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Abstract: This paper aims to investigate an approximate-analytical and numerical solutions for some 1D

and 2D dispersive homogeneous and non-homogeneous KdV equations by employing two reliable methods

namely reduced differential transform method (RDTM) and a classical finite-difference method. RDTM

provides an analytical approximate solution in the form of a convergent series. The classical finite-difference

method (FDM) to solve dispersive KdV equations is employed by primarily checking Von Neumann’s

stability criterion. The performance of the mentioned methods for the considered experiments are compared

by computing absolute and relative errors at some spatial nodes at a given time; and to the best of our

knowledge, the comparison between these two methods for the considered experiments is novel. Knowledge

acquired will enable us to build methods for other related PDEs such as KdV-Burgers, stochastic KdV

and fractional KdV-type equations.

Keywords: Dispersive KdV equations, homogeneous, non-homogeneous, reduced differential transform

method, classical finite difference method.

1. Introduction

Nonlinear partial differential equations are obtained when problems in numerous domains in science

and engineering are modeled. Since the discovery of solitons in 1965 by Zabusky and Kruskal [24],

numerous nonlinear PDEs have been derived and extensively applied in many branches of physics

and mathematics; for example, they appear in fluid mechanics, chemical kinetics, plasma physics,

nonlinear optics, condensed matter, solid-state physics, the theory of turbulence, ocean dynamics,

biophysics and star formation and others. The well-known Korteweg-de Vries (KdV) equation is

a nonlinear dispersive partial differential equation that describes solitary water waves (also called
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solitons) in a shallow water. This equation is given by

ut + γuux + βuxxx = 0, β > 0, (1)

which describes the evolution of small amplitude, long water waves down a canal of rectangular

cross-section [20].

Semi-analytical methods for solving some linear as well as nonlinear partial differential

equations provide approximate analytical solutions, among which we can mention Adomian de-

composition method [4, 5, 22], variational iteration method [1] and homotopy perturbation method

[13–15]. The authors in [3] investigated classical and multisymplectic schemes for linearized KdV

equations using some numerical methods and dispersion analysis was studied. Some semi-analytic

methods were also applied to study linear and nonlinear dispersive KdV equations by Appadu et

al. [8, 10].

The aim of this paper is to provide a comparative study for solving 1D homogeneous and 2D

non-homogeneous dispersive KdV type equations using RDTM and classical FDM for the first time

in literature. The obtained solutions by these mentioned methods will be compared to confirm the

reliability of the used methods.

2. Numerical Experiment

We investigate two numerical experiments, as stated below:

(i) One-dimensional homogeneous nonlinear dispersive KdV equation [23]

ut + 6uux + uxxx = 0, (2)

with (x, t) ∈ [0,2π] × [0,0.10) . The initial condition is u(x,0) = x and the boundary

conditions are u(0, t) = 0, ux(0, t) =
1

1 + 6t
, uxx(0, t) = 0. The exact solution is u(x, t) =

x

1 + 6t
.

(ii) Two-dimensional dispersive non-homogeneous KdV equation given by

∂u

∂t
+ ∂3u

∂x3
+ ∂3u

∂y3
= exp(t) cos(x − y), (3)

with(t, x, y) ∈ [0, T ] ×Ω, T > 0, Ω = [0,1.0] × [0,1.0], subject to the initial condition

u(0, x, y) = sin(x − y) (4)

and time-dependent boundary conditions

u(t, x, 0) = exp(t) cos(x), u(t, x, 1) = exp(t) cos(1 − x)

u(t,0, y) = exp(t) cos(y), u(t,1, y) = exp(t) cos(1 − y)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (5)
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The exact solution is

u(t;x, y) = exp(t) cos(x − y), (6)

The paper is organized as follows. The two numerical experiments considered are described

in Section 2. Section 3 describes the methodology of the reduced differential transform method

(RTDM). In Section 4, we apply the RDTM to solve the homogeneous 1D and the 2D non-

homogeneous dispersive KdV-type equations given in Equations (2) and (3), respectively. Section

5 is devoted to the application of the classical finite difference method to solve the considered

numerical experiments in Section 2. This section also compares numerical results with the ap-

proximate series solutions obtained via RDTM. The obtained numerical results demonstrate the

significant features such as efficiency and stability of the proposed schemes, and hence the employed

techniques may be considered to solve other nonlinear as well as fractional problems. Section 6

highlights the salient features of the present study.

3. Reduced Differential Transform Method (RDTM)

Zhao [25] introduced differential transform method (DTM) to solve PDEs involved in electric circuit

problems. DTM involves Taylor series expansion, which gives a polynomial series solution via an

iterative procedure. Reduced differential transform method (RDTM) is very powerful method to

obtain analytical approximate solutions to linear and nonlinear partial differential equations [18]

and for systems of differential equations [12]. Basic definitions and properties for RDTM can be

found in [7, 18, 19].

Definition 3.1 Consider a function of n + 1 variables. The reduced differential transform of

u(X̃, t) = u(x1, x2,⋯, xn, t) (where X̃ ∈ Rn ) with respect to t is defined by

Uk(X̃) =
1

k!
[ ∂

k

∂tk
u(X̃, t)]

t=0
, k = 0,1,2,⋯, (7)

where Uk(X̃) denotes the transform function of u(X̃, t) .

Definition 3.2 The differential inverse transform of {Uk(X̃)}nk=0 is defined by

u(X̃, t) =
∞
∑
k=0

Uk(X̃) tk. (8)

By substituting Equation (7) into Equation (8), we obtain

u(X̃, t) =
∞
∑
k=0

1

k!
[ ∂

k

∂tk
u(X̃, t)]

t=0
tk.
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From the above definitions, we see that RDTM is obtained from power series expansion.

Please note that RDTM is close to the one dimensional DTM because RDTM is considered to be

the standard DTM of u(x, t) with respect to the variable t . However, the corresponding recursive

algebraic equation is the function of the variable X̃ = (x1, x2,⋯, xn) .

The fundamental mathematical operations for RDTM [18, 19] are listed in Table 1.

