 ≈
0.82). This proportion is 0.73 for associate professors and it is 0.4 for the other
academic staff. Thus, we can say that the SA based approach for the timetabling
problem of IUFBA produces significant results.

∗∗∗ Solution is errorenous since it includes violations of rules 4 and 5
∗ Mean desire coefficient
∗∗ Standard deviation of Desire coefficients

 18

İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Güz 2007/2

7. REFERENCES

Abdennadher, S., and Marte, M., (2000), “University Course Timetabling Using
Constraint Handling Rules”, Applied Artificial Intelligence, 14, 311-325.

Abdullah, S., Ahmadi, S., Burke, E. K., and Dror, M., (2007), “Investigating Ahuja-
Orlin’s Large Neighborhood Search Approach for Examination Timetabling”, OR
Spectrum, 29, 351-372.

Anagnostopoulos, A., Michel, L., Van Hentenryck, P., and Vergados, Y., (2006), “A
Simulated Annealing Approach to the Traveling Tournament Problem”, Journal of
Scheduling, 9, 177-193.

Avella, P., and Vasil’ev, I., (2005), “A Computational Study of Cutting Plane
Algorithm for University Course Timetabling”, Journal of Scheduling, 8, 497-514.

Beligiannis, G. N., Moschopoulos, C. N., Kaperonis, G. P., and Likothannassis, S.
D., (Article in Press), “Applying Evolutionary Computation to the School
Timetabling Problem: The Greek Case”, Computers & Operations Research.

Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., and Qu, R., (2007), “A
Graph-Based Hyper-Heuristic for Educational Timetabling Problems”, European
Journal of Operational Research, 176, 177-192.

Burke, E. K., and Newall, J. P., (2004), “Solving Examination Timetabling
Problems Through Adaptation of Heuristic Ordering”, Annals of Operations
Research, 129, 107-134.

Burke, E. K., Kendall, G., and Soubeiga, E., (2003), “A Tabu-Search Hyperheuristic
for Timetabling and Rostering”, Journal of Heuristics, 9, 451- 470.

Causmaecker, D. P., Demeester, P., and Berghe, G. V., (2008), “A Decomposed
Metaheuristic Approach for A Real-World University Timetabling Problem”,
European Journal of Operational Research.

Colorni, A., Dorigo, M., and Maniezzo, V., (1998), “Metaheuristics for High School
Timetabling”, Computational Optimization and Applications, 9, 275-298.

Daskalaki, S., Birbas, T., and Housos, E., (2004), “An Integer Programming
Formulation for A Case Study in University Timetabling”, European Journal of
Operatinal Research, 153, 117-135.

Head, C., and Shaban, S., (2007), “A Heuristic Approach to Simultaneous
Course/Student Timetabling”, Computers and Operations Research, 34, 919-933.

 19

Tunçhan CURA

 20

Henz, M., and Würtz, J., (1996), “Constraint-Based Timetabling- A Case Study”,
Applied Artificial Intelligence, 10, 439-453.

Kirkpatrick, S., Gelatt, Jr. C. D., and Vecchi, M. P., (1983), “Optimization by
Simulated Annealing”, Science, 220, 671-680.

Loukil, T., Teghem, J., and Fortemps, P., (2007), “A Multi-Objective Production
Scheduling Case Study Solved by Simulated Annealing”, European Journal of
Operational Research, 179, 709-722.

MirHassani, S. A., (2006), “A Computational Approach to Enhancing Course
Timetabling with Integer Programming”, Applied Mathematics and Computation,
175, 814-822.

Reeves, C. R., (edt.), (1995), Modern Heuristic Techniques for Combinatorial
Problems, McGraw-Hill.

Schimmelpfeng, K., and Helber, S., (2006), “Application of A Real-World
University-Course Timetabling Model Solved by Integer Programming”, OR
Spectrum, 1-21.

Yeh, J., and Fu, J. C., (2007), “Parallel Adaptive Simulated Annealing for
Computer-Aided Measurement in Functional MRI Analysis”, Expert Systems with
Applications, 33, 706-715.

Zhao, F., and Zeng, X., (2008), “Optimization of Transit Route Network, Vehicle
Headways and Timetables for Large-Scale Transit Networks”, European Journal of
Operational Research, 186, 841-855.

