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ABSTRACT

Since highly competitive business environments and strict governmental regulations, logistic 
companies have started to handle pickup and delivery activities at the same time to satisfy 
demands of customers. This problem is called as Vehicle Routing Problem with Simultaneous 
Linehauls and Backhauls (VRPSLB). The objective is to minimize total travel times of vehicles 
that visit a predetermined number of customers in a service area. When delivering and col-
lecting orders of customers, we must also make sure not to exceed capacity of vehicles. Since 
VRPB is in NP Hard class, exact solution methods do not work for large problem sets. In this 
study, we proposed a simulated annealing (SA) metaheuristic method with two construction 
heuristics, Clark and Wright (CW) algorithm and the nearest neighbourhood (NN) search 
algorithm. Since quality of final solutions are directly related to the quality of initial solutions, 
we propose two heuristics to generate initial solutions. Daily working times for vehicles and 
service times for customers are considered as hard constraints in this problem. Results of SA 
with two heuristics are compared to results of the mixed integer linear programming (MILP) 
for relatively small problem sets where the numbers of customers and vehicles vary 20 to 40 
and 2 to 5, respectively. Results demonstrate that SA provides up to %7 longer total travel 
times compared to MILP. SA with NN shows better performance compared to SA with CW. 
For large problems, we do not observe a significant difference between the performance of SA 
with NN and SA with CW.
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INTRODUCTION 

Vehicle Routing Problem (VRP) has been highly stud-
ied by many researchers since the study of Dantzig and 
Ramser [1], “The Truck Dispatching Problem”, 1959. They 

found optimal routes for vehicles that deliver gasoline 
from a bulk terminal to many gasoline stations. Many dif-
ferent variations of VRP, multi-depot, capacity, time win-
dows, stochastic service and travel times as well as solution 
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methods such as the linear programming, mixed integer 
programming, saving heuristics, tabu search, genetic algo-
rithm have been proposed since then [2]. One of the popu-
lar variations, Vehicle Routing Problem with Simultaneous 
Linehauls and Backhauls (VRPSLB), has been attracted my 
researchers` attentions for long years and many real-life 
applications such as online shopping, parcel delivery and 
reverse logistic can be modelled as VRPSLB [3]. The main 
aim is to minimise travel times of vehicles that visit custom-
ers distributed in a service area by satisfying their pickup 
and delivery demands. This problem is divided to three 
different subproblems. The first problem is to consider sat-
isfying delivery demands first and pickup demands next. 
The second problem is that delivery and pickup demands of 
customers are satisfied with mixed sequences (VRPMLB). 
The final problem, also considered in this study, is simul-
taneous linehauls and backhauls that pickup and delivery 
demands of each customer must be satisfied at the same 
time. One advantage of this problem is to decrease oper-
ation related costs since delivery and pickup activities are 
taken place together at the same time. Other advantage is 
to provide environment friendly solutions by reducing car-
bon emissions of vehicles thanks to decrease the number of 
vehicles during daily operations [4].

VRPSLB studies began with the study of Min [5], “The 
Multiple Vehicle Routing Problem with Simultaneous 
Delivery and Pickup Points”, 1989. He found optimum 
routes for vehicles that delivered library materials from a 
main library to 22 branches and pick up the materials from 
branches to carry to the main library. Hezer and Kara [6] 
developed a metaheuristic method, bacterial foraging opti-
mization algorithm, for VRPSLB. Proposed algorithm pro-
vided superior results for 24 out of 40 test sets compared 
to the heuristic solution method developed by Dethloff [7]. 
Nagy and Salhi [8] developed a heuristic solution method 
to be able to solve both VRPSLB and VRPMLB. They also 
extended the solution method to solve the multi-depot 
extension. Dell’Amico et al. [9] proposed a branch and price 
algorithm to solve the VRPSLB for 40 requests. Wassan et 
al. [10] developed a reactive tabu search metaheuristic that 
could control feasibility of predetermined moves quickly 
and acted to iterations to guide the search. Ai et al. [11] pre-
sented a particle swarm optimization method. Subramanian 
et al. [12] presented a parallel algorithm based on the 
sequential heuristics. They embedded the algorithm with 
a multi-start heuristic containing of the VND integrated 
in an iterated local search framework. Avci and Topaloglu 
[13] proposed adaptive local search algorithm for solutions 
of both VRPSLB and VRPMLB.  Li et al. [14] considered 
Multi-Depot VRPSLB and developed an iterated local 
embedded adaptive neighbourhood selection approach. 
Results showed that the proposed algorithm was superiort-
han large neighbourhood search, particle swarm optimi-
zation, and ant colony optimization approach. Zachariadis 