Table 1: Transformed functions using RDTM

Function f(X̃, t) Transformed function Fk(X̃)

au(X̃, t) ± bv(X̃, t) aUk(X̃) ± bVk(X̃)

u(X̃, t) ⋅ v(X̃, t)
k

∑
i=0

Ui(X̃) ⋅ Vk−i(X̃)

∂n

∂tn
u(X̃, t) (k + n)!

k!
Uk+n(X̃)

∂n

∂xn
i

u(X̃, t) ∂nUk(X̃)
∂xi

xmtnu(X̃, t) X̃m̄tnUk−n(X̃)(where X̃m̄ = xm1

1 xm2

2 ⋯xmn
n )

sin
⎛
⎝
αx + βy + γz +w t

⎞
⎠

wk

k!
⋅ sin
⎛
⎝
kπ

2!
+ αx + βy + γz

⎞
⎠

cos
⎛
⎝
αx + βy + γz +w t

⎞
⎠

wk

k!
⋅ cos
⎛
⎝
kπ

2!
+ αx + βy + γz

⎞
⎠

exp(λt + µx) λk

k!
⋅ exp(µx)

To set forth the reduced differential transform approach, consider the operator form of the

general PDE

Ltu(X̃, t) +Ru(X̃, t) +Nu(X̃, t) = g(X̃, t), (9)

with initial condition u(X̃,0) = h(X̃), where Lt = ∂
∂t

, R is a linear operator that includes partial

derivatives with respect to X̃ , N is a nonlinear operator and g is a non-homogeneous term, which

is u -independent.
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According to the procedures of RDTM and Table 1, we can construct the following recursive

formula:

(k + 1) Uk+1(X̃) = Gk(X̃) −RUk(X̃) −NUk(X̃), (10)

where Uk(X̃) , RUk(X̃) , NUk(X̃) and Gk(X̃) are the transformations of the functions Ltu(X̃, t) ,

Ru(X̃, t) , Nu(X̃, t) and g(X̃, t) . From initial condition u(X̃,0) = f(X̃) , we write

U0(X̃) = f(X̃). (11)

Substituting Equation (11) into Equation (10) and using a straightforward iterative com-

putation, we obtain the values of Uk(X̃) for k = 1,2,⋯, n . Then, the inverse transformation of

{Uk(X̃)}nk=0 gives the approximation solution as

ūn(X̃, t) =
n

∑
k=0

Uk(X̃) tk, (12)

where n is the order of approximation solution. Therefore, the exact solution is given by

u(X̃, t) = lim
n→∞

ūn(X̃, t). (13)

3.1. Application of RDTM to the 1D-dispersive Nonlinear KdV Equation

Consider the homogeneous nonlinear KdV equation

ut + 6uux + uxxx = 0, (14)

with initial condition

u(x,0) = x. (15)

By now applying differential transform of Equation (14) and the initial condition (15),

respectively,

(k + 1) Uk+1(x) + 6
k

∑
r=0

Ur(x)
∂Uk−r(x)

∂x
+ ∂3Uk(x)

∂x3
= 0, (16)

where the t -dimensional spectrum function Uk(x) are the transformed functions.

From the initial condition (15), we write

U0(x) = x. (17)

By now substituting Equation (17) into Equation (16), we obtain the following Uk(x) values

successively:
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.
.
.

U1(x) = −6U0(x)
∂U0(x)

∂x
− ∂3Uk(x)

∂x3
= −6x,

U2(x) = −
6

2
⋅ (U0(x)

∂U1(x)
∂x

+U1(x)
∂U0(x)

∂x
) − 1

2

∂3U1(x)
∂x3

= 36x = 62x,

U3(x) = −
6

3
⋅ (U0(x)

∂U2(x)
∂x

+U1(x)
∂U1(x)

∂x
+U2(x)

∂U0(x)
∂x

) − 1

3

∂3U2(x)
∂x3

= −216x = −63x,

U4(x) = −
6

4
⋅ (U0(x)

∂U3(x)
∂x

+U1(x)
∂U2(x)

∂x
+U2(x)

∂U1(x)
∂x

+U3(x)
∂U0(x)

x
) − 1

4

∂3U3(x)
∂x3

= 1296x = 64x,

U5(x) = −
6

5
⋅ (U0(x)

∂U4(x)
∂x

+U1(x)
∂U3(x)

∂x
+U2(x)

∂U2(x)
∂x

+U3(x)
∂U1(x)

x
+U4(x)

∂U0(x)
∂x

)

− 1

4

∂3U4(x)
∂x3

= −7776x = −65x

.
.
.

and so on. Then, by applying the differential-inverse transform {Uk(x)}k≥0 gives the following

approximate solution

u(x, t) = ∑
k≥0

Uk(x) tk = x − 6xt + 36xt2 − 216xt3 + 1296xt4 − 7776xt5 +⋯

= x [1 − 6t + (6t)2 − (6t)3 + (6t)4 − (6t)5 +⋯] = x

1 + 6t
, for ∣ − 6t∣ < 1, (18)

which coincides with the exact solution of Equation (2).

Plots of exact and numerical solution vs x are displayed in Figure 1. We obtain plots of

absolute error vs x at three different values of time in Figure 2.
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Figure 1: Plots of exact solution and approximate solution using RDTM (5-terms) vs x at times
0.01, 0.05, 0.10 (The space interval used for these plots is π

10
≈ 0.314)

Figure 2: Plots of absolute errors vs x at times (t = 0.01,0.05,0.10), using RDTM (5-terms)

The absolute error and relative errors at a given spatial node xj and given time tn are

obtained as follows:

Absolute Error = ∣u(xj , tn) −U(xj , tn)∣,

Relative Error = ∣u(xj , tn) −U(xj , tn)∣
∣u(xj , tn)∣

,

where u(xj , tn) denotes the exact solution and U(xj , tn) is the numerical solution at a given

spatial node xj and given time tn .
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We also compare the absolute and relative errors at some values of x at three different times

in Table 2.

