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Abstract 

 

Computerized respiratory sound analysis systems provide vital information regarding the current 

condition of the lung. These systems, used by physicians for the diagnosis of various respiratory diseases, 

help to classify respiratory sounds. Since physicians have differing degrees of knowledge and experience, 

this can cause differences in diagnosis and therefore treatment. Well-calibrated machine learning tools can 

help physicians make more informed decisions. For this purpose, different machine learning classifiers 

and feature extraction models have been developed to classify respiratory sounds from healthy individuals 

and patients. In this study, the combinations of Empirical Mode Decomposition, Mel Frequency Cepstral 

Coefficients, and Wavelet Transform methods are used for feature extraction, and k-Nearest Neighbor, 

Artificial Neural Networks, and Support Vector Machines are used for classification. The highest 

accuracy has been achieved as 98.8% when Mel Frequency Cepstral Coefficient and k-Nearest Neighbor 

methods are used in combination. 

 

Keywords: Respiratory sound, mel-frequency cepstral coefficient, empirical mode decomposition, k 

nearest neighborhood method. 

 

1. Introduction 

  

Respiratory diseases cause millions of premature deaths 

in the world [1]. Therefore, early detection of 

respiratory diseases is a crucial medical research area. 

Computed Tomography (CT), pulmonary function test, 

chest x-rays, and lung auscultation are effective 

methods for diagnosing respiratory diseases [2].  

Auscultation is the most commonly used method for the 

capturing the sounds that occur in the internal organs 

such as circulatory and respiratory systems, examining 

the current status of systems, and diagnosing diseases of 

these systems. Pulmonary auscultation, a commonly 

used method for capturing the sounds that occur in the 

internal organs, is the most straightforward and cheapest 

method used in the diagnosis of respiratory diseases [3]. 

The method, carried out through classical stethoscopes, 

provides critical information to physicians to diagnose 

respiratory diseases. Despite these properties, it has 

many limitations. It is a subjective process that depends 

on the physician’s hearing ability, experience, and skill 

to distinguish between various sound patterns [2]. 

 

 

 

Another limitation of the method is that classical 

stethoscopes have a frequency response that reduces 

frequency components of lung sound signals above 120 

Hz and that the human auditory system is not sensitive 

to the remaining low-frequency band. In recent years, 

Computerized Respiratory Sound Analysis systems 

(CORSA) have been used to overcome these limitations, 

and classical stethoscopes have been replaced by 

electronic stethoscopes that reduce noise, increase the 

volume and allow recording. Electronic stethoscope 

auscultation devices have evolved from analog to 

digital, and it has enabled storage, analysis, and 

visualization in computer systems. Nevertheless, digital 

auscultation is not yet a mature and complete 

computational procedure [4]. 

 

Many studies aim to leverage digital auscultation from 

the point of data and algorithms. The sounds recorded in 

the memory of the stethoscope are analyzed with 

CORSA systems. The availability of CORSA systems 

has led to increased research in the field of lung sounds. 

Adventitious respiratory sounds associated with specific  
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disease were compared with normal respiratory sounds 

in many studies [5-13]. For example, Corbera et al. [5] 

focused on wheeze respiratory sound because of 

widespread asthma and aimed to detect significant 

differences between wheeze and healthy sounds. In this 

regard, the study focused on identifying wheezing 

attacks from spectrograms by applying the temporal and 

spectral continuity criteria to the previously detected 

peaks. Sezgin et al. [6] used two types of respiratory 

sounds: normal and patient. In this study, the decision 

process comprises three stages: the normalization 

process, the feature extraction process, and the 

classification process. In the feature extraction process, 

the features are determined with wavelet analysis; 

afterward, the optimum features are selected by 

dynamic programming.  The classification process was 

made with Artificial Neural Networks (ANN). Maruf et 

al. [7] have developed CORSA systems consisting of 

four modules to detect crackle sounds automatically. A 

100-2500 Hz bandpass filter was applied to respiratory 

sounds in the pre-processing module and in the feature 

extraction module preferred Wavelet Transform (WT). 

