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HOMOTOPY PERTURBATION METHOD FOR SOLVING A 
MODEL FOR HIV INFECTION OF CD4+ T CELLS 
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ABSTRACT 
 
In this article, homotopy perturbation method is implemented to give approximate and analytical 
solutions of nonlinear ordinary differential equation systems such as a model for HIV infection of CD4+ T 
cells. A modification of the homotopy perturbation method (HPM), based on the use of Pade´ 
approximants, is proposed.  Some plots are presented to show the reliability and simplicity of the 
methods. 
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T Cells  
 
 
CD4+ T HÜCRELERİNİN BİR HIV ENFEKSİYONLU MODELİNİN HOMOTOPY 
PERTURBATION YÖNTEMİ İLE ÇÖZÜMÜ 
 
ÖZET 
 
Bu makalede, CD4+ T hücrelerinin bir HIV enfeksiyonlu modeli gibi lineer olmayan adi diferensiyel 
denklem sisteminin yaklaşık analitik çözümünü bulmak için homotopy perturbation yöntemi (HPY) 
uygulanmıştır. Homotopy perturbation yöntemine pade yaklaşımı uygulanmıştır. Yöntemlerin basitliğini 
ve doğruluğunu göstermek için birkaç grafik gösterilmiştir. 
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1. INTRODUCTION 
 
Dynamics of a model for HIV infection of CD4+ T cells is examined (Liancheng and 
Michael, 2006) at the study. The components of the basic four-component model are 
the concentration of CD4+ T cells, the concentration of infected CD4+ T cells by the 
HIV viruses and free HIV virus particles are denoted respectively by T(t), I(t), and 
V(t). These quantities satisfy 
 

1 ,

,

,

max

dT T Is T rT kVT
dt T
dI kV T I
dt
dV N I V
dt





 

  
      

 
  

  


    (1) 

with the initial conditions: 
 

1 2 3(0) , (0)  and  (0)T r I r V r   . 
 
Throughout this paper, we set; 
 

max0.1, 0.02, 0.3, 3, 2.4, 0.0027, 1500,
10.

s r k T
N

        


  

 
The motivation of this paper is to extend the application of the analytic homotopy-
perturbation method (HPM) and variational iteration method (He, 1998/a, 1998/b, 
1999/a, 2006) to solve a model for HIV infection of CD4+ T cells (1). The homotopy 
perturbation method (HPM) was first proposed by Chinese mathematician He 
(1998/a, 1998/b, 1999/a, 1999/b, 2000, 2006). The first connection between series 
solution methods such as an Adomian decomposition method and Padé 
approximants was established in. The transmission and dynamics of HTLV-I feature 
several biological characteristics that are of interest to epidemiologists, 
mathematicians, and biologists, see for example, Asquith and Bangham (2003), 
Finlayson (1972), Abdou and Soliman (2005), etc. Like HIV, HTLV-I targets CD4+ 
T -cells, the most abundant white cells in the immune system, decreasing the body’s 
ability to fight infection. We will use Laplace transform and Pade´ approximant to 
deal with the truncated series. 
 
 
2. PADÉ APPROXIMATON 
 
A rational approximation to (x) on a, b is the quotient of two polynomials PN(x) 
and QM(x) of degrees N and M, respectively. We use the notation RN,M (x) to denote 
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this quotient. The RN,M (x) Padé approximations to a function (x) are given by 
Baker (1975). 

 ,
( )

( )    for  a x b.
( )

N
N M

M

P x
R x

Q x
       (2) 

 
The method of Padé requires that (x) and its derivative be continuous at x = 0. The 
polynomials used in (2) are  
 
 2

0 1 2( ) ... N
N NP x p p x p x p x                      (3) 

 2
1 2( ) 1 ... M

M MQ x q x q x q x         (4) 
 
The polynomials in (2) and (3) are constructed so that (x) and RN,M (x) agree at x = 0 
and their derivatives up to N+M agree at x = 0. In the case Q0(x) = 1, the 
approximation is just the Maclaurin expansion for (x). For a fixed value of N+M 
the error is smallest when PN (x) and QM (x) have the same degree or when PN (x) has 
degree one higher then QM (x). 
 
