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Abstract
In this paper, we introduce a Cohen-Grossberg neural networks model with piecewise alter-
nately advanced and retarded argument. Some sufficient conditions are established for the
existence and global exponential stability of periodic solutions. The approaches are based
on employing Brouwer’s fixed-point theorem and an integral inequality of Gronwall type
with deviating argument. The criteria given are easily verifiable, possess many adjustable
parameters, and depend on piecewise constant argument deviations, which provide flex-
ibility for the design and analysis of Cohen-Grossberg neural networks model. Several
numerical examples and simulations are also given to show the feasibility and effectiveness
of our results.
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1. Introduction
Neural networks with their various generalizations can be represented as differential

equations that describe the evolution of the model as functions of time. During the past few
decades, much attention has been dedicated to the studies of neural networks partially due
to the fact that neural networks can be applied to pattern recognition, signal processing,
system control, associative memory, parallel computing and solving optimization problems.

Among the various models of neural networks which have been studied and applied, in
1983, M. Cohen and S. Grossberg [21] proposed a new type of an artificial feedback neural
network which is called the Cohen-Grossberg neural networks model. It can be described
as follows:

dxi(t)
dt

= −αi(xi(t))

βi(xi(t)) −
m∑

j=1
aijfj(xj(t))

 , i = 1, ..., m,

where m is the number of neurons in the network, xi(t) denotes the state variable of the
i-th neuron at time t, fj(xj(t)) denotes the activation function of the j-th neuron at time

Email address: kschiu@umce.cl
Received: 27.09.2021; Accepted: 02.02.2022

https://orcid.org/0000-0002-3823-5898


1220 K.-S. Chiu

t; the feedback matrix C = (aij)m×m indicates the strength of the neuron interconnections
within the network; αi(·) represents an amplification function and βi(·) is the rate with
which the unit self-regulates or resets its potential when isolated from other units and
inputs.

As we know, the Cohen-Grossberg neural networks model can be used to describe the
general neural networks model, cellular neural networks model, Hopfield neural networks
model and bi-directional associative memory neural networks model. There are many
interesting phenomena in the dynamical behaviors of the Cohen-Grossberg neural networks
model. For this reason, stability analysis and existence of periodic solutions have been
widely researched for the nonautonomous Cohen-Grossberg neural networks model with
and without delays in the literature. See, for instance, Refs. [22, 24–26, 30, 33, 34, 40] and
the references cited therein.

Some recent results on the dynamics of the Cohen-Grossberg neural networks model
with impulses, have been obtained [4, 28, 31, 32, 35, 36]. Such results require suitable as-
sumptions making the jumps sufficiently small. As a consequence, the impulsive effects on
the convergence dynamics of the Cohen-Grossberg neural networks model with impulses
becomes less significant.

Recently, a new type of neural networks display a combination of characteristics of
both the continuous-time and discrete-time systems, which is an appropriate description
of the phenomena of abrupt qualitative dynamical changes of essentially continuous-time
systems; see [2,3,7,13–15,18,20] for more details. These kinds of equations which involv-
ing piecewise constant arguments (in short DEPCAs) usually describe hybrid dynamical
systems (a combination of continuous and discrete) and so combine properties of both
differential and difference equations.

DEPCAs are first considered by Shah and Wiener [39] in the 80’s and have been de-
veloped by many authors; see [1, 3, 8, 9, 11, 12, 16, 37, 38]. Applications of DEPCA are
discussed in [2, 6, 23, 29]. Over the years, great attention has been paid to the study of
the existence of periodic solutions of this type of equations. For specific references (see
[2, 5, 10,15,17,19]).

Motivated by the above discussion, in this paper, our main aim is to establish some suf-
ficient conditions for the existence and global exponential stability of the periodic solution
of the following DEPCA system:

x′
i(t) = −di(xi(t))

{
ai(xi(t)) −

n∑
j=1

bij(t)fj(xj(t))

−
n∑

j=1
cij(t)gj

(
xj

(
m

[[
t + l

m

]]))
− Ji(t)

}
,

(1.1)

with 1 ≤ i ≤ n, where:
• [[·]] signifies the greatest integer function, l and m are positive real numbers such

that 0 < l < m.
• The function di(·) represents an amplification function.
• ai(·) is the rate with which the unit self-regulates or resets its potential when

isolated from other units and inputs.
• The measure of activation of continuous type (resp. piecewise constant type) of

the j-th neuron to its incoming potentials is given at any time by the function
fj(xj(·))

(
resp. gj

(
xj

(
m
[[

·+l
m

]]) ))
.

• The function bij(·) (resp. cij(·)) denotes the strengths of connection weight of
continuous type (resp. piecewise type) of the unit i on the unit j.
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• For each neuron, there is an activation flow from outside the system. It is repre-
sented by the function Ji(·) for the i-th one.