They identified the best four features in the feature 

selection module and classified them using Gaussian 

Mixture Model (GMM), Support Vector Machines 

(SVM) and ANN methods in the classification module.  

Lozano et al. [8] have suggested a different method for 

automatically diagnosing normal and wheezing sounds. 

Empirical mode decomposition-based methods have 

used in the study. The proposed methods have 

eliminated the mode mixing problem of the Empirical 

Mode Decomposition (EMD) method and have offered 

high energy concentrations, high time, and high-

frequency resolutions. The tests applied showed that the 

proposed Ensemble Empirical Mode Decomposition-

Kay based Hilbert spectrum better results in wheezing 

sound detection . 

 

The success of cepstral features in respiratory sound 

classification has inspired many studies [9], [10-12]. 

Palaniappan et al. [9] have used parenchymal 

pathology, obstructive pathology, and normal 

respiratory sounds. The Mel-Frequency Cepstral 

Coefficient (MFCC) method, a highly efficient feature 

extraction algorithm used in the processing of audio 

signals, was used in this study. The 13 cepstral 

coefficients obtained by MFCC have classified using 

the k- Nearest Neighbors Algorithm (k-NN) and SVM. 

Sengupta et al. [10] suggested a new set of cepstral 

features to classify normal, wheeze, and crackle sounds 

by considering the achievement of cepstral features in 

the classification of speech sounds. 

 

Liu et al. [11] have proposed examining the normal, 

wheeze, and crackle respiratory sounds in time, 

frequency, and cepstral domains. They extracted 46 

features, and 6 crucial features were selected from the 

obtained features. GMM to classify these three 

respiratory sounds is proposed. Sunil and Ganesan [12] 

have proposed an efficient method to classify normal 

and abnormal respiratory sounds.  These sounds are 

analyzed by the MFCC and classified by the Adaptive 

Neuro-Fuzzy Inference System. Haider et al. [13] have 

suggested using auscultation and pulmonary function 

tests together in the study. A total of 39 features of 

respiratory sounds and 3 spirometry features were used.  

Various parametric and nonparametric tests have been 

conducted to determine the similarity level of the 

extracted features.  Logistic Regression (LR) , Decision 

Tree (DT), Discriminant Analysis (DA) , SVM and k-

NN have been used to classify normal and Chronic 

Obstructive Pulmonary Disease (COPD) respiratory 

sounds. 

 

This study aims to diagnose normal and abnormal 

respiratory sounds similar to abovementioned studies. 

However, we used methods such as Empirical Mode 

Decomposition, and combined it with established 

classification methods to potentially identify the most 

accurate method. The success of the proposed method 

has been compared to frequency analysis and cepstral 

analysis. The cepstral and frequency analyses have been 

done by using MFCC and WT methods, respectively. 

Comparing the performances of different classifiers on 

the problem of classification of respiratory sounds in the 

literature is a common practice. It is also compared in 

classifiers such as ANN, k-NN, and SVM within this 

study’s scope. The rest of the article’s organization is as 

follows: Section 2 briefly describes the material and 

methods used in our study. It involves Respiratory 

Sound Acquisition, Preprocessing, Feature Extraction, 

and Classification Methods. Results and Discussion are 

presented in Section 3, and the Conclusions are 

presented in Section 4. 

 

2. Materials and Methods 

 

The rate, time, and sounds of respiratory are essential in 

diagnosing respiratory system diseases. Inspiration and 

expiration stages of respiratory sounds contain 

important information about the respiratory system. 

CORSA systems provide a new perspective on the 

detection and treatment of many diseases. Generally, the 

systems consist of two steps. Firstly, the crucial features 

of respiratory sounds are extracted. Secondly,  these 

crucial features are used for detecting or classifying 

adventitious respiratory sounds [14]. Commonly 

preferred methods for feature extraction in the literature 

are MFCCs [9], spectral features [15], Fourier [16], The 

Autoregressive Model [17], and Wavelet coefficients 

[18]. For classification, algorithms such as ANN [19], 

SVM [20], GMM  [11], k-NN [9], and LR models [13] 

are used. Figure 1 shows the block diagram for all 

system stages recommended in this study. The system is 

divided into four stages: the acquisition of respiratory 

sound, pre-processing, feature extraction, and 

classification. 
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Figure 1. Block Diagram of the recommended system. 