et al. [15] considered two-dimensional loading constraints 
beside simultaneous linehauls and backhauls. Kalayci and 
Kaya [16] developed an ant colony system empowered vari-
able neighbourhood search algorithm, a hybrid algorithm 
that combines ant colony system and variable neighbour-
hood approach. Experiments showed that the proposed 
algorithm provided better results compared to individual 
performance of two methods. Kececi et al. [17] considered 
heterogeneous vehicle fleet consisted of different type of 
vehicles with costs. They proposed a mathematical model 
and an insertion-based heuristic for the solution. Yazgan 
and Buyukyilmaz [18] developed a greedy heuristic solu-
tion method and carried out a regression analysis to find 
the relationship between travel distances and the number 
of customers and capacity of vehicles. Goksal et al. [19] pre-
sented a discrete particle swarm optimization method and 
variable neighbourhood descent algorithm for VRPSLB. 
The algorithm kept swarm diversity by improving ran-
domly selected solutions in each iteration. Montane and 
Galvao [20] modified a tabu search algorithm to become 
compatible with VRPSLB. They developed three types of 
movements to observe inter-route adjacent solutions: the 
relocation, interchange and crossover movements. Table 1 
shows publications in terms of problem types, years, and 
solution methods. We advise the review study of Koc and 
Laporte [21] in that VRPSLB studies were classified in 
terms of models, solution methods, variants, industrial 
applications and case studies to interested readers.

In this study, we proposed a simulated annealing solu-
tion approach for VRPSLB. Our contributions in this study 
are two folded. From the application side, daily work-
ing times for vehicles and service times for customers are 
defined and considered as hard constraints in the prob-
lem. These two real-life conditions are rarely considered 
in previous studies. From the methodological side, we take 
two construction heuristics into consideration to produce 
initial solutions for the simulated annealing approach. 
Metaheuristic solution methods must start iterations from 
initial solutions generated by heuristic algorithms or ran-
dom feasible solutions. If the quality of initial solution is 
good, the chance of finding optimal solution in predeter-
mined number of iterations increases. Therefore, we find 
initial solutions with the Clark and Right and the nearest 
neighbourhood search algorithms and run the simulated 
annealing approach with these two construction heuristics 
to observe the best results.

SOLUTION METHODS

We first describe mathematical formulation for 
VRPSLB. Next, we explain two construction heuristics, 
Clark and Wright algorithm and the nearest neighbour-
hood search. Finally, we present the simulated annealing 
metaheuristic approach.
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Mathematical Model
We have n customers that must be visited by k homo-

geneous vehicles. Each customer has a certain amount of 
pickup and delivery. When a vehicle visits a customer, the 
amount of pickup and delivery demands of a customer can-
not exceed capacity of the vehicle. Vehicles must start from 
and return to the depot. The mathematical formulation for 
VRPSLB is mostly derived from the study of Montane and 
Galvao [20]. On the other hand, the maximum distance 
constraint is removed, and the maximum daily working 
time and service time constraints are inserted into the 
model. Followings show notations and decision variables:

Notations:
V: set of customers
V0: set of customers and the depot
K: set of vehicles
cij: distance between locations of customers i and j 
pj:  pickup demand of customer j, ∀j ∈ V
dj:  delivery demand of customer j, ∀j ∈ V
Q:  vehicle capacity
T:  working time limit for vehicles
S: Service time

Decision Variables:
xijk = 1, if vehicle k moves from customer i to j. 0, otherwise.
yij = Cumulative amount of pickup at node i and transported 
in arc (i, j)
zij = Cumulative amount of delivery at node i and trans-
ported in arc (i, j)

The corresponding mathematical formulation is given by
Minimize:
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Table 1. Publications in terms of problem types and solution methods

Year Author Problem Solution Methods

1989 Min [5] Book Delivery and Pickup Clustered Based Heuristic Method
2001 Dethloff [7] VRPSLB Mathematical Model and Heuristic Method