Notice that the constant coefficient of QM is q 0 = 1. This is permissible, because it 
notice be 0 and RN,M (x)  is not changed when both PN (x) and QM (x) are divided by 
the same constant. Hence the rational function RN,M (x)  has N+M+1 unknown 
coefficients. Assume that (x)  is analytic and has the Maclaurin expansion 
 
 2

0 1 2( ) ... ...,k
kf x a a x a x a x          (5) 

 
And from the difference ( ) ( ) ( ) ( ) :M Nf x Q x P x Z x   
 

 
0 0 0 1

,
M N

i i i i
i i i i

i i i i N M
a x q x p x c x

 

     

       
               

      (6) 

 
The lower index j = N+M+1 in the summation on the right side of (6) is chosen 
because the first N+M derivatives of  (x) and RN,M (x) are to agree at x = 0. 
 
When the left side of (6) is multiplied out and the coefficients of the powers of xi are 
set equal to zero for 0,1, 2,...,k N M  , the result is a system of N+M+1 linear 
equations: 
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0 0

1 0 1 1

2 0 1 1 2 2

3 0 2 1 1 2 3 3

1 1

0
0

0
0

0
and

M N M M N M N N

a p
q a a p
q a q a a p
q a q a q a a p
q a q a a p   

 
  

   
    

   

    (7) 

 

1 1 2 1 2

2 1 3 1 1 2

...     + 0
...     + 0

.                                                                       .

.                                              

M N M M N M N N

M N M M N M N N

q a q a q a a
q a q a q a a

     

      

   

   

1 1 1 1

                        .
.                                                                      .

...     + 0M N M N N M N Mq a q a q a a       

  (8) 

 
Notice that in each equation the sum of the subscripts on the factors of each product 
is the same, and this sum increases consecutively from 0 to N+M. The M equations 
in (8) involve only the unknowns q1, q2, q3,…, qM and must be solved first. Then the 
equations in (7) are used successively to find p1, p2, p3,…, pN  (Baker, 1975). 
 
  
3. HOMOTOPY PERTURBATION METHOD 
 
To illustrate the homotopy perturbation method (HPM) for solving non-linear 
differential equations, He (1999/a, 2000) considered the following non-linear 
differential equation: 
 
 ( ) ( ),A u f r r        (9) 
 
subject to the boundary condition 
 

 , 0,uB u r
n
     

     (10) 

 
where A is a general differential operator, B is a boundary operator, f(r) is a known 
analytic function,   is the boundary of the domain   and ∂/∂n denotes 
differentiation along the normal vector drawn outwards from  . The operator A 
can generally be divided into two parts M and N. Therefore, (9) can be rewritten as 
follows: 
 
  



 
 
 
 
 
 
 
 
 
İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi                                    Güz 2007/2    

 43 

( ) ( ) ( ) ,M u N u f r r        (11) 
 
He (1999/a, 2000) constructed a homotopy  ( , ) : 0, 1v r p x   which 
satisfies 
 
    0( , ) (1 ) ( ) ( ) ( ) ( ) 0,H v p p M v M u p A v f r        (12) 
 
which is equivalent to 
 
  0 0( , ) ( ) ( ) ( ) ( ) ( ) 0,H v p M v M u pM v p N v f r        (13) 
 
where  0, 1p  is an embedding parameter, and 0u  is an initial approximation of 
(13). Obviously, we have 
 
 0( , 0) ( ) ( ) 0, ( ,1) ( ) ( ) 0.H v M v M u H v A v f r       (14) 
 
The changing process of p from zero to unity is just that of H (v,p) from 

0( ) ( ) to ( ) ( )M v M v A v f r  . In topology, this is called deformation and 

0( ) ( ) and ( ) ( )M v M v A v f r   are called homotopic. According to the homotopy 
perturbation method, the parameter p is used as a small parameter, and the solution 
of Eq. (12) can be expressed as a series in p in the form 
 
 2 3

0 1 2 3 ...v v pv p v p v         (15) 
 
When 1p  , Eq. (12) corresponds to the original one, Eqs. (11) and (15) become 
the approximate solution of Eq. (11), i.e., 
 

0 1 2 31
lim ...
p

u v v v v v


          (16) 

 
The convergence of the series in Eq. (16) is discussed by He (1999/a and 2000). 