 

2.1 Respiratory sound acquisition 

 

During the inspiration and expiration stage of 

respiration, vibrations occur as a result of rapid changes 

in gas pressure in the airways. Respiratory sounds occur 

when the vibrations pass through the lung tissue and 

reach the chest wall. Changes in vibration create sounds 

with a certain amplitude and frequency [21]. 

Respiratory sounds are divided into normal and 

adventitious (abnormal). Normal respiratory sounds are 

those are heard when there is no pathological airflow in 

the airways. Adventitious respiratory sounds are caused 

by pathological effects in the lungs or respiratory tract. 

A data set consisting of wheeze and rhonchi 

adventitious sounds and normal sounds was used in this 

study. The normal lung sounds are both louder and 

larger amplitude sounds during the inspiration stage 

than during the expiration stage. The signal frequency 

band of the sounds is between 150-1000 Hz [22].  

Wheeze and rhonchus sounds are determined airway 

obstruction pathology. They are common signs of 

obstructive lung diseases like asthma or COPD. Wheeze 

respiratory sounds are musical, continuous, and coarse 

sounds commonly heard during the expiration stage as a 

result of high-speed airflow through narrowed airways 

[18]. Some parts of the respiratory tree must be 

narrowed or obstructed for the wheezing adventitious 

sound to occur. [23]. Rhonchus respiratory sounds are 

low-pitched and continuous sounds that result from 

obstruction or secretions in larger airways heard during 

the inspiration and expiration stage. According to the 

American Thoracic Society (ATS), wheezes have a 

dominant frequency of 400 Hz or more, while rhonchus 

has a dominant frequency of about 200 Hz or less, and 

the event is longer than 250 ms [1]. 

 

In this study, the Respiratory Sounds (RS) were 

recorded by specialist physicians in the Hafsa Sultan 

Hospital, Manisa Celal Bayar University.  All records 

were obtained using Littmann 3200 Electronic 

stethoscope from 25 healthy and 25 patient volunteers 

treated in the clinic of respiratory medicine of the 

hospital. The study population was picked among the 

patients who have different demographic attributes and  

 

lack previous comorbidities of the study population. 

Normal respiratory sounds were recorded by selecting 7 

female and 18 male volunteers among volunteers who 

had never smoked or used tobacco products. Wheeze 

respiratory sounds were recorded from 12 volunteers, 4 

females and 8 males, with asthma or COPD. Rhonchus 

breath sounds were recorded from 13 volunteers, 7 

females and 6 males, with Pneumonia and Chronic 

bronchitis.  Each volunteer was asked to breathe in and 

out of the mouth four times, and the recording was 

made to include four full breaths. Thus, 100 normal, 52 

rhoncus, and 48 wheeze RS  were obtained. All sounds 

sampled at a frequency of 11025 Hz were recorded by 

the auscultation protocol determined by specialist 

physicians. According to this protocol, sounds were 

recorded in a calm environment, with the patient sitting 

and loosening his/her posture muscles. The records are 

obtained from the most appropriate places for the 

maximum collection of data about patients’ pathologies, 

as determined by the CORSA standard [24].  

 

100 abnormal and 100 normal respiratory sounds were 

used in the study. The Hotelling T-squared statistical 

method [25] was used to evaluate the adequacy of the 

data numbers. Hotelling’s T-squared statistical method 

is used to determine whether there is a significant 

difference between the two groups for multivariate 

samples. The F distribution can be a good 

approximation of the T-squared statistic distribution 

when the dimension of the data is less than the size of 

the samples. As shown in the table, the results of 

Hotelling's T-squared statistics revealed a significant 

difference in all coefficients for normal and abnormal 

respiratory sounds 

 

Table 1. Hotelling's T- squared Test For Normal and 

Abnormal Respiratory Sounds. 