Table 2: Absolute and Relative errors at times (t = 0.01,0.05,0.1), using RDTM

t Values of x Exact solution Numerical solution Absolute error Relative error
0.000 0.000000 0.000000 0.000000 —
0.314 0.296226 0.296226 1.382074×10−8 4.665600×10−8
0.942 0.888679 0.888679 4.146222×10−8 4.665600×10−8
1.570 1.481132 1.481132 6.910370×10−8 4.665600×10−8
2.198 2.073585 2.073585 9.674518×10−8 4.665600×10−8
2.826 2.666038 2.666038 1.243867×10−7 4.665600×10−8

0.01 3.454 3.258491 3.258490 1.520281×10−7 4.665600×10−8
4.082 3.850943 3.850943 1.796696×10−7 4.665600×10−8
4.710 4.443396 4.443396 2.073111×10−7 4.665600×10−8
5.338 5.035849 5.035849 2.349526×10−7 4.665600×10−8
5.966 5.628302 5.628302 2.625941×10−7 4.665600×10−8
6.280 5.924528 5.924528 2.764148×10−7 4.665600×10−8
0.000 0.000000 0.000000 0.000000 —
0.314 0.241538 0.241362 1.760815×10−4 7.290000×10−4
0.942 0.724615 0.724087 5.282446×10−4 7.290000×10−4
1.570 1.207692 1.206812 8.804077×10−4 7.290000×10−4
2.198 1.690769 1.689537 1.232571×10−3 7.290000×10−4
2.826 2.173846 2.172261 1.584734×10−3 7.290000×10−4

0.05 3.454 2.656923 2.654986 1.936897×10−3 7.290000×10−4
4.082 3.140000 3.137711 2.289060×10−3 7.290000×10−4
4.710 3.623077 3.620436 2.641223×10−3 7.290000×10−4
5.338 4.106154 4.103160 2.993386×10−3 7.290000×10−4
5.966 4.589231 4.585885 3.345549×10−3 7.290000×10−4
6.280 4.830769 4.827248 3.521631×10−3 7.290000×10−4
0.000 0.000000 0.000000 0.000000 —
0.314 0.196250 0.187094 9.156240×10−3 4.665600×10−2
0.942 0.588750 0.561281 2.746872×10−2 4.665600×10−2
1.570 0.981250 0.935469 4.578120×10−2 4.665600×10−2
2.198 1.373750 1.309656 6.409368×10−2 4.665600×10−2
2.826 1.766250 1.683844 8.240616×10−2 4.665600×10−2

0.10 3.454 2.158750 2.058031 1.007186×10−1 4.665600×10−2
4.082 2.551250 2.432219 1.190311×10−1 4.665600×10−2
4.710 2.943750 2.806406 1.373436×10−1 4.665600×10−2
5.338 3.336250 3.180594 1.556561×10−1 4.665600×10−2
5.966 3.728750 3.554781 1.739686×10−1 4.665600×10−2
6.280 3.925000 3.741875 1.831248×10−1 4.665600×10−2

Remark 3.3 Table 2 shows that RDTM is very effective at small and medium propagation time

but become less effective at longer propagation time. Some real life applications where solving KdV

equation over short propagation involve weather forecast after Tsunami, Tectonic scenarios and

earth quake modeling and simulation of optical laser short pulses along fibres.

4. Application of RDTM to the 2D-Linearized KdV Equation

We now show the applicability of RDTM to solve Equation (3). If we apply RDTM to Equations (3)

and (4) and using Table 1, we obtain the following recursive equation

Uk+1(x, y) = −
1

k + 1

⎧⎪⎪⎨⎪⎪⎩

∂3Uk(x, y)
∂x3

+ ∂3Uk(x, y)
∂y3

− cos(x − y) ( 1
k!
)
⎫⎪⎪⎬⎪⎪⎭
. (19)

From Equation (7), the initial conditions given in Equation (4) can be transformed at t = 0
as

U0(x, y) = cos(x − y). (20)
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Substituting the transformed condition of Equation (20) into Equation (19) and by a

straightforward iterative steps, the following Uk(t, x, y), k = 0,1,2,⋯, n values are obtained:

U1(x, y) = − (−(U0,3x +U0,3y) + cos(x − y)) = cos(x − y)

U2(x, y) = −
1

2
⋅ (−(U1,3x +U1,3y) + cos(x − y)) =

1

2!
cos(x − y)

U3(x, y) = −
1

3
⋅ (−(U2,3x +U2,3y) +

1

2!
cos(x − y)) =

1

3!
cos(x − y)

U4(x, y) = −
1

4
⋅ (−(U3,3x +U3,3y) +

1

3!
cos(x − y)) =

1

4!
cos(x − y)

U5(x, y) = −
1

5
⋅ (−(U4,3x +U4,3y) +

1

4!
cos(x − y)) =

1

5!
cos(x − y)

U6(x, y) = −
1

6
⋅ (−(U5,3x +U5,3y) +

1

5!
cos(x − y)) =

1

6!
cos(x − y)

U7(x, y) = −
1

7
⋅ (−(U6,3x +U6,3y) +

1

6!
cos(x − y)) =

1

7!
cos(x − y)

U8(x, y) = −
1

8
⋅ (−(U7,3x +U7,3y) +

1

7!
cos(x − y)) =

1

8!
cos(x − y)

U9(x, y) = −
1

9
⋅ (−(U8,3x +U8,3y) +

1

8!
cos(x − y)) =

1

9!
cos(x − y)

U10(x, y) = −
1

10
⋅ (−(U9,3x +U9,3y) +

1

9!
cos(x − y)) =

1

(10)!
cos(x − y)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (21)

where Uk,x(x, y) =
∂Uk(x, y)

∂xk
. We can easily inspect from Equation (21) that the concise formu-

lation, after many iterations, takes the form

Uk(x, y) =
(−1)2k

(k)!
⋅ cos(x − y), for k ∈ Z+.

Then, using the inverse transformation in Equation (8) of the set of values of {Uk(x, y)}nk=0
gives the tenth-order approximate solution as

u(t, x, y) ≈
10

∑
k=0

Uk(x, y) tk = cos(x − y)
⎧⎪⎪⎨⎪⎪⎩
1 + t + t2

2!
+ t3

3!
+ t4

4!
+ t5

5!
+ t6

6!
+ t7

7!
+ t8

8!
+ t9

9!
+ t10

(10)!
+⋯
⎫⎪⎪⎬⎪⎪⎭
,

which coincides with the exact solution given in Equation (6) on the limit.