Let us clarify why the system (1.1) is of alternately advanced and retarded type, that
is, the argument can change its deviation character during the motion. The argument is
deviated if it is advanced or retarded. Fix k ∈ N, and consider the system (1.1) on the
interval Ik = [mk − l, mk + m − l). Then, the identification function m

[[
t+l
m

]]
is equal

to mk. If t ∈ I+
k = [mk − l, mk), then m

[[
t+l
m

]]
≥ t and the system (1.1) is an equation

with advanced argument. Similarly, if t ∈ I−
k = (mk, mk + m − l) then m

[[
t+l
m

]]
< t and

the system (1.1) is an equation with retarded argument. Consequently, the system (1.1)
changes the type of deviation of the argument during the process. In other words, the
system (1.1) is of alternately advanced and retarded type.

To the best of our knowledge, this paper is the first to study an ω-periodic solution
for the Cohen-Grossberg neural networks model with piecewise alternately advanced and
retarded argument. The approaches are based on employing Brouwer’s fixed-point theorem
and a DEPCA’s Gronwall-type inequality.

This paper is organized as follows. In Section 2, we focus on some preliminary results
which will be used in the existence and stability of an ω-periodic solution of the system
(1.1). In Section 3, we derive some sufficient conditions for the global exponential stability
of an ω-periodic solution of the system (1.1). In Section 4, two examples and the numerical
simulations are given to demonstrate the validity of our results. The conclusions are drawn
in Section 5.

2. Preliminaries

In this section, we show some preliminary concepts and results that will be utilized
in the proofs of the existence of an ω-periodic solution of the Cohen-Grossberg neural
networks model with DEPCA system (1.1).

For reasons of convenience, certain assumptions and the definition are formulated below,
which will be convened when necessary.

(B) The amplification functions di(u), i = 1, 2, ..., n, are continuous and bounded, and
there exist positive constants di and di such that

0 < di ≤ di(u) ≤ di, ∀u ∈ R.

(I) The functions ai with ai(0) = 0, i = 1, 2, ..., n, are continuous and there exist
positive constants Na

i and La
i such that

0 < Na
i ≤ ai(u) − ai(v)

u − v
≤ La

i , ∀u, v ∈ R, u ̸= v.

(L) The activation functions fj , gj with fj(0) = 0, gj(0) = 0, 1 ≤ i, j ≤ n, satisfy

|fj(u) − fj(v)| ≤ L
f
j |u − v|, |gj(u) − gj(v)| ≤ L

g
j |u − v|,

for some positive constants L
f
j , Lg

j > 0 and for all u, v ∈ R.

Definition 2.1. A function x : R+ = [0, ∞) → Rn is a solution of the system (1.1), if (i)
x(t) is continuous on R+, (ii) the derivative x′(t) exists at each point t ∈ R+, with the
possible exception of the points mk − l ∈ R+, k ∈ N, where the one-side derivatives exist,
(iii) the system (1.1) is satisfied for x on each interval

(
mk − l, mk + m − l

)
, k ∈ N, and

it holds for the right derivative at the points mk − l, k ∈ N.
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To study nonlinear DEPCA, we use the approach proposed by M. U. Akhmet in [1],
based on the construction of an equivalent integral equation. Let us give the following
proposition.

Proposition 2.2 (Integral Representation). Given a pair (τ, x0) ∈ R+ × Rn, a function
x = (x1(·), · · · , xn(·)) : R+ → Rn such that x(τ) = x0 is a solution of the system (1.1) in
the sense of Definition 2.1, if and only if their coordinates satisfy on R+ the following set
of integral equations

xi(t) = xi(τ)+
∫ t

τ
di(xi(s)) ×

(
− ai(xi(s)) +

∑n

j=1
bij(s)fj(xj(s))

+
∑n

j=1
cij(s)gj

(
xj

(
m

[[
s + l

m

]]))
+ Ji(s)

)
ds,

(2.1)

for i ∈ {1, · · · , n}.

We omit the proof of this assertion, since it can be proved in the almost identical way
as Lemma 4.3 in [2] and Proposition 1 in [20].

In the next, we give the following lemma about DEPCA integral inequality of Gronwall
type, which is one of the most important auxiliary results of the present paper.

Lemma 2.3 (DEPCA’s Gronwall Inequality, [13, Lemma 2.1]). Let u : R+ → R+ be a
continuous function satisfying

u(t) ≤ α +
∣∣∣∣∫ t

τ

[
η1(s)u(s) + η2(s)u

(
m

[[
s + l

m

]])]
ds

∣∣∣∣ , (2.2)

where α ≥ 0 and ηi : R+ → R+, i ∈ {1, 2}, is a piecewise continuous function.
Then:

- If t ≥ τ ,

u(t) ≤ α exp
(∫ t

τ

[
η1(s) + η2(s)

1 − κ+

]
ds

)
. (2.3)

- If 0 ≤ t ≤ τ ,

u(t) ≤ α exp
(∫ τ

t

[
η1(s) + η2(s)

1 − κ−

]
ds

)
, (2.4)

where

κ+ := max[[
τ+l
m

]]
≤k

∫ mk

mk−l
[η1(s) + η2(s)] ds ≤ κ1 < 1,

and

κ− := max
1≤k<

[[
τ+l
m

]] ∫ mk+m−l

mk
[η1(s) + η2(s)] ds ≤ κ2 < 1.