 
 T2 F p Value 

MFCC 551.779 F(78,121)=7.878 0.0000000000 

EMD 141.140 F(30,169)=4.016 0.0000000038 

WT 118.729 F(30,169)=3.378 0.0000002985 
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2.2 Pre-processing 

 

Pre-processing aims to reduce background noise and 

improve the quality of recorded respiratory sounds [7]. 

When respiratory sounds are recorded, they are affected 

by low-frequency sounds such as muscles and heart 

sounds and high-frequency noises due to sudden 

movements. To avoid these effects, pre-filtering should 

be performed considering the dominant frequency range 

of the respiratory sounds. Various filters such as 

Butterworth, Chebyshev, and Elliptical filters of varying 

degrees have been tested for the study. The accuracy 

and success of the filtering have been inspected by 

experts listening to the recorded respiratory sounds, and 

the filter has been selected.  In this study, are used a 

fourth-order bandpass Butterworth filter. The frequency 

range of this filter is 100-1800 Hz [26]. 

 

2.3 Feature extraction 

 

The feature extraction process enables converting high-

dimensional vectors to lower-dimensional vectors [16]. 

The properties of signals formed after pre-processing 

the respiratory sounds are analyzed simultaneously in 

the time, frequency, or time-frequency domain by 

feature extraction methods.  In this study, some feature 

extraction methods such as EMD, MFCC, and WT are 

used. The coefficients of respiratory sounds are 

determined by using these methods. The coefficients 

obtained by feature extraction methods are not used 

directly. The feature vectors constructed with statistical 

parameters such as the standard deviation, variance, 

mean power, entropy, mode, and energy values of the 

coefficients are used instead of the coefficients. The 

novelty of the paper is the combination of the EMD 

method and statistical analysis methods for feature 

extraction. 

 

2.3.1. Empirical mode decomposition 

 
Many biomedical signals such as EEG signals, EMG 

signals, and respiratory sounds have a nonlinear and 

non-stationary structure. Wigner-Ville Transform, Short 

Time Fourier Transform, and WT are widely used to 

analyze these types of signals. New methods are being 

investigated due to different restrictions on each. EMD 

has been proposed as an alternative and appropriate tool 

for analyzing multicomponent nonlinear and non-

stationary signals [27].  EMD is an adaptive and direct 

decomposition method. Unlike Fourier and WT 

analysis, it is unnecessary to have prior knowledge of 

the signal properties to select parameters in this analysis 

[20]. EMD allows the target signal is separated into 

Intrinsic Mode Functions (IMFs) listed from the high-

frequency components to low-frequency components 

[28].  A sifting process based on the estimated upper 

and lower envelopes of the input signals is used to 

obtain the IMF. There are two conditions for the 

statements obtained  as a result of the sifting process to 

be IMF. First, the number of extrema and zero-crossings 

must be equal or differ by one at most in the whole data 

set. Second, the upper and lower envelopes’ local 

average should be zero at any point [29].   

The IMF components of x(t) signal is obtained by the 

following algorithm: [28, 30] 
 

1. Find the local minima and local maxima of 𝑥(𝑡)  

2. The maximum envelope 𝑒max(𝑡) is calculated using 

local maxima points with cubic spline interpolation. 

Similarly, minimum envelop 𝑒min(𝑡) is calculated 

using local minima.   

3. The local average envelope is found by taking the 

average of the maximum and minimum envelope: 
 

 𝑚1(𝑡) = [𝑒min(𝑡) + 𝑒max(𝑡)]/2                           (1) 
                                                                

4. The local average envelope is removed from the 

original signal: 

 

ℎ1(𝑡) = 𝑥(𝑡) −  𝑚1(𝑡)                                           (2)    
                                                                                                      

5. Whether ℎ1(𝑡) to become an IMF is checked. If the 

conditions are met, it is considered 𝐼𝑀𝐹1 (𝑡) =
ℎ1(𝑡).  If ℎ1(𝑡) is not an IMF,  ℎ1(𝑡) is considered a 

new signal. The loop is repeated using ℎ1(𝑡) to 

create ℎ2(𝑡). If ℎ2(𝑡) is not an IMF, the stop 

criterion is calculated to end the elimination process. 