 
 

4. APPLICATIONS 
 
In this section, we will apply the homotopy perturbation method to nonlinear 
ordinary differential systems (1). 
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4.1. Homotopy Perturbation Method to A Model for HIV Infection of CD4+ T     
Cells 

  
According to homotopy perturbation method, we derive a correct functional as 
follows: 
 

   

     
     

1 2
1 0 1 1 1 1 3

2 0 2 1 3 2

3 0 3 2 3

1 1 0,

1 0,

1 0,

max

v vp v x p v s v rv kv v
T

p v y p v kv v v

p v z p v N v v





 

  
             
     

     

  

  

 

  (17) 

 
 
where “dot” denotes differentiation with respect to t , and the initial approximations 
are as follows: 
 
 

1,0 0 1

2,0 0 2

3,0 0 3

( ) ( ) (0) ,
( ) ( ) (0) ,
( ) ( ) (0) .

v t x t T r
v t y t I r
v t z t V r

  

  

  

     (18) 

 
and 
 

2 3
1 1,0 1,1 1,2 1,3

2 3
2 2,0 2,1 2,2 2,3

2 3
3 3,0 3,1 3,2 3,3

...,

...,

...,

v v pv p v p v

v v pv p v p v

v v pv p v p v

    

    

    

   (19) 

 
 
where , , , 1, 2,3,...i jv i j  are functions yet to be determined. Substituting Eqs. 
(18) and (19) into Eq. (17) and arranging the coefficients of “p” powers, we have 
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 

 

 

2
1,1 1 1 1 2 1 3

m ax m ax

1 1,1
1,2 1,1

m ax

2 1,1 1 2 ,1 2

m ax

1 3 ,1 3 1,1

2
1 1,2 1,1

1,3 1,2
m ax

2 2 ,1 1

2

     

2

     

r rv s r r r r r kr r p
T T

r r v
v r v

T

r r v r v
p

T

k r v r v

r r v v
v r v

T

r r v v







 
      

 
       
 
      
 
      
 

    


 







,1 2 ,1 1 2 ,2 3

m ax

1 3 ,2 1,1 3 ,1 3 1, 2

... 0,
v r v

p
T

k r v v v r v

 
 
 
 

      
 
      
 
 

 
 
 
 

2 ,1 1 3 2

2
2 , 2 1 3 ,1 3 1,1 4 ,1 2 ,1

3
2 ,3 1 3 , 2 1 ,1 3 ,1 3 1, 2 4 ,1 2 ,1 . .. 0 ,

v k r r r p

v k r v r v v v p

v k r v v v r v v v p







 

     

        







  (20) 

   
 

2
3,1 2 3 3 ,2 2 ,1 3 ,1

3
3 ,3 2 , 2 3, 2 ... 0,

v N r r p v N v v p

v N v v p

   

 

    

    

 


 

 
In order to obtain the unknowns , ( ), , 1,2,3,i jv t i j   we must construct and solve the 
following system which includes nine equations with nine unknowns, considering 
the initial conditions  
 

, (0) 0, , 1, 2, 3,i jv i j   
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 

 

 

2
1,1 1 1 1 2 1 3

max max

1 1,1 2 1,1 1 2,1
1,2 1,1

max max

1 3,1 3 1,1

2
1 1,2 1,1

1,3 1,2
max

2 2,1 1,1 2,1 1 2,2

max

0,

2

      0,

2

          

r rv s r r r r r kr r
T T

r rv r r v rv
v r v

T T

k rv r v

r rv v
v r v

T

r r v v v r v
T







      

         

    
    

   







1 3,2 1,1 3,1 3 1,2

                                                  

      0,k rv v v r v     

  (21) 

2,1 1 3 2

2,2 1 3,1 3 1,1 4 ,1 2 ,1

2 ,3 1 3,2 1,1 3 ,1 3 1,2 4 ,1 2 ,1

0,

0,

0,

v kr r r

v k r v r v v v

v k r v v v r v v v







  

     
      







 

3 ,1 2 3

3 , 2 2 ,1 3 ,1

3 ,3 2 ,2 3 ,2

0,
0 ,
0 ,

v N r r
v N v v
v N v v

 

 

 

  

  

  







 

 
From Eq. (16), if the three terms approximations are sufficient, we will obtain: 
 

2

1 1,1 0
2

2 2 ,1 0

2

3 3,1 0

( ) lim ( ) ( ),

( ) lim ( ) ( ),

( ) lim ( ) ( ) ,

kp k

kp k

kp k

T t v t v t

I t v t v t

V t v t v t










 