As an illustration of the application of RDTM, Tables 3-5 shows absolute and relative errors

for the 2D linearized dispersive KdV equation given in Equation (3) using the first ten-terms of

the approximate solution by RDTM. Graphical representation of the exact and RDTM solution is

shown in Figures 3 - 5.
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Figure 3: Graphs of the exact and numerical solution via RDTM for Equation (3) on Ω = (0,1)2
at t = 0.10 used spatial step sizes ∆x =∆y = 0.1

Table 3: A comparison between the exact solution and RDTM solution at some values of x and y
at time t = 0.10

t x y Exact RDTM Absolute error Relative error
0.0 0.0 1.105171 1.105171 4.440892 × 10−16 4.018285 × 10−16
0.2 0.2 1.105171 1.105171 4.440892 × 10−16 4.018285 × 10−16

0.4 1.083141 1.083141 4.440892 × 10−16 4.100013 × 10−16
0.6 1.017929 1.017929 4.440892 × 10−16 4.362670 × 10−16
0.8 9.121369 × 10−1 9.121369 × 10−1 3.330669 × 10−16 3.651501 × 10−16

0.10 0.4 0.2 1.083141 1.083141 4.440892 × 10−16 4.100013 × 10−16
0.4 1.105171 1.105171 4.440892 × 10−16 4.018285 × 10−16
0.6 1.083141 1.083141 4.440892 × 10−16 4.100013 × 10−16
0.8 1.017929 1.017929 4.440892 × 10−16 4.362670 × 10−16

0.6 0.2 1.017929 1.017929 4.440892 × 10−16 4.362670 × 10−16
0.4 1.083141 1.083141 4.440892 × 10−16 4.100013 × 10−16
0.6 1.105171 1.105171 4.440892 × 10−16 4.018285 × 10−16
0.8 1.083141 1.083141 4.440892 × 10−16 4.100013 × 10−16

0.8 0.2 9.121369 × 10−1 9.121369 × 10−1 3.330669 × 10−16 3.651501 × 10−16
0.4 1.017929 1.017929 4.440892 × 10−16 4.362670 × 10−16
0.6 1.083141 1.083141 4.440892 × 10−16 4.100013 × 10−16
0.8 1.105171 1.105171 4.440892 × 10−16 4.018285 × 10−16

1.0 1.0 1.105171 1.105171 4.440892 × 10−16 4.018285 × 10−16

.
.
.

Figure 4: Graphs of the exact and numerical solution via RDTM of Equation. (3) on Ω = (0,1)2
at t = 1.0 used spatial step sizes ∆x =∆y = 0.1
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Figure 5: Graphs of the exact and numerical solution via RDTM of Equation (3) on Ω = (0,1)2
at t = 2.0 used spatial step sizes ∆x =∆y = 0.1

.
.

Table 4: A comparison between the exact solution and RDTM solution at some values of x and y
at time t = 1.0

t x y Exact RDTM Absolute error Relative error
0.0 0.0 2.718282 2.718282 2.731266 × 10−8 1.004777 × 10−8
0.2 0.2 2.718282 2.718282 2.731266 × 10−8 1.0047766 × 10−8

0.4 2.664097 2.664097 2.676823 × 10−8 1.004777 × 10−8
0.6 2.503703 2.503703 2.515663 × 10−8 1.004777 × 10−8
0.8 2.243495 2.243495 2.254211 × 10−8 1.004777 × 10−8

1.0 0.4 0.2 2.664097 2.664097 2.676823 × 10−8 1.004777 × 10−8
0.4 2.718282 2.718282 2.731266 × 10−8 1.004777 × 10−8
0.6 2.664097 2.664097 2.676823 × 10−8 1.004777 × 10−8
0.8 2.503703 2.503703 2.515663 × 10−8 1.004777 × 10−8

0.6 0.2 2.503703 2.503703 2.515663 × 10−8 1.004777 × 10−8
0.4 2.664097 2.664097 2.676823 × 10−8 1.004777 × 10−8
0.6 2.718282 2.718282 2.731266 × 10−8 1.004777 × 10−8
0.8 2.664097 2.664097 2.676823 × 10−8 1.004777 × 10−8

0.8 0.2 2.243495 2.243495 2.254211 × 10−8 1.004777 × 10−8
0.4 2.503703 2.503703 2.515663 × 10−8 1.004777 × 10−8
0.6 2.664097 2.664097 2.6768226 × 10−8 1.004777 × 10−8
0.8 2.718282 2.718282 2.731266 × 10−8 1.004777 × 10−8

1.0 1.0 2.718282 2.718282 2.731266 × 10−8 1.0047766 × 10−8

11
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Table 5: A comparison between the exact solution and RDTM solution at some values of x and y
at time t = 2.0

t x y Exact RDTM Absolute error Relative error
0.0 0.0 7.389056 7.388995 6.138994 × 10−5 8.308224 × 10−6
0.2 0.2 7.389056 7.38899 6.138994 × 10−5 8.308224 × 10−6

0.4 7.241767 7.241707 6.016622 × 10−5 8.308224 × 10−6
0.6 6.805771 6.805715 5.654388 × 10−5 8.308224 × 10−6
0.8 6.098451 6.098400 5.066730 × 10−5 8.308224 × 10−6

2.0 0.4 0.2 7.241767 7.241707 6.016622 × 10−5 8.308224 × 10−6
0.4 7.389056 7.388995 6.138994 × 10−5 8.30822437 × 10−6
0.6 7.241767 7.241707 6.016622 × 10−5 8.308224 × 10−6
0.8 6.8057714 6.805715 5.654388 × 10−5 8.308224 × 10−6

0.6 0.2 6.805771 6.805715 5.654388 × 10−5 8.308224 × 10−6
0.4 7.241767 7.241707 6.016622 × 10−5 8.308224 × 10−6
0.6 7.389056 7.388995 6.138994 × 10−5 8.308224 × 10−6
0.8 7.241767 7.241707 6.016622 × 10−5 8.308224 × 10−6

0.8 0.2 6.098451 6.098400 5.066730 × 10−5 8.308224 × 10−6
0.4 6.805771 6.805715 5.654388 × 10−5 8.308224 × 10−6
0.6 7.241767 7.241707 6.016622 × 10−5 8.308224 × 10−6
0.8 7.389056 7.388995 6.138994 × 10−5 8.308224 × 10−6

1.0 1.0 7.389056 7.388995 6.138994 × 10−5 8.308224 × 10−6

Remark 4.1 Tables 3 - 5 provide comparison between exact and RDTM solution with correspond-

ing absolute and relative errors given. The relative error is of order 10−16 at t = 0.10 , of order

10−8 at time t = 1.0 and of order 10−6 at t = 2.0 .