The formula for the stop criterion, SD, is set out 

below.  
 

SD(𝑖) = ∑  
|ℎ𝑖−1 (𝑡)−ℎ𝑖(𝑡)|^2

ℎ2
𝑖−1 (𝑡)

𝑁

𝑡=0
                              (3)                                                                                                               

 

If ℎ2(𝑡) meets SD, 𝐼𝑀𝐹1 (𝑡) = ℎ2(𝑡). If it does not 

meet the stop criteria, ℎ2(𝑡)  is treated as a new 

signal. During steps 1-6, its operations on ℎ2(𝑡) are 

repeated to form ℎ𝑖(𝑡) until ℎ𝑖(𝑡) meets the 

requirements of the IMF or SD. It is 

calculated 𝐼𝑀𝐹1 (𝑡) = ℎ𝑖(𝑡). 
 

6. 𝐼𝑀𝐹1 (𝑡) is formed. By subtracting 𝐼𝑀𝐹1 (𝑡) from 

𝑥(𝑡)  signal, a residual signal 𝑟1(𝑡) is obtained.  To 

find the next residual signal, 𝑟1(𝑡) is considered the 

original signal, and steps 1-6 are repeated. When the 

process is completed, the original signal is 

composed of several IMF components and 

residual 𝑟𝑛(𝑡). And is expressed as follows; 

 

x(𝑡) = ∑ 𝐼𝑀𝐹 𝑖
𝑛
𝑖=1 (𝑡) +  𝑟𝑛(𝑡)                               (4)              

 

IMF coefficients vary according to the state and 

frequency distribution of respiratory sounds. In the 

study, it has been observed that the amplitude of the 

IMF coefficients at Level 5 and beyond is very low and 

it has been determined that it contains redundant 

information. For this reason, 4 IMF coefficients are 

used.  IMF coefficients of respiratory sounds obtained 

by the EMD method are given in Figure 2, Figure 3, and 

Figure 4.  
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Figure 2. First 4 IMF coefficients and residue signal for 

Normal RS. 

 

 
 

Figure 3. First 4 IMF coefficients and residue signal for 

Wheeze RS. 

 

 
 

Figure 4. First 4 IMF coefficients and residue signal for 

Rhonchus RS.                                                              

2.3.2 Mel-frequency cepstral coefficient 
 

MFCC is a highly effective feature extraction algorithm 

commonly used for automatic speech and speaker 

recognition [12]. This is because MFCC can distinguish 

speakers with high accuracy by imitating the frequency 

selectivity of the human ear. In addition, MFCCs are 

often preferred because they are much less affected by 

changes and sound wave structure. 
 

In recent years, the MFCC method has been used in 

CORSA systems in many studies, and promising results 

have been obtained [31, 32]. The MFCC performs a 

nonlinear scaling, assuming that the audio signal’s low-

frequency components carry more critical information 

than the high-frequency components. MFCC analysis is 

similar to cepstral analysis, apart from frequency 

wrapping. In MFCC analysis, the frequency is wrapped 

according to the Mel-Scale [31]. There are several 

methods in the literature for calculating MFCC. Fast 

Fourier Transform (FFT) based method is one of the 

most commonly used methods among them.  The block 

diagram of this method used to calculate the MFCC 

features is shown in Figure 5. 
 

 
 

Figure 5. Block diagram used to calculate MFCC 

Features Vector. 
 

In this method, firstly, FFT is applied to the windowed 

signal. A triangle bandpass filter bank known as a Mel-

scale filter bank is applied to the obtained FFT 

spectrum. The Mel-Scale, designed based on the human 

hearing system, is based on mapping the actual 

frequency and the perceived pitch. This scale consists of 

linear ranges up to 1 kHz and logarithmic ranges after 1 

kHz.  The mapping of linear frequency to Mel-

frequency is done by applying equation (5). 
 

fmel = 2595 ∗ log( 1 +
flineer

700
 )                                  (5)                                                                                                                    

A logarithm process is applied to the signal filtered 

using a Mel-Scale filter bank. With this process, the 

sensitivity of the feature vectors to changes is reduced. 