3. The existence and global exponential stability of the periodic solution
In this section, we give the sufficient conditions for the existence of global exponential

stability of a unique ω-periodic solution of the Cohen-Grossberg neural networks model
with DEPCA system (1.1).
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3.1. Existence of periodic solutions
For ω > 0, let Pω be the set of all n-vector continuous functions x(t), periodic in t of

period ω. Then (Pω, ∥·∥) is a Banach space with the supremum norm

∥x∥ = max
1≤i≤n

∥xi∥ = max
1≤i≤n

[
sup
t∈R+

|xi(t)|
]

= max
1≤i≤n

[
sup

t∈[τ,τ+ω]
|xi(t)|

]
.

In this part, we study the existence of an ω-periodic solution of the system (1.1). Here we
assume the Periodicity Condition (P).

(P) There exists ω > 0 such that the functions di(·), ai(·), bij(·), cij(·) and Ji(·) are
all continuous ω-periodic functions. Moreover, there exists p ∈ N, for which the
sequences {mk − l}k∈N and {mk}k∈N, satisfy the (ω, p) condition, that is

ω = mp.

Remark 3.1. Note that (ω, p) condition is a discrete relation, which moves the interval
Ik = [mk − l, mk + m − l) into Ik+p = [m(k + p) − l, m(k + p) + m − l). Then we have the
following consequences:

(i) For t ∈ Ik, we have

a) t + ω ∈ Ik+p, b) m
[[

t+l
m

]]
+ ω ∈ Ik+p.

Then,

m

[[(t + ω) + l

m

]]
= m · (k + p) = m · k + ω = m

[[
t + l

m

]]
+ ω.

(ii) For any τ ∈ R+, the interval [τ, τ + ω] can be decomposed as follows:

[τ, m · i(τ) + m − l] ∪
i(τ)+p−1⋃
j=i(τ)+1

Ij ∪ [m · (i(τ) + p) − l, τ + ω],

where i(·) be an indexer defined by i(t) = k if t ∈ Ik = [mk − l, mk + m − l).

In this section, we use the Brouwer’s fixed-point theorem to obtain the existence of an
ω-periodic solution for the system (1.1).

Lemma 3.2 (Brouwer’s fixed-point theorem (See [27])). Let T be a continuous operator
that maps a closed bounded convex subset Ω ⊂ Rn into itself. Then Ω contains at least
one fixed point of the operator T, i.e. there exists z∗ ∈ Ω, such that T(z∗) = z∗.

In order to discuss the existence of an ω-periodic solution, we first introduce the follow-
ing lemma.

Lemma 3.3. Let the conditions (B), (L), (I) and (P) hold. Suppose that there exist n
positive constants α1, α2, . . . , αn such that

Na
i αi −

n∑
j=1

[
αj

(
L

f
j |bij(t)| + L

g
j |cij(t)|

)]
− Ji(t) > 0, t ∈ [τ, τ + ω], (3.1)

for each i = 1, ..., n. Then any solution of the system (1.1) with initial condition

|xi(τ)| ≤ αi, i = 1, ..., n

verifies
|xi(t)| ≤ αi, for all t ∈ [τ, τ + ω], i = 1, ..., n.
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Proof. Suppose that the initial condition satisfies

|xi(τ)| ≤ αi, i = 1, ..., n

and, by Remark 3.1 (ii), we can split [τ, τ + ω] as

[τ, τ +ω] = [τ, mi(τ)+m− l)∪ [mi(τ)+m− l, mi(τ)+2m− l)∪ . . .∪ [mi(τ)+mp− l, τ +ω].

We affirm that, for each i = 1, ..., n,

|xi(t)| ≤ αi, t ∈ (τ, mi(τ) + m − l).

Indeed, if it is not true, then there exist some i and time µ such that

|xi(µ)| = αi,
d

dt
|xi(t)||t=µ ≥ 0 and |xj(µ)| ≤ αj , j ̸= i.

Therefore, using (B), (I), (L) we have

d

dt
|xi(t)| ≤ di(xi(t))

{
− Na

i |xi(t)| +
n∑

j=1
L

f
j |bij(t)| |xj(t)|

+
n∑

j=1
L

g
j |cij(t)|

∣∣∣∣xj

(
m

[[
t + l

m

]])∣∣∣∣+ Ji(t)
}

.