5. Classical Finite Difference Method

In this section, we employ the classical finite difference method to solve some dispersive KdV

equations and we also compare the numerical results with the RDTM method. The following

central-difference approximations can be used to handle derivatives used in the numerical experi-

ments:

∂u

∂t
∣
n

i
≈ un+1

i − un−1
i

2∆t

∂u

∂x
∣
n

i
≈ un

i+1 − un
i−1

2∆x

∂3u

∂x3
∣
n

i
≈ un

i+2 − 2un
i+1 + 2un

i−1 − un
i−2

2(∆x)3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (22)

where h = ∆x and k = ∆t are the spatial and temporal step sizes, respectively and xi =

(i − 1) ⋅ h, tj = (j − 1) ⋅ k, i = 1,2,⋯ and j = 1,2,⋯ , where superscript j denotes a quantity

associated with time level tj and subscript i denotes a quantity associated with space mesh point
xi .

12
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5.1. Solution of Numerical Experiment 1 Using Finite Difference Scheme

Let’s consider the homogeneous dispersive KdV equation

ut + 6uux + uxxx = 0

u(x,0) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (23)

By using the method proposed by Zabusky-Kruskal in [24], Equation (23) is discretized as

un+1
i − un−1

i

2∆t
= −6(u

n
i−1 + un

i + un
i+1

3
)(u

n
i+1 − un

i−1
2∆x

) − (u
n
i+2 − 2un

i+1 + 2un
i−1 − un

i−2
2(∆x)3

) . (24)

The scheme is given by

un+1
i = un−1

i − 2∆t

∆x
⋅ (un

i−1 + un
i + un

i+1) (un
i+1 − un

i−1) −
∆t

(∆x)3
⋅ (un

i+2 − 2un
i+1 + 2un

i−1 − un
i−2) . (25)

We next study the stability of the scheme. Using Von Neumann stability analysis [9] and

freezing coefficient technique [21], we get

ξ2 + Sξ − 1 = 0, (26)

where

S = (12umaxλI sin(ω)) + λ
h2 (2I sin(2ω) − 4I sin(ω))

λ = k
h
, I =

√
−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (27)

Solving Equation (26) gives

ξ = −S ±
√
S2 + 4

2
, (28)

where S is given in Equation (27). A condition for stability criterion  is obtained by finding a

condition for ∆t,∆x so that for all θ, ξ an inequality ∣ξ∣ ≤ 1 is true; that is,

4 − (12umaxλ sin(ω) +
λ

h2
(2 sin(2ω) − 4 sin(ω)) )

2

≥ 0, (29)

which gives ∣{12umaxλ sin(2ω) + λ
h2 (2 sin(2ω) − 4 sin(ω))}∣ ≤ 2.

Since the second expression in the bracket for the above inequality dominates the first for

small values of h , we obtain ω = 2π
3

from the second expression which gives the maximum value

for the inequality.

On substituting this into the inequality, we obtain the region of stability as

∣λ∣ ≤ 2

∣{12umax sin(2ω) + 1
h2 (2 sin(2ω) − 4 sin(ω))}∣

≤
RRRRRRRRRRRR

2

6
√
3umax − 3

√
3

h2

RRRRRRRRRRRR
=
RRRRRRRRRRR

2

3
√
3(2umax − 1

h2 )

RRRRRRRRRRR
.

(30)
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By considering h =∆x = π
10

and using Equation (30), we obtain

0 <∆t ≤ 0.3849002

2umax − 10.142399
. (31)

By choosing umax = 2π ≈ 6.283 , Equation (31) gives 0 < ∆t ≤ 9.973539 × 10−2 . We run the

experiment with ∆x = π
10
≈ 0.314 and ∆t = 0.0001 .

We obtain plots of numerical and exact profiles vs x in Figure 6 and corresponding plots of

absolute errors vs x are shown in Figure 7.

Figure 6: Plots of exact solution and approximate solution at times 0.01,0.05,1.0, using classical
finite difference scheme with k = 0.0001 and h = π

10
= 0.314

14
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Table 6: Absolute/Relative errors at times (t = 0.01,0.05,1.0), using classical finite difference
scheme with k = 0.0001 (Numerical experiment 1)

t Values of x Exact solution Numerical solution Absolute error Relative error
0.000 0.0000000 0.0000000 0.00000 —-
0.314 0.1963495 0.1963495 0.000000 0.000000
0.942 0.5890486 0.5890489 3.1041015 × 10−7 5.2696863 × 10−7
1.570 0.98174770 0.9817485 7.8652172 × 10−7 8.0114444 × 10−7
2.198 1.3744468 1.3744478 9.6077894 × 10−7 6.9902953 × 10−7

0.01 2.826 1.7671459 1.7671470 1.1365772 × 10−6 6.4317115 × 10−7
3.454 2.1598449 2.1598462 1.2485592 × 10−6 5.7807814 × 10−7
4.082 2.5525440 2.5525456 6.3715406 × 10−7 2.496153 × 10−7
4.710 2.9452431 2.9452430 7.43802406 × 10−8 2.5254364 × 10−8
5.338 3.3379422 3.3379419 3.1556491 × 10−7 9.4538759 × 10−8
5.966 3.7306413 3.7306413 0.000000 0.000000
6.280 5.9275333 5.9275333 0.000000 0.000000
0.000 0.0000000 0.0000000 0.00000 —-
0.314 0.24166097 0.24166097 0.0000000 0.000000
0.942 0.72498292 0.72498312 2.3812425 × 10−7 3.2845498 × 10−7
1.570 1.2083049 1.2083053 4.2702059 × 10−7 3.5340467 × 10−7
2.198 1.6916268 1.6916274 5.4596386 × 10−7 3.2274486 × 10−7

0.05 2.826 2.17494876 2.1749495 6.9540557 × 10−7 3.1973423 × 10−7
3.454 2.6582707 2.6582715 8.2595631 × 10−7 3.1071189 × 10−7
4.082 3.1415927 3.1415935 8.3089143 × 10−7 2.6448096 × 10−7
4.710 3.6249146 3.6249151 4.9807088 × 10−7 1.3740210 × 10−7
5.338 4.1082365 4.1082364 1.6124848 × 10−7 3.925005 × 10−8
5.966 4.5915585 4.5915585 0.0000000 0.0000000
6.280 4.8332195 4.8332195 0.0000000 0.0000000
0.000 0.0000000 0.0000000 0.0000000 —-
0.314 0.0448799 0.0448799 0.0000000 0.0000000
0.942 0.1346397 0.1346395 1.4962311 × 10−7 1.1112852 × 10−6
1.570 0.2243995 0.2243997 2.3736019 × 10−7 1.0577573 × 10−6
2.198 0.3141593 0.3141606 1.3373548 × 10−6 4.2569325 × 10−6