Discrete cosine transform is applied to the logarithmic 

scale applied signal finally, and the signal is converted 

back to the time domain. Discrete cosine transform is 

applied to the logarithmic scale applied signal finally, 

and the signal is converted back to the time domain. 

Thus, MFCCs with the amplitude of the spectrum are 

obtained. In this study, 13 MFCCs are used to classify 

RS. The obtained results are presented in Figure 6, 

Figure 7, and Figure 8. 
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Figure 6. MFCCs of Normal RS. 

 

 
 

Figure 7. MFCCs of Wheeze RS. 

 

 
Figure 8. MFCCs of Rhonchus RS. 

 

2.3.3 Wavelet transform 

 

WT is a signal processing method used as an alternative 

to Fourier Transform (FT) [33]. FT is an analysis 

method used to analyze stationary signals defined in the 

time domain, providing frequency information by 

examining the signal in the frequency domain. 

However, only frequency analysis is not sufficient for 

dynamic and non-periodic signals. WT is a commonly 

used method for non-stationary, nonlinear, and non-

periodic signal analysis, such as lung sounds. With WT, 

the signal is defined in both the time domain and 

frequency domain, thus providing information on how 

the signal’s frequency components vary with time. WT 

uses short window size when high-frequency 

information is essential, while long window size uses 

when low-frequency information is important [34]. 

 

In Discrete Wavelet Transform (DWT), the signal is 

separated into sub bands by passing through the high-

pass filter (h) and low-pass filters (g) according to the 

determined level. Equation conditions that these filters 

must meet are as follows; [35] 

 

𝐺(𝑧)𝐺(𝑧−1) + 𝐺(−𝑧)𝐺(−𝑧−1) = 1                           (6)   

                                                                                           

𝐻(𝑧) = 𝑧𝐺(−𝑧−1)                                                       (7)                                                                               

 

A sequence of filters with increasing length (indexed by 

i) can be obtained; 

 

𝐺𝑖+1(𝑧) = 𝐺 (𝑧2𝑖
) 𝐺𝑖(𝑧)                                             (8)        

                                                                                                        

𝐻𝑖+1(𝑧) = 𝐻 (𝑧2𝑖
) 𝐺𝑖(𝑧)         i=0, 1……, i-1            (9)                                                                                                      

 

With the initial condition G0(z) = 1. It is expressed as a 

two-scale relation in the time domain 

 
𝑔𝑖+1(𝑘) = [𝑔]↑2𝑖𝑔𝑖(𝑘), ℎ𝑖+1(𝑘) =  [ℎ]↑2𝑖𝑔𝑖(𝑘)        (10)                                                                                   

 
where the subscript [.]↑m indicates the up-sampling by a 

factor of m and k is the equally sampled discrete-time. 

The normalized wavelet and scale basis functions 

𝜑𝑖,𝑙(𝑘), 𝜓𝑖,𝑙(𝑘) can be defined as 

 

𝜑𝑖,𝑙(𝑘) = 2
𝑖

2   𝑔𝑖(𝑘 − 2𝑖𝑙)                                          (11) 

                                                                                                                                        

𝜓𝑖,𝑙(𝑘) = 2
𝑖

2   ℎ𝑖(𝑘 − 2𝑖𝑙)                                          (12)                                                                                                            

      

where the factor 2i/2= inner product normalization, i= 

scale parameter and l= the translation parameter. The 

DWT decomposition can be described as 

 

𝑎𝑖(𝑙) = 𝑥(𝑘) ∗ 𝜑𝑖,𝑙(𝑘)                                               (13)       

                                                                               

𝑑𝑖(𝑙) = 𝑥(𝑘) ∗ 𝜓𝑖,𝑙(𝑘)                                               (14) 