(3.2)

By (3.2), we get

0 ≤
{

− Na
i |xi(t)| +

n∑
j=1

L
f
j |bij(t)| |xj(t)|

+
n∑

j=1
L

g
j |cij(t)|

∣∣∣∣xj

(
m

[[
t + l

m

]])∣∣∣∣+ Ji(t)
}

≤ −Na
i αi +

n∑
j=1

[(
L

f
j |bij(t)| + L

g
j |cij(t)|

)
αj

]
+ Ji(t). (3.3)

Moreover, using (3.1) for t = µ, we have

Na
i αi −

n∑
j=1

[
αj

(
L

f
j |bij(µ)| + L

g
j |cij(µ)|

)]
− Ji(µ) > 0

which contradicts (3.3). By using equality x(mi(τ) + m − l−) = x(mi(τ) + m − l), we can
rewrite the proved claim in the form

|xi(t)| ≤ αi, t ∈ [τ, mi(τ) + m − l], i = 1, ..., n,

the previous argument applied in [mi(τ) + m − l, mi(τ) + 2m − l] with initial condition
xi(mi(τ) + m − l), gives |xi(τ)| ≤ αi, t ∈ [mi(τ) + m − l, mi(τ) + 2m − l], i = 1, ..., n, and
so on, till interval [mi(τ) + mp − l, τ + ω]. □

Theorem 3.4. Let the conditions (B), (L), (I) and (P) hold. Suppose that there exist
n + 1 positive constants p1, p2, . . . , pn, σ such that

Na
i pi −

n∑
j=1

[
pj

(
L

f
j |bij(t)| + L

g
j |cij(t)|

)]
> σ, t ∈ [τ, τ + ω], (3.4)

for each i = 1, ..., n. Then the system (1.1) admits at least one ω-periodic solution.
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Proof. Consider the n-dimensional rectangle

ℜ = [−α1, α1] × [−α2, α2] × · · · × [−αn, αn] ,

and define the operator T in Pω by
T : ℜ → ℜ
T(v1, v2, ..., vn) = (x1(τ + ω), x2(τ + ω), ..., xn(τ + ω)),

where (x1(t), x2(t), ..., xn(t)) is a solution of the system (1.1) satisfying the initial condition
xi(τ) = vi, i = 1, ..., n.
Note that if we take ϱ great enough to verify

ϱσ > max
t∈[τ,τ+ω]

|Ji(t)| , i = 1, ..., n,

we obtain (3.1) with αi = ϱpi. Then (3.4) implies (3.1). Therefore, under our assumptions,
Lemma 3.3 holds and we can conclude that T is well defined.
In fact the inequalities

|xi(τ)| = |vi| ≤ αi,

guarantee that
|xi(t)| ≤ αi, t ≥ τ.

In particular |xi(τ + ω)| ≤ αi, that is T(v1, v2, ..., vn) ∈ ℜ. Since T is continuous, applying
the Brouwer’s fixed point theorem, there exists

(v̄1, v̄2, ..., v̄n) ∈ ℜ, for which T(v̄1, v̄2, ..., v̄n) = (v̄1, v̄2, ..., v̄n).

The solution x̄(t) with initial condition x̄i(τ) = v̄i is ω-periodic, because

x̄(τ + ω) = T(v̄1, v̄2, ..., v̄n) = (v̄1, v̄2, ..., v̄n) = x̄(τ).

The proof is complete. □

Remark 3.5. The previous Theorem 3.4 is a version of B. Lisena’s result [34] for the
corresponding DEPCA system.

The next results are particular cases of Theorem 3.4.

Corollary 3.6. Let the conditions (B), (L), (I) and (P) hold. Suppose that there exist
n + 1 positive constants p1, p2, . . . , pn, σ such that

Na
i pi −

n∑
j=1

[
pj

(
L

f
j

∣∣∣b̄ij

∣∣∣+ L
g
j |c̄ij |

)]
> σ, t ∈ [τ, τ + ω], i = 1, ..., n, (3.5)

where b̄ij = sup
t∈R+

|bij(t)| and c̄ij = sup
t∈R+

|cij(t)|. Then the system (1.1) has at least one

ω-periodic solution.

Corollary 3.7. For ai(t) ≡ ai > 0, bij(t) ≡ bij, cij(t) ≡ cij and Ji(t) ≡ Ji > 0 constants,
if (L), (P) and suppose that there exist n positive constants α1, α2, . . . , αn such that

aiαi −
n∑

j=1

[
αj

(
L

f
j |bij | + L

g
j |cij |

)]
> Ji, i = 1, ..., n, (3.6)

are satisfied. Then the system (1.1) with constant coefficients admits at least one ω-periodic
solution.
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Remark 3.8. If the conditions (L), (P) are satisfied and suppose that there exist n + 1
positive constants p1, p2, . . . , pn, σ such that

aipi −
n∑

j=1

[
pj

(
L

f
j

∣∣∣b̄ij

∣∣∣+ L
g
j |c̄ij |

)]
> σ, t ∈ [τ, τ + ω], (3.7)

where ai = inf
t∈R+

|ai(t)|, b̄ij = sup
t∈R+

|bij(t)| and c̄ij = sup
t∈R+

|cij(t)|. Then the Hopfield neural

networks model with DEPCA system

x′
i(t) = −ai(t)xi(t) +

n∑
j=1

bij(t)fj(xj(t))

+
n∑

j=1
cij(t)gj

(
xj

(
m

[[
t + l

m

]]))
+ Ji(t), i = 1, ..., n,

(3.8)

admits at least one ω-periodic solution.
Note that the periodic result for the Hopfield neural networks model with DEPCA

system is new and this result cannot be found in any of the previous applied studies.