1.0 2.826 0.4039191 0.4039205 1.4249419 × 10−6 3.5277909 × 10−6
3.454 0.4936788 0.4936786 2.8213009 × 10−7 5.7148508 × 10−7
4.082 0.5834386 0.5834377 9.8115697 × 10−7 1.6816798 × 10−6
4.710 0.6731984 0.6731999 1.4624647 × 10−6 2.1724125 × 10−6
5.338 0.7629582 0.7629605 2.3306310 × 10−6 3.0547295 × 10−8
5.966 0.8527180 0.8527180 0.00000000 0.0000000
6.280 0.8975979 0.89759794 0.0000000 0.0000000

Figure 7: Plots of absolute errors vs x at different values of times t = 0.01,0.05,1.0 , using classical
finite difference scheme with k = 0.0001 and h = π
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Remark 5.1 As shown in Figure 7, the scheme is very efficient at short, medium and long time

propagation. Table 6 displays absolute and relative errors at the spatial nodes for the three different

values of time, which indicates that the scheme is very efficient at short, medium and long time

propagation.

5.2. Solution of Numerical Experiment 2 Using Classical FDM

This section employs a classical finite-difference method to solve Equation (3). We will also compare

results with the approximate series solutions obtained via RDTM. In order to handle this, let’s

recall the following central difference approximations [11]:

∂u

∂t
∣
n

i,j
≈
Un+1

i,j −Un−1
i,j

2 ⋅∆t

∂u

∂x
∣
n

i,j
≈
Un

i+1,j −Un
i−1,j

2 ⋅∆x

∂3u

∂x3
∣
n

i,j
≈
Un

i+2,j − 2Un
i+1,j + 2Un

i−1,j −Un
i−2,j

2 ⋅ (∆x)3

∂3u

∂y3
∣
n

i,j
≈
Un

i,j+2 − 2Un
i,j+1 + 2Un

i,j−1 −Un
i,j−2

2 ⋅ (∆y)3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (32)

We point out that a rectangular domain is divided into square grids with each x and y -

intervals of length ∆x and ∆y , respectively, whereas each t -interval is of length ∆t . Without loss

of generality, we consider uniform grid ∆x =∆y = h , where

xi = (i − 1) ⋅∆x = (i − 1) ⋅ h, i = 1, . . . ,NP,

yj = (j − 1) ⋅∆y = (j − 1) ⋅ h, j = 1, . . . ,NP,

tn = (n − 1) ⋅∆t = (n − 1) ⋅ k, n ∈ N.

The discretized form of the scheme for Equation (3) is given by

Un+1
i,j −Un−1

i,j

2∆t
= − (

Un
i+2,j − 2Un

i+1,j + 2Un
i−1,j −Un

i−2,j

2 ⋅ (∆x)3
) − (

Un
i,j+2 − 2Un

i,j+1 + 2Un
i,j−1 −Un

i,j−2

2 ⋅ (∆y)3
)

+ exp((K − 1) ×∆t) cos ((i − 1)∆x − (j − 1)∆y) . (33)

Hence, the numerical scheme takes the form

Un+1
i,j = Un−1

i,j − rx (Un
i+2,j − 2Un

i+1,j + 2Un
i−1,j −Un

i−2,j) − ry (Un
i,j+2 − 2Un

i,j+1 + 2Un
i,j−1 −Un

i,j−2)

+ exp((K − 1) ×∆t) cos ((i − 1)∆x − (j − 1)∆y) , (34)
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where

rx =
∆t

(∆x)3
and ry =

∆t

(∆y)3
. (35)

For stability, we use Von Neumann stability analysis as given in [9] by considering Equation

(34) with source term to be zero since it is u -independent; i.e.,

Un+1
i,j = Un−1

i,j − rx (Un
i+2,j − 2Un

i+1,j + 2Un
i−1,j −Un

i−2,j) − ry (Un
i,j+2 − 2Un

i,j+1 + 2Un
i,j−1 −Un

i,j−2) . (36)

Substituting Un
i,j by ξn ⋅ eIωxi ⋅ eIωyj yields

ξn+1 exp [I(ωxi + ωyj)] = ξn−1 exp [I(ωxi + ωyj)] −
∆t

(∆x)3
⎛
⎝
ξn exp [I(ωx(i + 2) + ωyj)] − 2ξn exp [I(ωx(i + 1) + ωyj)]

+ 2ξn exp [I(ωx(i − 1) + ωyj)] − ξn exp [I(ωx(i − 2) + ωyj)]
⎞
⎠

− ∆t

(∆y)3
⎛
⎝
ξn exp [I(ωxi + ωy(j + 2))] − 2ξn exp [I(ωxi + ωy(j + 1))]

+ 2ξn exp [I(ωxi + ωy(j − 1))] − ξn exp [I(ωxi + ωy(j − 2))]
⎞
⎠
.

(37)

By dividing both sides of Equation (37) with ξneI(ωxi+ωyj) , we have that

ξ2 = 1 − ∆t

(∆x)3
⎛
⎝
ξ exp [2Iωx] − 2ξ exp [Iωx] + 2ξ exp [−Iωx] − ξ exp [−2Iωx]

⎞
⎠

− ∆t

(∆y)3
⎛
⎝
ξ exp [2Iωy] − 2ξ exp [Iωy] + 2ξ exp [−Iωy] − ξ exp [−2Iωy]

⎞
⎠
. (38)

Equation (38) is equivalently given, using the trigonometric identity sin(θ) = eIθ − e−Iθ

2I
, as

ξ2 = 1 − ∆t

(∆x)3
⋅
⎛
⎝
ξ.I. (2 sin(2ωx) − 4 sin(ωx))

⎞
⎠
− ∆t

(∆y)3
⋅
⎛
⎝
ξ.I. (2 sin(2ωy) − 4 sin(ωy))