2005 Nagy and Salhi [8] VRPSLB, Multi-Depot VRPSLB Mathematical Model and Insertion-based Heuristic 

2006 Montane and Galvao [20] VRPSLB Tabu Search Algorithm

2006 Dell’Amico et al. [9] VRPSLB Branch and Price Algorithm

2007 Wassan et al. [10] VRPSLB Reactive Tabu Search Algorithm

2009 Ai et al. [11] VRPSLB Particle Swarm Optimization Algorithm

2010 Subramanian et al. [12] VRPSLB Parallel Algorithm Based on the Sequential Heuristics

2013 Hezer and Kara [6] VRPSLB Bacterial Foraging Optimization Algorithm

2013 Goksal et al. [19] VRPSLB Discrete Particle Swarm Optimization 

2015 Avci and Topaloglu [13] VRPSLB and VRPMLB Adaptive Local Search Algorithm 

2015 Li et al. [14] Multi-Depot VRPSLB Adaptive Neighbourhood Selection 

2015 Kececi et al. [17] VRPSLB with heterogeneous 
vehicle fleet

Mathematical Model and Insertion-based Heuristic 

2015 Nagy and Salhi [8] VRPSLB Mathematical Model and Variable Neighbourhood Search

2016 Zachariadis et al. [15] VRPSLB with two-dimensional 
loading constraints

Local Search Algorithm

2016 Kalayci and Kaya [16] VRPSLB Ant Colony Optimization

2017 Yazgan and Buyukyilmaz [18] VRPSLB Insertion-based Heuristic

2020 This study VRPSLB Simulated Annealing Approach with Two Construction 
Heuristics
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The objective function (1) is to minimize total travel 
and service times. Constraint (2) makes sure that each 
customer is visited by exactly one vehicle. Constraint (3) 
ensures that the same vehicle arrives and departs from each 
customer. Constraint (4) shows the maximum number of 
vehicles allowed. Constraints (5) and (6) are flow equations 
for pick-up and delivery, respectively; they guarantee that 
both are satisfied for each customer. Constraint (7) ensures 
that pickup and delivery demands do not exceed capac-
ity of the vehicle moving from customer i to j. Constraint 
(8) shows travelling and service times for a vehicle do not 
exceed the allowed working time. Constraints (9) and (10) 
demonstrate boundaries of decision variables.

Clark and Wright Algorithm
Clark and Wright algorithm, also called the saving algo-

rithm, has been used to solve VRPs since 1964. It is a greedy 
heuristic and does not guarantee optimal solutions because 
it might get stuck at local optima. Clark and Wright algo-
rithm is usually used as a construction heuristic to provide 
initial solutions to metaheuristic algorithms. The main idea 
behind the algorithm is to calculate insertion costs of each 
visit point (customer, patient, retailer, etc.) into intervals 
in the existing routes. There can be more than one inser-
tion cost for a visit point if we have more than two assigned 
points in the schedule. The algorithm records the cheapest 
insertion cost for the visit point and iterates same procedure 
for other visit points. After calculating the cheapest inser-
tion costs for all visit points, the visit point with the lowest 
cost compared to other points is selected and inserted into 
the selected interval if and only if the insertion satisfies the 
capacity and time constraints. If it does not, the algorithm 
evaluates the point with second lowest cost and so on. This 
procedure continues until no unassigned point exist or the 
routes are infeasible. 

Let us assume that there are two customers, 1 and 3, and 
Euclidian distance between these two customers is C13. If a 
new customer, 2, arrives to system and Euclidian distances 

between customer 1 and 2, and 2 and 3 are represented by 
C12 and C23 respectively, the cost of inserting customer 2 
between 1 and 3 is calculated as following:

	 Insertion cost = C12 + C23 – C13	 (11)

Figure 1 shows the pseudo-code for Clark and Wright 
algorithm configurated based on VRPSLB. Each iteration in 
while loop (3–23), insertion cost of each customer (5–20) is 
calculated for each vehicle (7–15) and check whether they 
satisfy capacity and time constraints. Next, the customer 
with the cheapest insertion cost and satisfying constraints 
is inserted into the tour of vehicle and same procedure is 
repeated for the remaining customers.