3.2. Global exponential stability of the periodic solution
In this subsection, we will derive a simple criterion ensuring that the Cohen-Grossberg

neural networks model with DEPCA system (1.1) has a unique ω-periodic solution which
is globally exponentially stable.

First of all, we give the following definition and Stability Condition (S), which will
be used in the proof of the stability of the ω-periodic solution for the system (1.1).

Definition 3.9. The solution x∗(t) of the system (1.1) is said to be globally exponentially
stable if there exist positive constants α and λ such that the estimation

|x(t) − x∗(t)| ≤ α |x(τ) − x∗(τ)| e−λ(t−τ), t ≥ τ,

is valid for any solution x(t) of the system (1.1).

(S) There exists µ ∈ R+ such that for t ∈ R+,

dNa − max
1≤i≤n

[
n∑

j=1
L

f
j b̃ij(t) + edNa·(t−m[[ t+l

m ]])

1 − v

n∑
j=1

L
g
j c̃ij(t)

]
≥ µ > 0,

where d = min
1≤i≤n

{
di
}
, Na = min

1≤i≤n

{
Na

i

}
, b̃ij(t) = d̄i|bij(t)|, c̃ij(t) = d̄i|cij(t)| and

v := max
1≤i≤n

{
max
k∈N

∫ mk

mk−l

[
n∑

j=1
L

f
j b̃ij(s) + edNa·

(
s−mk

) n∑
j=1

L
g
j c̃ij(s)

]
ds

}
< v̄ < 1. (3.9)

For analytical convenience, we shall transform the system (1.1).
Using Hypothesis (B), the antiderivative of 1

di(xi(t)) exists. Then we choose an anti-
derivative Fi(xi) of 1

di(xi(t)) such that Fi(0) = 0.
Evidently, F ′

i (xi) = 1
di(xi(t)) . By di(xi(t)) > 0, we are getting Fi(xi) strictly monotone

increasing on xi.
Using the inverse function theorem, there exists an inverse function F −1

i (xi) of Fi(xi)
which is continuous and differential.
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Furthermore, we have (F −1
i (xi))′ = di(xi(t)). Indicating F ′

i (xi)x′
i(t) = x′

i(t)
di(xi(t)) = u′

i(t),
we get xi(t) = F −1

i (ui(t)). As a result, we can write the system (1.1) in the following
form:

u′
i(t) = −ai(F −1

i (ui(t))) +
n∑

j=1
bij(t)fj(F −1

j (uj(t)))

+
n∑

j=1
cij(t)gj

(
F −1

j

(
uj

(
m

[[
t + l

m

]])))
+ Ji(t).

(3.10)

Using Hypothesis (I), and the mean value theorem, there exist a constant ϖ̄i ∈ [0, 1]
such that

ai

(
F −1

i (ui(t))
)

=
[
ai

(
F −1

i (ϖ̄iui(t))
)]′

ui(t) = ãi(ui(t))ui(t).

Then the system (3.10) can be rewritten as

u′
i(t) = −ãi(ui(t))ui(t) +

n∑
j=1

bij(t)fj(F −1
j (uj(t)))

+
n∑

j=1
cij(t)gj

(
F −1

j

(
uj

(
m

[[
t + l

m

]])))
+ Ji(t).

(3.11)

Now, by the Lagrange theorem we have∣∣∣F −1
i (u) − F −1

i (v)
∣∣∣ =

∣∣∣∣[F −1
i (v + ϖ̄i(u − v))

]′
(u − v)

∣∣∣∣ = |di(v + ϖ̄i(u − v))| |u − v| .

Thanks to Hypothesis (B) again, we have

di |u − v| ≤
∣∣∣F −1

i (u) − F −1
i (v)

∣∣∣ ≤ d̄i |u − v| .

Combined with Hypothesis (I), we obtain

diN
a
i ≤

[
ai

(
F −1

i (·)
)]′

≤ d̄iL
a
i . (3.12)

Remark 3.10. It is clear that the system (1.1) has a unique globally exponentially stable
ω-periodic solution if and only if the system (3.11) has a uniqueb globally exponentially
stable ω-periodic solution. To facilitate our analysis, we only consider the system (3.11).

The following result shows sufficient conditions for the global exponential stability of
the unique ω-periodic solution of the system (1.1).

Theorem 3.11. Suppose that the assumptions of Theorem 3.4 and (S) are satisfied. Then
system (1.1) has a unique ω-periodic solution and all other solutions converge exponentially
to it as t → ∞.

Proof. According to Theorem 3.4, we know that the system (1.1) has at least one ω-
periodic solution x∗(t) = (x∗

1(t), ..., x∗
n(t))T with initial value x∗(τ) = (x∗

1(τ), ..., x∗
n(τ))T .