⎞
⎠
, (39)

which simplifies to

ξ2 + 2 ⋅ B(x, y) ⋅ I ⋅ ξ − 1 = 0, (40)

where B(x, y) = rx ⋅ (sin(ωx) − 2 sin(ωx)) + ry ⋅ (sin(2ωy) − 2 sin(ωy)) , and rx and ry are given as

in Equation (35). By solving the quadratic equation in Equation (40), we obtain

ξ = 1

2
(−2B(x, y) ⋅ I ±

√
4 − 4B2(x, y)) . (41)
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A condition for stability criterion is determined by finding a condition for ∆t,∆x so that

for all θ, ξ an inequality ∣ξ(ωx, ωy)∣ ≤ 1 is true; that is,

1 −B2(x, y) ≥ 0 Ô⇒ ∣B(x, y)∣ ≤ 1. (42)

Hence, Equation (42) is equivalently expressed as

∣rx ⋅ (sin(2ωx) − 2 sin(ωx)) + ry ⋅ (sin(2ωy) − 2 sin(ωy)) ∣ ≤ 1. (43)

We fix ∆x =∆y = 0.1 . For stability, we need to solve

∣Ψ(ωx, ωy,∆t)∣ ≤ 1, (44)

with Ψ(ωx, ωy,∆t) ∶= ∆t

(0.1)3
⋅ (sin(2ωx) − 2 sin(ωx)) +

∆t

(0.1)3
⋅ (sin(2ωy) − 2 sin(ωy)) .

We use maple and deduce that stability region is ∣∆t∣ ≤ 0.00014 . We now give the 3D-

graphical representation of Ψ(ωx, ωy) vs ∆t vs ωx, ωy ∈ [−π,π] displayed as in Figure 8.

(a) Graph of Ψ vs ωx vs ωy for ∆t = 0.00010 &
∆x =∆y = 0.1

(b) Graph of Ψ vs ωx vs ωy for ∆t = 0.00012 &
∆x =∆y = 0.1

(c) Graph of Ψ vs ωx vs ωy for ∆t = 0.00014
& ∆x =∆y = 0.1

(d) Graph of Ψ vs ωx vs ωy for ∆t = 0.00016
& ∆x =∆y = 0.1

Figure 8: Graphs of Ψ vs ωx vs ωy for the ∆t -values of ∆t = 0.00010,0.00012,0.00014,0.00016

Remark 5.2 The above experimental simulation clearly shows that our numerical scheme in
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Equation (36) for the 2D dispersive KdV equation preserves stability for ∆t ≤ 0.00014 as depicted

in the Figure 8, whereas the instability behavior emanates as shown in Figure 8d.

Let’s consider the non-homogeneous 2D-dispersive equation as in Equation (3) with (t, x, y) ∈

[0, T ]×Ω, T > 0, Ω = [0,1]× [0,1], subject to the initial condition given in Equation (4) and the

time-dependent non-zero boundary conditions in Equation (5).

We note here that the finite-difference scheme for Equation (3) works in such a way that

the unknown value of (i; j) at iteration n + 1 ; Un+1
i,j is computed at the preceding nth -iteration

values of the indices (i + 1; j) , (i − 1; j) ,(i − 2; j) (i; j) , (i; j + 1) , (i; j − 1) , and (i; j − 2) . The

initial condition in Equation (4) tells us that u(0, x, y) = u1
i,j = f(xi, yj) for i = 1,2,⋯,NP, while

the non-zero Dirichlet boundary conditions in Equation (5) gives the equations

u(tk,0, yj) = uk
0,j = exp(tk) cos(xi), u(tk,1, yj) = uk

0,j = exp(tk) cos(1 + xi)

u(tk, xi,0) = uk
i,0 = cos(xi + 2tk), u(tk, xi,1) = uk

i,0 = cos(xi + 1 + 2tk)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(45)

for i, j ∈ {1,2,⋯,NP} . In other words, if (xi, yj) is a boundary node, then un
i,j = g(xi, yj , tk)

where g is considered from the non-zero Dirichlet boundary conditions given in (5).

We now give some results for Equation (3) and 3D-graphical representation of the solution

using classical finite-difference scheme obtained at times t = 0.1,1.0,2.0 .

Figure 9: Graphs of numerical FDM solution for Equation (3) for (x; y) ∈ Ω , Ω = (0,1)2 (∆t =
10−4 ) at times t = 0.1

Tables 7 - 9 show the exact and numerical solution using FDM together with the absolute

and relative errors at some mesh points of the 2D KdV equation as given in Equation (3).
.

.

.
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Table 7: A comparison between the exact solution and FDM solution at some values of x and y
at time t = 0.1

t x y Exact FDM Absolute error Relative error
0.0 0.0 1.105171 1.105171 0.000000 0.000000
0.2 0.2 1.105171 1.105171 3.272759 × 10−9 2.961315 × 10−9

0.4 1.083141 1.083141 1.980772 × 10−9 1.828729 × 10−9
0.6 1.017929 1.017929 2.657259 × 10−9 2.610454 × 10−9
0.8 9.121369 × 10−1 9.121369 × 10−1 1.202890 × 10−10 1.318760 × 10−10

0.10 0.4 0.2 1.083141 1.083141 1.980772 × 10−9 1.828729 × 10−9
0.4 1.105171 1.105171 1.898155 × 10−10 1.717522 × 10−10
0.6 1.083141 1.083141 2.864586 × 10−10 2.644703 × 10−10
0.8 1.017929 1.017929 2.278236 × 10−9 2.238107 × 10−9

0.6 0.2 1.017929 1.017930 2.657260 × 10−9 2.610455 × 10−9
0.4 1.083141 1.083141 2.864542 × 10−10 2.644662 × 10−10
0.6 1.105171 1.105171 7.864502 × 10−10 7.116096 × 10−10
0.8 1.083141 1.083141 1.605691 × 10−9 1.482439 × 10−9

0.8 0.2 9.121377 × 10−1 9.121369 × 10−1 1.202870 × 10−10 1.318738 × 10−10
0.4 1.017930 1.017929 2.278236 × 10−9 2.238107 × 10−9
0.6 1.083141 1.083141 1.605688 × 10−9 1.482437 × 10−9
0.8 1.105171 1.105171 2.971336 × 10−9 2.688576 × 10−9

1.0 1.0 1.105171 1.105171 0.000000 0.000000

.
.
.
.
.
.
.