The Nearest Neighbourhood Search
The nearest neighbourhood search is a constructive 

heuristic and one of the first heuristic algorithms to employ 
solving travelling salesman problem. The idea behind it is 
to find unvisited closest visit point to a reference point, the 
depot at the beginning of the day, add it into the existing 
tour, and continue this procedure till there is no unvisited 
node. The proximity between two nodes is calculated with 
the Euclidean distance. Because many vehicles exist in the 
problem, the distance for each visit point is calculated for 
the tour of each vehicle. Since we also deal with pickup and 
delivery demands of customers (visit points), not exceed-
ing capacity of vehicles and satisfying working and service 
times are strict constraints. 

Simulated Annealing Algorithm
Simulated annealing approach was developed by 

Kirkpatrick et al. [22] in the study, “Optimization by simu-
lated annealing”, 1983. The idea was to mimic the cooling of 
material in a heat bath. The process is known as “annealing”. 
When allowing materials for controlled cooling, defects in 
materials significantly decrease. The method is a global 
optimization method consisted of exploration and exploita-
tion procedures to be able to approximate optimal solution 
by preventing to get stuck at a local optimum. Simulated 
annealing method can accept worse solutions with a cer-
tain probability while heuristic methods such as the saving 
algorithm, nearest neighbourhood algorithm, hill climb-
ing algorithm, etc. only move to better solution. Simulated 
annealing is highly popular method for solutions of contin-
uous as well as discrete problems such as VRP. In follow-
ing subsections, we explain simulated annealing method in 
detail.

Steps of Simulated Annealing Algorithm
Simulated annealing approach begins with an initial 

solution (Si), generated with construction heuristics. In 
each step, the algorithm moves to a neighbour solution (Sn) 
with a predefined operator. If the objective function value 
of Sn is smaller than Si for a minimization problem or larger 
for a maximization problem, the algorithm can accept the 



Sigma J Eng Nat Sci, Vol. 39, No. 3, pp. 226–236, September, 2021230

approach. These parameters, M, N, α, and aforementioned 
T, must be defined at the beginning. M and N show the 
number of iterations for exploration and exploitation steps, 
respectively.

Figure 2 shows pseudo code for simulated annealing 
approach.  The algorithm assigns an initial solution gener-
ated by one of construction heuristics as in Line 1. After ini-
tializing M, N, α, and T, the algorithm starts iterations as Line 
3–5. In each iteration, the algorithm moves a neighbour solu-
tion with a randomly selected operator and calculates objec-
tive function value. If the calculated value is less than the 
objective function value of initial solution, the new solution 
is accepted and replace the previous solution. Otherwise, the 
acceptance probability, pa, is calculated and checked whether 
it is greater than a random number, r. If so, the worse solu-
tion is accepted and iterations continue as shown in Line 
5–20. T value is updated after each exploitation step (N) as in 
Line 21. In final step, the algorithm prints the best solution 
and corresponding objective function value.

Neighbourhood Structure
We have three operators, swap-in-vehicle, swap-

between-vehicles, and take-and-insert, used for moving 
neighbour solutions. The probability of selecting an oper-
ator equals for these three.

solution and replace the initial solution with the neighbour 
solution. If the objective function value of Sn is greater than 
Si for a minimization problem or smaller for a maximiza-
tion problem, the algorithm can accept the solution with a 
certain probability. The acceptance probability, pa, is calcu-
lated as following:

	 /

1
a tp

e∆= 	 (12)

T is a predefined control parameter and represents 
temperature during an annealing process. T continuously 
reduces by a constant multiplier, α, iteration by iteration. 
∆ value demonstrates the difference between objective 
function value of Sn and Si. If a randomly generated num-
ber, r, is less than pa, the algorithm accepts a worse neigh-
bour solution for the next step. Note that the probability 
of accepting worse solutions is higher when T value is rel-
atively high. In other words, at beginning of the process, 
when T value gets around the highest level, the algorithm 
tends to accept worse solutions. This is where the algorithm 
uses exploration steps mostly. On the other hand, T value 
starts to decrease when iterations proceed and the chance 
of accepting worse solutions significantly decreases. There 
are some important parameters for simulated annealing 

Figure 1. Pseudo-code for Clark and Wright algorithm configurated based on VRPSLB.
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Swap-in-vehicle Operator
Two of customers in the tour of a vehicle are selected 

and swapped with this operator as it is represented in 
Figure 3. Since we have multiple vehicles, one of vehi-
cles that we apply swap-in-vehicle operator is randomly 

selected. Next, the operator randomly selects two custom-
ers in the tour of chosen vehicle and swaps their visits. If 
this change is feasible in terms of capacity and daily work-
ing time of the vehicle, the change is applied in new tour 
as seen in Figure 3.