Suppose that x(t) = (x1(t), ..., xn(t))T is an arbitrary solution of the system (1.1) with
initial value x(τ) = (x1(τ), ..., xn(τ))T .
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For i = 1, ..., n, let yi(t) = xi(t) − x∗(t) and yi(τ) = xi(τ) − x∗
i (τ), we obtain

yi(t) =yi(τ)e−
∫ t

τ
ãi(ui(s))ds

+
∫ t

τ
e−
∫ t

s
ãi(ui(k))dk


n∑

j=1
bij(s)

[
fj

〈
F −1

j (yj(s)) + F −1
j

(
x∗

j (s)
)〉

− fj

(
F −1

j

(
x∗

j (s)
))]

+
n∑

j=1
cij(s)

[
gj

〈
F −1

j

(
yj

(
m

[[
s + l

m

]]))

+F −1
j

(
x∗

j

(
m

[[
s + l

m

]]))〉
− gj

(
F −1

j

(
x∗

j

(
m

[[
s + l

m

]])))]}
ds.

Now, by (B), (L) and (3.12) it can be proved that

|yi(t)| ≤ |yi(τ)| e−diN
a
i ·(t−τ) +

∫ t

τ
e−diN

a
i ·(t−s)


n∑

j=1
d̄iL

f
j |bij(s)| |yi(s)|

+
n∑

j=1
d̄iL

g
j |cij(s)|

∣∣∣∣yj

(
m

[[
s + l

m

]])∣∣∣∣
 ds

≤ |yi(τ)| e−dNa·(t−τ) +
∫ t

τ
e−dNa·(t−s)


n∑

j=1
d̄iL

f
j |bij(s)| |yi(s)|

+
n∑

j=1
d̄iL

g
j |cij(s)|

∣∣∣∣yj

(
m

[[
s + l

m

]])∣∣∣∣
 ds.

Let us define
υi(t) = |yi(t)| edNa·(t−τ), t ∈ [τ, ∞), i = 1, ..., n. (3.13)

Then

υi(t) ≤ υi(τ) +
∫ t

τ


n∑

j=1
d̄iL

f
j |bij(s)| υj(s)

+ edNa·(s−m[[ s+l
m ]])

n∑
j=1

d̄iL
g
j |cij(s)|υj

(
m

[[
s + l

m

]]) ds

or

υ(t) ≤ υ(τ) +
∫ t

τ
max

1≤i≤n

[
d̄i

n∑
j=1

L
f
j |bij(s)| υ(s)

+ d̄ie
dNa·(s−m[[ s+l

m ]])
n∑

j=1
L

g
j |cij(s)| υ

(
m

[[
s + l

m

]]) ds.

Hence, by (3.9) and Lemma 2.3, we arrive at

υ(t) ≤ υ(τ) exp
{

max
1≤i≤n

∫ t

τ

[
d̄i

n∑
j=1

L
f
j |bij(s)|

+ d̄i

exp
(
dNa ·

(
s − m

[[
s+l
m

]]))
1 − v

n∑
j=1

L
g
j |cij(s)|

]
ds

}
.



Periodic solutions of the Cohen-Grossberg neural networks model with DEPCA system 1229

For (3.13), we have

max
1≤i≤n

|yi(t)| ≤ max
1≤i≤n

|yi(τ)| exp
∫ t

τ

{
− dNa + max

1≤i≤n

[
d̄i

n∑
j=1

L
f
j |bij(s)|

+ d̄i

exp
(
dNa ·

(
s − m

[[
s+l
m

]]))
1 − v

n∑
j=1

L
g
j |cij(s)|

]
ds

}
.

Then, for any solution x(t) of (1.1), we easily get
max

1≤i≤n
|xi(t) − x∗

i (t)|

≤ max
1≤i≤n

|xi(τ) − x∗
i (τ)| exp

∫ t

τ

{
− dNa + max

1≤i≤n

 n∑
j=1

L
f
j b̃ij(s)

+
exp

(
dNa ·

(
s − m

[[
s+l
m

]]))
1 − v

n∑
j=1

L
g
j c̃ij(s)

]}
ds.

(3.14)

The uniqueness of the ω-periodic solution of system (1.1) follows from (S) and (3.14).
Moreover, the ω-periodic solution of the system (1.1) is globally exponentially stable and
this completes the proof of the theorem. □

As immediate corollaries of Theorem 3.11, the following results are true.

Corollary 3.12. Suppose that the assumptions of Corollary 3.6 and

dNa − max
1≤i≤n

d̄i

n∑
j=1

L
f
j |b̄ij | + exp (dNa · (m − l))

1 − v
d̄i

n∑
j=1

L
g
j |c̄ij |

 ≥ µ > 0

are satisfied, where

v := max
1≤i≤n

l · d̄i

 n∑
j=1

L
f
j

∣∣∣b̄ij

∣∣∣+ 1 − exp (−dNal)
dNa

n∑
j=1

L
g
j |c̄ij |

 < v̄ < 1.