Figure 10: Graphs of numerical FDM solution for Equation (3) for (x; y) ∈ Ω , Ω = (0,1)2
(∆t = 10−4 ) at times t = 1.0

.
.
.
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Table 8: A comparison between the exact solution and FDM solution at some values of x and y
at time t = 1.0 .

t x y Exact FDM Absolute error Relative error
0.0 0.0 2.718282 2.718282 0.000000 0.000000
0.2 0.2 2.718282 2.718282 1.049272 × 10−9 3.860057 × 10−10

0.4 2.664097 2.664097 2.49956 × 10−9 9.382401 × 10−10
0.6 2.503703 2.503703 1.876913 × 10−9 7.496546 × 10−10
0.8 2.243495 2.2434948 1.960433 × 10−9 8.738300 × 10−10

1.0 0.4 0.2 2.664097 2.664097 2.499576 × 10−9 9.382449 × 10−10
0.4 2.718282 2.718282 6.650187 × 10−9 2.446467 × 10−9
0.6 2.664097 2.664097 4.694272 × 10−9 1.762049 × 10−9
0.8 2.503703 2.503703 4.319871 × 10−9 1.725393 × 10−9

0.6 0.2 2.503703 2.503703 1.876908 × 10−9 7.496529 × 10−10
0.4 2.664097 2.664097 4.694277 × 10−9 1.762052 × 10−9
0.6 2.718282 2.718282 3.124026 × 10−9 1.149265 × 10−9
0.8 2.664097 2.664097 3.635947 × 10−9 1.364795 × 10−9

0.8 0.2 2.243495 2.243495 1.960426 × 10−9 8.7382687 × 10−10
0.4 2.503703 2.503703 4.319886 × 10−9 1.725398 × 10−9
0.6 2.664097 2.664097 3.635933 × 10−9 1.364789 × 10−9
0.8 2.718282 2.718282 3.871336 × 10−9 1.424185 × 10−9

1.0 1.0 2.718282 2.718282 0.000000 0.000000

.
.
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.

Figure 11: Graphs of numerical FDM solution for Equation (3) for (x; y) ∈ Ω , Ω = (0,1)2
(∆t = 10−4 ) at times t = 2.0
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Table 9: A comparison between the exact solution and FDM solution at some values of x and y
at time t = 2.0

t x y Exact FDM Absolute error Relative error
0.0 0.0 7.389056 7.389056 0.000000 0.000000
0.2 0.2 7.389056 7.389056 6.118424 × 10−9 8.280386 × 10−10

0.4 7.241767 7.241767 9.911319 × 10−9 1.368633 × 10−9
0.6 6.805771 6.805771 9.219519 × 10−9 1.354662 × 10−9
0.8 6.098451 6.098451 7.290955 × 10−9 1.195542 × 10−9

2.0 0.4 0.2 7.241767 7.241767 9.911327 × 10−9 1.368634 × 10−9
0.4 7.389056 7.389056 1.911231 × 10−8 2.586569 × 10−9
0.6 7.241767 7.241767 1.745360 × 10−8 2.410131 × 10−9
0.8 6.805771 6.805771 1.382399 × 10−8 2.031217 × 10−9

0.6 0.2 6.805771 6.805771 9.219479 × 10−9 1.354656 × 10−9
0.4 7.241767 7.241767 1.745363 × 10−8 2.410134 × 10−9
0.6 7.389056 7.389056 1.7229377 × 10−8 2.331743 × 10−9
0.8 7.241767 7.241767 1.290448 × 10−8 1.781952 × 10−9

0.8 0.2 6.098451 6.098451 7.290940 × 10−9 1.195540 × 10−9
0.4 6.805771 6.8057713 1.382399 × 10−8 2.031217 × 10−9
0.6 7.241767 7.241767 1.290455 × 10−8 1.781962 × 10−9
0.8 7.389056 7.389056 1.218181 × 10−8 1.648628 × 10−9

1.0 1.0 7.389056 7.389056 0.000000 0.000000

6. Discussion and Conclusions
In this paper, we have solved one-dimensional homogeneous and two-dimensional non-homogeneous

dispersive KdV-type equations by employing two reliable methods namely the reduced differential

transform method and the classical finite difference method. The absolute and relative errors are
very small, as shown in the tables, therefore the current approaches offer great accuracy for the

numerical solutions of the considered experiments.

From comparison tables, the results obtained by using the classical finite difference method

are better, for longer propagation times, than those obtained from RDTM and some other semi-

numerical schemes such as Adomian decomposition and Homotopy perturbation methods, these

may be due to some computation of Adomian polynomials [4, 5], and He’s polynomials [14, 15].

The first numerical experiment comprised a homogeneous third-order KdV equation. RDTM

is very effective at small propagation time (t = 0.01,0.05) giving relative error of order 10−8 , 10−4 ,

but less effective at medium propagation time (t = 0.10,0.125) giving relative error of 10−2 . The

classical finite difference method is very efficient at small, medium and long propagation times

(t = 0.01,0.05,1.0), with relative error of order 10−7 to 10−6 .

The second numerical experiment consisted of non-homogeneous 2D-linearized dispersive

KdV equation. Our findings indicate that RDTM perform better than the classical FDM for short

propagation times, say, at t = 0.1 as shown in Table 3 and the corresponding relative error at this

time is of order 10−16 . While the classical FDM defeats RDTM for medium and long propagation

times; i.e., when t = 1.0 and t = 4.0 as the relative error using FDM at times t = 1.0 and t = 2.0 are

of order 10−10 and 10−9 , respectively. This study not only shows RDTM gives an approximate-
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analytical exact solution for Equation (3), but also the classical FDM is a more reliable method

for large propagation times.

A clear conclusion can be drawn from the numerical results for the considered experiments

in the sense that RDTM and FDM algorithms provide highly accurate numerical solutions for the

considered KdV equations. It is also worth noting that the advantage of the approximation of the

series methodologies such as RDTM shows a quick convergence of the solutions. Besides, RDTM

does not require much information about the boundary conditions of the given problems. The

initial condition is used, but the boundary conditions may not always have to be specified and

it also does not require linearization, discretization or perturbation. To apply the classical FDM

to the given problems, we have primarily checked the von Neumann criterion and we have found

reliable numerical results for the considered experiments. The study confirms the significance of the

comparison between semi-analytical and numerical methods for solving some dispersive KdV-type

PDEs.
Therefore, the obtained results from the study reveal the complete reliability of the employed

methods with great potential in scientific applications to handle numerous complicated linear and

nonlinear problems.
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