Figure 2. Pseudo-code for Simulated Annealing Algorithm.

Figure 3. Swap-in-vehicle operator. R1 and R2 represent tours of the vehicle before and after the operator is applied.
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Swap-between-vehicles Operator
Two customers from different vehicles’ tours are selected 

and swapped with this operator as represented in Figure 
4. The operator randomly selects two vehicles. Next, one 
customer is randomly chosen from the tour of first vehi-
cle and another customer is randomly selected from the 
second vehicle’s tour. Finally, visits of these two customers 
are swapped as seen in Figure 4. Of course, the algorithm 

checks whether capacity and daily working time constraints 
are satisfied after applying the operator.

Take-and-insert Operator
The algorithm randomly selects and removes a customer 

from one randomly selected vehicle’s tour. After that, it 
inserts this customer into another randomly selected vehi-
cle’s tour. The interval where the customer is inserted is also 

Figure 5. Take-and-insert operator. V1 and V2 represent tours of two randomly selected vehicles.

Figure 4. Swap-between-vehicles operator. V1 and V2 represent tours of two randomly selected vehicles.
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Finally, 50% of customer requests can be arrived from three 
clusters and other requests can be raised from the remain-
ing of the area equally likely (RC). The depot is located 
at the middle of the service area. Table 2 summarizes test 
settings.

The mixed integer linear programming (MILP) is coded 
with AMPL (A mathematical programming language) IDE 
3.5 software and solved with CPLEX 12.9. Construction 
heuristics and the simulated annealing algorithm are coded 
in Python programming language. Necessary parameters, 
M, N, α, and T, for the algorithm are taken from the litera-
ture and shown in Table 2. Test sets are solved in a PC with 
Intel i5 7200U 2.5 GHz CPU and 8 GB Ram.

RESULTS AND DISCUSSIONS

Table 3 shows total travel times for all vehicles under 
different test settings. MILP provides optimal solutions 
for each scenario and can be considered as a benchmark 
point. We generate initial solutions for the simulated 
annealing (SA) by Clark and Wright algorithm (CW) and 
the nearest neighbourhood algorithm (NN). In Table 3, 
we do not only show solutions of SA with the initial solu-
tion of one of construction heuristics, but also demon-
strate solutions of heuristics separately. First, we mostly 
observe the closest travel times to MILP arriving from the 
combination of SA and NN (NN+SA). SA with NN results 
between 2.61% and 7.33% higher total travel times com-
pared to MILP. Although NN provides initial solutions 
with higher travel times compared to CW in some cases, 
SA successfully approximates near optimal solutions 
when starting solutions NN generates. One reason can be 
that NN tends to assign customers to different vehicles at 
the beginning. Therefore, “swap-between-vehicles” might 
work better. 

Table 4 shows execution times for solution methods 
under different test settings. As expected, computational 
times of MILP skyrocket when the number of customers 
increases. When we test methods for 40 customers, the 
execution times of MILP are around 2 hours. On the other 
hand, execution times of construction heuristics are under 
1 second in each case. SA is also executed quickly compared 
to MILP under each scenario.

Table 5 shows total travel times for all vehicles for large 
instance problems and computational times of all methods. 
Since MILP can find optimal solutions around 2 hours for 
only 40 customers, it is impossible to find optimal solutions 
for more than 100 customers in reasonable computational 
times. For large problem sets, the combination of SA and 
NN seems almost equal performance to the combination 
of SA and CW. The improvements when comparing it to 
CW+SA are around 5%. For large instance problems, NN 
is very fast in terms of computational times. In most cases, 
NN generates initial solutions in less than one second. In 
some cases, execution times of CW are longer than SA. 

randomly selected by the operator. The change is applied 
if it does not violate capacity and daily working time con-
straints. Figure 5 represents how the operator works.

THE RESEARCH FINDINGS AND DISCUSSION

In this section, first we explain test settings. Next, results 
of tests are demonstrated and discussed.