Then the ω-periodic solution of the system (1.1) is globally exponentially stable.

Corollary 3.13. Suppose that the assumptions of Corollary 3.7 and

diai − max
1≤i≤n

d̄i

n∑
j=1

L
f
j |bij | + exp(diai · (m − l))

1 − v
d̄i

n∑
j=1

L
g
j |cij |

 ≥ µ > 0

are satisfied, where

v := max
1≤i≤n

l · di

 n∑
j=1

L
f
j |bij | + 1 − exp (−dNal)

dNa

n∑
j=1

L
g
j |cij |

 < v̄ < 1.

Then the ω-periodic solution of the system (1.1) with constant coefficients is globally ex-
ponentially stable.

Remark 3.14. Suppose that the assumptions of Remark 3.8 and

ai − max
1≤i≤n

 n∑
j=1

L
f
j |b̄ij | + exp(ai · (m − l))

1 − v

n∑
j=1

L
g
j |c̄ij |

 ≥ µ > 0 (3.15)
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are satisfied, where

v := max
1≤i≤n

l ·

 n∑
j=1

L
f
j |bij | + 1 − exp (−ail)

ai

n∑
j=1

L
g
j |cij |

 < v̄ < 1.

Then the ω-periodic solution of Hopfield neural networks model with DEPCA system (3.8)
is globally exponentially stable.

4. Examples and simulations
In this section, we give two examples with numerical simulations to illustrate the effec-

tiveness of the proposed methods and results.
Example 1. Consider the following nonautonomous 2-dimensional Cohen-Grossberg neu-
ral networks model with DEPCA system:

x′
1 = −d1(x1)

{
a1(x1) −

n∑
j=1

b1j(t)fj(xj)

−
n∑

j=1
c1j(t)gj

(
xj

(
2
[[

t + 1
2

]]))
− J1(t)

}
,

x′
2 = −d2(x2)

{
a2(x2) −

n∑
j=1

b2j(t)fj(xj)

−
n∑

j=1
c2j(t)gj

(
xj

(
2
[[

t + 1
2

]]))
− J2(t)

}
,

(4.1)

where
a1(u) = 0.25u,
a2(u) = 0.6u,

d1(u) = 1.7 − 0.1 sin(πu),
d2(u) = 1.2 + 0.1 cos(πu),

b11(t) = 0.2 sin(πt),
b12(t) = 0.15 cos(πt),

b21(t) = 0.15 cos(πt),
b22(t) = 0.2 sin(πt),

c11(t) = 0.125 sin(πt),
c12(t) = 0.25 sin(πt),

c21(t) = 0.25 cos(πt),
c22(t) = 0.125 cos(πt),

f1(u) = |u+1|
16 ,

f2(u) = |u−1|
16 ,

g1(u) = tanh (0.125u) ,
g2(u) = tanh (0.25u) ,

J1(t) = 0.8 + 0.7 sin(πt), J2(t) = 0.8 − 0.7 cos(πt).
Through simple computation, we have the distances m − l = 1, l = 1, Ld

1 = Ld
2 = 0.1,

La
1 = Na

1 = 0.25, La
2 = Na

2 = 0.6, L
f
1 = L

f
2 = 1/16, L

g
1 = 0.125, L

g
2 = 0.25, d1 = 1.6,

d1 = 1.8, d2 = 1.1, d2 = 1.3 and {2k − 1}k∈N, {2k}k∈N satisfy the (2, 1) condition.
It follows that:

(a) Let p1 = 9, p2 = 5 and σ = 1.5,

1.6609375 = Na
1p1 −

2∑
j=1

[
pj

(
L

f
j

∣∣∣b̄1j

∣∣∣+ L
g
j |c̄1j |

)]
> σ = 1.5,

1.9875 = Na
2p2 −

2∑
j=1

[
pj

(
L

f
j

∣∣∣b̄2j

∣∣∣+ L
g
j |c̄2j |

)]
> σ = 1.5.
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(b)

dNa − max
1≤i≤2

d̄i

2∑
j=1

L
f
j |b̄ij | + exp(dNa · (m − l))

1 − v
d̄i

2∑
j=1

L
g
j |c̄ij |



≈ 0.64667 > 0,

where

v : = max
1≤i≤n

l · di

 n∑
j=1

L
f
j |bij | + 1 − exp (−dNal)

dNa L
g
j |cij |


≈ 0.14889 < 1.

One can see that all conditions (B), (L), (I), (P) and (3.5) in Corollary 3.12 are satisfied.
Therefore, the system (4.1) has a 2-periodic solution and all other solution of the system
(4.1) converge exponentially to it as t → ∞. The numerical simulations are given in Figs.
1-3.
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t

1.8

2

2.2

2.4

2.6

2.8

3

x 1

0 5 10 15 20
t

0.8

1

1.2

1.4

1.6

1.8

x 2

Fig. 1. Exponential convergence of two trajectories towards a 2-periodic solution of the system (4.1).
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1.6

1.7

1.8

x 2

Fig. 2. Phase plane behavior of the state variables x1 and x2 for the system (4.1).
Initial conditions: (a) (1.6, 1.7) in red and (b) (2.5, 1.8) in blue.
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Fig. 3. Phase response behavior of state variables x(t) for the system (4.1) with the initial condition
(1.736, 1.028).