 

 







     (22) 

 
therefore  
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 

 

2
1 1 2

1 1 1 3
m ax

2 2 2 2
1 1 1 3 1 3

1 2 1 3 1 3

2 2 2 2 2
1 3 1 1 1 2 1 2

m ax

1 2 3 1 2 1 2

m ax
2 2 2 2 2

1 2 1 2

( )

2
2

3 2 3 2 21
2

2 2

3 2

rr rr r
T t r s r r kr r t

T

r r rs r s r r ksr r k r
k N r r r kr r k r r

r r rr r k rr r r r rr s rr s
T

rr r r k r r rr r
T

r r r r r r r



  

  



 

 
      

 

     

  

     
 

 


 


2

3
1

2
m ax

t

r
T

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (23) 

 
 

 
   

 

2 1 3 2

1 3 2 1 2 3
22

1 1 2
3 1 1 3

max

( )

1         
2

I t r kr r r t

kr r r kr N r r
trr rr rkr s r r kr r

T



   



  

    
 

        
  

  

 
 
 

 

   

3 2 3

2
1 3 2 2 3

   
( )

1         
2

V t r N r r t

N kr r r N r r t

 

    

  

     

  

. 

. 

. 
 
Here T(0) = 0.1, I(0) = 0, and V(0) = 0.1 for the three-component model. A few first 
approximations for T(t), I(t), and V(t) are calculated and presented below: 
 
Three terms approximations: 
 

2 3

2 3

2 3

( ) 0 .1 .397953 +.5928490535 .5887187713 ,
( ) .000027 .000017273655 -.000008405153687 ,
( ) 0 .1 .24 .2880405 -.2304151263 .

T t t t t
I t t t t
V t t t t

  

 

  

  (24) 

 
Four terms approximations: 
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2 3

4

2 3

-5 4

2 3

4

( ) 0.1 .397953 +.5928490535 .5887187713
      .4382951585 ,

( ) .000027 .000017273655 -.000008405153687
      .6147278168*10 ,

( ) 0.1 .24 .2880405 -.2304151263
      .1382427719 .

T t t t t
t

I t t t t
t

V t t t t
t

  



 



  



  (25) 

 
Five terms approximations: 
  

2 3

4 5

2 3

-5 4 -5 5

2

( ) 0.1 .397953 +.5928490535 .5887187713
        .4382951585  + .2608632944 ,

( ) .000027 .000017273655 -.000008405153687
      .6147278168*10 -.2835861790*10 ,

( ) 0.1 .24 .2880405

T t t t t
t t

I t t t t
t t

V t t t

  



 



   3

4 5

-.2304151263
      .1382427719 -.06635284216 .

t
t t

  (26) 

 
Six terms approximations: 
  

2 3

4 5 6

2 3

-5 4 -5 5

( ) 0.1 .397953 +.5928490535 .5887187713
      .4382951585 +.2608632944 .1291947326 ,

( ) .000027 .000017273655 -.000008405153687
     .6147278168*10 -.2835861790*10
     .11532998

T t t t t
t t t

I t t t t
t t

  

 

 



 -5 6

2 3

4 5 6

04*10 ,
( ) 0.1 .24 .2880405 -.2304151263

      .1382427719 -.06635284216 .02653971893 .

t
V t t t t

t t t
  

 

  (27) 

 
In this section, we apply Laplace transformation to (27), which yields 
 
 

 
  2 3 4

5 6 7

0.1 .397953 1.185698107 3.532312628( ) +
s s s s

10.5190838 31.30359533 93.02020747             +
s s s

L T s   

 

 

 



 
 
 
 
 
 
 
 
 
İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi                                    Güz 2007/2    

 49 

765

432

5890008303758.1480003403034.760001475346.

22120000504309.10000345473.000027.))((

sss

sss
sIL




  (28) 

 

765

432

10859763.19962341059.7317826526.3

382490758.1576081.24.1.0))((

sss

ssss
sVL




 

 

For simplicity, let 
t

s 1
 ; then 

 

765

432

02020747.9330359533.315190838.10

532312628.3185698107.1397953.1.0))((

ttt

tttttTL



   

  

765

432

5890008303758.1480003403034.760001475346.