Test Settings
As we mentioned before, VRP and its extensions are 

in NP Hard class and exact solution methods such as the 
MILP used in this study work for only small instance prob-
lems. To be able to show quality of proposed construction 
heuristics and the metaheuristic methods, we compare their 
results with the MILP for 20, 30, and 40 customers. Next, we 
test the simulated annealing method for 100, 150, and 200 
customers where MILP cannot find optimal solutions in 
reasonable computational times. Delivery demands of cus-
tomers are assigned uniformly between 4 and 10 packages, 
and pickup demands are assigned uniformly between 3 and 
7 packages. We have different number of vehicles depend-
ing on the number of customers. Each vehicle capacity is 75 
packages. The number of vehicles changes such a way that 
all customers must be visited by satisfying their pickup and 
delivery demands.

We consider three different service areas. Total area size 
is 3600 km2 (60 km × 60km) and represented, X ∈ [0, 60] 
and Y ∈ [0, 60], in the coordinate system. In the first area 
type (R), customer requests can be raised from anywhere 
equally likely. Next, customer requests can be arrived from 
only three clusters in the service area (C). First cluster is 
in the area, XC1 ∈ [5, 15] and YC1 ∈ [5, 15]. Second one is 
the area, XC2 ∈ [25, 35] and YC2 ∈ [45, 55]. The last cluster 
is located in the area,  XC3 ∈ [50, 60] and YC3 ∈  [25, 35]. 

Table 2. Test settings

Daily working time (min) 480
Service time (min) 5
Service area X ∈ [0, 60] and Y ∈ [0, 60] 
Area type Clustered, Random, Random-

Clustered
Number of customers 20 to 200
Number of vehicles 2–21
Vehicle capacity (package) 75
Pickup demand (package) Uniform (3, 7)
Delivery demand (package) Uniform (4, 10)
α 0.92
T 1500
M 400
N 40
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Table 3. Travel times (minute) for proposed solution methods under different service areas and number of customers 
(MILP: Mixed Integer Linear Programming, CW: Clark and Wright Algorithm, SA: Simulated Annealing, NN: Nearest 
Neighbourhood Algorithm)

Service Area Customer MILP CW CW+SA NN NN+SA %

R 20 345.72 376.71 356.16 403.38 374.46 3.01%
30 466.94 541.79 517.36 545.74 491.96 5.36%

40 599.89 664.48 653.50 695.17 643.88 7.33%

C 20 282.67 313.90 312.90 298.60 292.58 3.51%

30 387.64 431.77 403.94 428.26 414.90 4.23%

40 513.96 538.32 534.14 537.46 529.24 2.97%

RC 20 354.27 374.13 370.42 408.73 370.37 4.83%

30 438.85 472.52 459.90 454.19 450.31 2.61%

40 532.16 596.09 564.89 583.40 563.58 5.90%

Table 4. Execution times (second) for proposed solution methods under different service areas and number of customers 
(MILP: Mixed Integer Linear Programming, CW: Clark and Wright Algorithm, SA: Simulated Annealing, NN: Nearest 
Neighbourhood Algorithm)

Service Area Customer MILP CW CW+SA NN NN+SA

R 20 2.89 0.03 6.67 0.02 6.35
30 95.85 0.09 9.34 0.01 9.47
40 7205.94 0.57 10.51 0.01 9.50

C 20 1.60 0.04 6.32 0.00 6.28
30 41.79 0.12 6.26 0.00 8.37
40 7204.81 0.44 13.85 0.00 8.96

RC 20 47.40 0.05 7.58 0.00 9.92
30 92.76 0.20 9.62 0.00 7.84
40 429.97 0.25 8.83 0.01 9.20

Table 5. Travel times (minute) for proposed solution methods under different service areas and number of customers 
(CW: Clark and Wright Algorithm, SA: Simulated Annealing, NN: Nearest Neighbourhood Algorithm)

    Daily Travel Times (minute) Execution Times (second)

  Customer CW CW+SA NN NN+SA CW CW+SA NN NN+SA

R 100 1603.04 1473.40 1486.18 1391.53   3.70 33.62 0.12 38.18
150 2111.83 2031.21 2093.99 1991.15 12.68 44.67 0.62 53.62

200 2666.88 2609.88 2733.65 2624.86 31.09 55.93 1.33 54.80

C 100 1279.37 1157.62 1338.66 1289.72   4.73 30.70 0.18 31.97
150 1731.23 1651.85 1656.83 1619.93 11.09 42.32 0.51 38.66

200 2364.59 2334.30 2259.25 2204.36 35.52 50.30 0.97 49.11

RC 100 1276.74 1205.80 1353.45 1242.43   3.60 32.71 0.12 30.26
150 1813.21 1806.55 1828.36 1860.42 13.60 35.97 0.47 32.65