Example 2. Let d1(x1) = 1.05+0.15 cos
(

2π
3 x1

)
, d2(x2) = 1.05−0.15 sin

(
2π
3 x2

)
, a(x1) =

0.25x1, a(x2) = 0.3x2, b11(t) ≡ 0.25, b12(t) = b21(t) ≡ 0.3, b22(t) = c12(t) = c21(t) ≡ 0.125,
c11(t) ≡ 0.2, c22(t) ≡ 0.3, J1(t) = 0.2 + 0.2 sin

(
2π
3 t
)

and J2(t) = 0.2 + 0.2 cos
(

2π
3 t
)
. Then

we have the following Cohen-Grossberg neural networks model with DEPCA system:

x′
1(t) =

(
1.05 + 0.15 cos

(2π

3
x1(t)

))

×
[

− 0.25(x1(t)) + 0.25 tanh
((x1(t))

10

)
+ 0.3 tanh

((x2(t))
10

)

+ 0.2 tanh

x1
(
3
[[

t+1
3

]])
10

+ 0.125 tanh

x2
(
3
[[

t+1
3

]])
10


+ 0.2 + 0.2 sin

(2π

3
t

)]
,

x′
2(t) =

(
1.05 − 0.15 sin

(2π

3
x2(t)

))

×
[

− 0.3(x2(t)) + 0.3 tanh
((x1(t))

10

)
+ 0.125 tanh

((x2(t))
10

)

+ 0.125 tanh

x1
(
3
[[

t+1
3

]])
10

+ 0.3 tanh

x2
(
3
[[

t+1
3

]])
10


+ 0.2 + 0.2 cos

(2π

3
t

)]
.

(4.2)

Through simple computation, we have the distances m − l = 1, l = 2, Ld
1 = Ld

2 = 0.15,
La

1 = Na
1 = 0.25, La

2 = Na
2 = 0.15, L

f
i = L

g
i = 0.1, di = 0.9, di = 1.2, i = 1, 2 and

{3k − 1}k∈N, {3k}k∈N satisfy the (3, 1) condition. It follows that:

(a) Let p1 = 5, p2 = 6 and σ = 0.4,

0.77 = Na
1p1 −

2∑
j=1

[
pj

(
L

f
j

∣∣∣b̄1j

∣∣∣+ L
g
j |c̄1j |

)]
> σ = 0.4,
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0.4325 = Na
2p2 −

2∑
j=1

[
pj

(
L

f
j

∣∣∣b̄2j

∣∣∣+ L
g
j |c̄2j |

)]
> σ = 0.4.

(b)

dNa − max
1≤i≤2

d̄i

2∑
j=1

L
f
j |b̄ij | + exp(dNa · (m − l))

1 − v
d̄i

2∑
j=1

L
g
j |c̄ij |


≈ 0.00987 > 0,

where

v : = max
1≤i≤n

l · di

 n∑
j=1

L
f
j |bij | + 1 − exp (−dNal)

dNa L
g
j |cij |


≈ 0.098707 < 1.

In this case, we can easily verify that all conditions of Corollary 3.12 are satisfied. Thus,
according to Corollary 3.12, the system (4.2) has a 3–periodic solution and all other solu-
tion of the system (4.2) converge exponentially to it as t → ∞. The numerical simulations
are given in Figs. 4-6.
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Fig. 4. Exponential convergence of two trajectories towards a 3–periodic solution of the system (4.2).
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Fig. 5. Phase plane behavior of the state variables x1 and x2 for the system (4.2) with the initial value:
(1.7, 1.1).
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Fig. 6. Phase response behavior of state variables x(t) for the system (4.2).

5. Conclusions
This is the first time that differential equations with alternately advanced and retarded

argument have been applied to the model of the Cohen-Grossberg neural networks model,
and this paper has provided sufficient conditions guaranteeing the existence and global
exponential stability of periodic solutions of the Cohen-Grossberg neural networks model
for the considered system based on a DEPCA integral inequality of Gronwall type and
Brouwer’s fixed point theorem. In addition, our method gives new ideas not only from the
modeling point of view, but also from that of theoretical opportunities since the Cohen-
Grossberg neural networks model involves piecewise constant argument of both advanced
and delayed types. The obtained results could be useful in the design and applications of
the Cohen-Grossberg neural networks model. Furthermore, the examples with numerical
simulations are given to show the effectiveness of the proposed method and results.

Acknowledgment. The author expresses the sincere gratitude to the editor and two
anonymous referees for the careful reading of the original manuscript and useful comments
that helped to improve the presentation of the results and accentuate important details.
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