22120000504309.10000345473.000027.))((

ttt

ttttIL



   (29) 

 

765

432

10859763.19962341059.7317826526.3

382490758.1576081.24.1.))((

ttt

tttttVL



  

 
Padé approximant 4/4] of (29) and substituting t = 1/s, we obtain 4/4] in terms of s. 
By using the inverse Laplace transformation, we obtain 

 
 

-.0009308935117 2.980494451

5.413486763 -8 15699.6833

( ) -.03352758677 +.1335507854
        -.00002319863125 -.297067849*10

t t

t t

T t e e
e e

  

 
-2.395967997

-..306254013

.5835463905

( ) .000004346124163
          -.00004489696714
        +.00004055084298

t

t

t

I t e
e

e


      (30) 

 
 -2.400133231 3.679664095( ) .09999780863 +.00000219137t tV t e e  
 

 
These results obtained by Padé approximations for T(t), I(t), and V(t) are calculated 
and presented follow. 
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Figure 1. Plots of Padé Approximations for A Model for HIV Infection of CD4+ 
T Cells 

 
These results obtained by homotopy perturbation method, three, four, five and six 
terms approximations for T(t), I(t), and V(t) are calculated and presented follow. 
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Figure 2. Plots of Three, Four, Five and Six Terms Approximations for A 
Model for HIV Infection of CD4+ T Cells 
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5. CONCLUSIONS 
 
In this paper, homotopy perturbation method was used for finding the solutions of 
nonlinear ordinary differential equation systems such as a model for HIV infection 
of CD4+ T cells. We demonstrated the accuracy and efficiency of these methods by 
solving some ordinary differential equation systems. We use Laplace transformation 
and Padé approximant to obtain an analytic solution and to improve the accuracy of 
homotopy perturbation method. We apply He’s homotopy perturbation method to 
calculate certain integrals. It is easy and very beneficial tool for calculating certain 
difficult integrals or in deriving new integration formula.  
 
The computations associated with the examples in this paper were performed using 
Maple 7 and Matlab 7. 
 
 
6. REFERENCES 
 
Abdou, M. A., and Soliman, A. A., (2005), “Variational-Iteration Method for 
Solving Burger’s and Coupled Burger’s Equations”, Journal of Computational and 
Applied Mathematics, 181, 2, 245-251. 
 
Asquith, B., and Bangham, C. R. M., (2003), “The Dynamics of T-Cell Fratricide: 
Application of a Robust Approach to Mathematical Modeling in Immunology”, 
Journal of Theoretical Biology, 222, 53-69. 
 
Baker, G. A., (1975), Essentials of Padé Approximants, Academic Press, London. 
 
Finlayson, B. A., (1972), The Method of Weighted Residuals and Variational 
Principles, Academic Press, New York. 
 
He, J. H., (1998/a), “Approximate Analytical Solution for Seepage Flow with 
Fractional Derivatives in Porous Media”, Computer Methods in Applied Mechanics 
and Engineering, 167, 1–2, 57-68. 
 
He, J. H., (1998/b), “Approximate Solution of Nonlinear Differential Equations 
With Convolution Product Nonlinearities”, Computer Methods in Applied 
Mechanics and Engineering, 167, 1-2, 69-73. 
 
He, J. H., (1999/a), “Variational Iteration Method-A Kind of Nonlinear Analytical 
Technique: Some Examples”, International Journal of Nonlinear Mechanics, 34, 4, 
699-708. 
 
He, J. H., (1999/b), “Homotopy Perturbation Technique”, Computer Methods in 
Applied Mechanics and Engineering, 178, 257-262. 
 



 
 
 
 
 
 
 
 
 
Mehmet MERDAN 
 

 52

He, J. H., (2000), “A Coupling Method of A Homotopy Technique and A 
Perturbation Technique For Non-Linear Problems”, International Journal of 
Nonlinear Mechanics, 35, 1, 37-43. 
 
He, J. H., (2006), “Some Asymptotic Methods For Strongly Non-Linear Equations”, 
International Journal of Modern Physics B., 20, 10, 1141-1199. 
 
Liancheng, W., and Michael, Y. L., (2006), “Mathematical Analysis of The Global 
Dynamics of a Model for HIV Infection of CD4+ T Cells”, Mathematical 
Biosciences, 200, 44-57. 