200 2314.66 2244.92 2392.80 2293.36 29.99 43.34 1.02 53.12



Sigma J Eng Nat Sci, Vol. 39, No. 3, pp. 226–236, September, 2021 235

Overall, results show that SA provides shorter travel 
times once it starts initial solutions generated by NN for 
small sized problems. However, this advantage vanishes 
for large sized problems. NN is also very fast in terms of 
computational times compared to CW. If one seeks a quick 
solution methodology, NN can be preferable with solutions 
as good as solutions of CW. Moreover, when we consider 
total execution times, it is reasonable to employ both com-
binations for finding best solutions.

CONCLUSION

Vehicle Routing Problem (VRP) and its extensions 
have been studied for long years to be able to model real-
life problems. Because of the pressure on companies to 
decrease costs not to fall back in the industry, they start to 
plan their pickup and delivery activities together. VRP with 
Simultaneous Linehaul and Backhaul (VRPSLB) is taken 
into consideration since then. Since VRP and its variations 
are in NP hard class, exact solution methods are useful for 
small instance problems. When size of problems increases, 
exact solution methods are unable to find optimal solutions 
in reasonable computational times. In this situations, heu-
ristic and metaheuristic approaches are mostly used to find 
optimal or near optimal solutions. Metaheuristic meth-
ods such as the genetic algorithm, simulated annealing 
approach, tabu search, etc., are more successful to approx-
imate optimal solutions compared to heuristic methods 
since they can avoid local optima with their special oper-
ators. However, heuristic approaches are mostly employed 
as initial solutions where metaheuristic methods start to 
search optimal solutions.

In this study, we proposed a simulated annealing (SA) 
approach for VRPSLB. We considered daily working times 
for vehicles and service times for customers against many 
studies [4–12] that do not cover these constraints in the lit-
erature. The other contribution in terms of methodological 
side is to propose two construction heuristics, Clark and 
Wright (CW) and the nearest neighbourhood (NN) algo-
rithms, generating initial solutions for SA. The idea behind 
this approach is to find the best solution by trying two good 
initial solutions generated by two construction heuristics 
since the solution quality of a metaheuristic approach is 
directly related to the initial solution. We compare results 
of SA combined with CW and NN to the mixed integer 
linear programming (MILP) for small size problems, the 
number of customers varies 20 to 40. According to results, 
SA provides 2.61% to 7.33% longer travel times compared 
to MILP. On the other hand, SA combined with NN out-
performs SA with CW in 7 out of 9 cases. For large size 
problems, up to 200 customers and 21 vehicles, SA shows 
similar performances combined with CW and NN. SA with 
CW provides shorter travel times in the half of cases while 
SA with NN works well in the other half. We cannot see any 
strong evidence about the fact that good initial solutions 

provide the best final solutions. In some cases, SA with NN 
results the shortest travel times even though the initial solu-
tion generated by NN is not as good as the initial solution of 
CW or vice versa. Moreover, both construction heuristics 
work indistinguishably under different service areas. 

Overall, any construction heuristic does not seem pref-
erable to the other in terms of final travel times for each 
scenario. However, NN is fast compared to CW even 
for large problem sets and testing SA with both NN and 
CW for problems is still reasonable in terms of execution 
times. Therefore, the algorithm can be upgraded in order 
to consider both heuristics and provide better results. On 
the other hand, NN can be chosen if the execution time is 
really matter. Service times for customers and daily work-
ing times for vehicles are two important real-life aspects in 
VRPSLB. Therefore, consideration of these two constraints 
makes our study more realistic for practitioners. Moreover, 
using of two construction heuristic with simulated anneal-
ing approach and inspecting results can attract researchers` 
attentions.

There is a shortcoming caused by the solution method-
ology itself. The simulated annealing approach uses some 
parameters (T, M, N, α) for exploration and exploitation 
steps. In this study, these parameters are received from 
the literature. However, different parameters can change 
results. We also consider only one test set for pickup and 
delivery demands of customers. Our assumption is that we 
have sufficient number of vehicles to serve all customers 
without any rejection. However, companies have a limited 
number of vehicles as well as capacities to answer customer 
requests in real life. Therefore, the rejection possibility and 
demand sensitivity should be taken into account in future 
research.
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