                                                           

𝒂𝒊 is approximation coefficient and 𝒅𝒊 is detail 

coefficient. The approximation coefficients represent 

the lower frequency band, and the detail coefficients 

represent the higher frequency band.   
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These coefficients are used for the classification process 

in many signal processing applications. In the analysis 

of signals using DWT, the selection of the appropriate 

main wavelet function and the determination of the 

appropriate decomposition level are very important. The 

main wavelet function, which is one of the most 

important parameters of the wavelet transform, takes on 

the task of the window function in the Fourier 

transform.  There are many main wavelet functions with 

different properties and uses. In previous studies on the 

application of DWT in respiratory sound analysis, 

Daubechies 8 (db8) main wavelet function was used and 

found to give good results. Therefore, db8 is also 

preferred in this study [18]. Another important 

parameter is the number of decomposition levels, 

determined according to the dominant frequency 

components of the signal. In the study, the number of 

decomposition levels is chosen to be 7. Thus, 

respiratory sounds are decomposed into detail 

coefficients D1-D7 and approximation coefficient A7. 

Since the frequency range of D3-D7 sub-bands carries 

important information, these sub-bands are preferred. 

 

2.4 Classification  

 

In CORSA systems, the classification stage comes after 

the feature extraction stage. For classification, are used  

k-NN, SVM, and ANN in this study.  SVM and ANN 

classifiers have two stages training and testing. During 

the training stage, data from each RS class is introduced 

to the system as training data, and the system makes a 

distinction by class. Unknown sounds are analyzed 

during the test stage, and the most appropriate class is 

selected [19].  

 

In the kNN classifier, which is instance-based learning, 

no training phase is required [36]. Samples divide into 

training and test samples. Training samples are 

multidimensional vectors, each with a class label.  In the 

classification phase, unlabeled test vectors are labeled 

by taking into account the closest k training examples.  

 

In classifier algorithms, the effects of model parameters 

on performance and the effects of these parameters on 

classifier capacity and complexity were observed, and 

the most suitable model parameters were determined. 

The parameters selected for each method are given in 

the relevant section. The classification performance of a 

classifier in medical tests depends on the ability to 

detect patients and healthy people. In this study, 

standard parameters such as sensitivity, specificity, and 

accuracy were used for performance evaluation. 

Sensitivity is the ratio of the number of correctly 

classified patients to the total number of patients, while 

specificity is the ratio of correctly classified healthy 

people to the total number of healthy people. Accuracy 

is the ratio of the number of sick and healthy people 

correctly classified to the total number of people [19]. 

 

2.4.1 Support Vector Machines 

 

SVM method, based on statistical learning theory, was 

developed by Vladimir Vapnik in 1992. SVM, a 

supervised learning algorithm, is used to solve 

classification, regression analysis, and nonlinear 

function approach problems [37]. Provides high 

classification and high generalization performance in 

solving bioinformatics problems, text, voice, object, and 

image recognition problems [38].  

 

SVM applies a useful learning algorithm to identify 

difficult-to-analyze patterns in complex data sets. In 

SVM, the objective is to create an n-dimensional 

hyperplane that optimally divides the data into different 

classes. It is also used to obtain the optimal limit of two 

data sets on a vector space, independent of the 

probability distributions of training vectors in sets. Like 

artificial neural networks, SVM models have a two-

layer, feed-forward network structure that uses a 

sigmoid kernel function. Some of the commonly used 

kernel functions are RBF, linear, quadratic, and 

polynomial kernel. In this paper, second-order 

polynomial kernel functions are used. 

 

2.4.2 k Nearest Neighbors Algorithm 

 

k-NN is a supervised and nonparametric classification 

method that classifies data based on the proximity of 

training samples in the data set. This classification 

method finds the k nearest neighbors of unknown data 

between the dataset according to a distance equation. 

Then, it uses the majority vote approach to estimate the 

data label [39]. Distance equations such as Manhattan, 

Hamming, Euclidean, and Minkowski are used for 

distance calculation. In this study, the Euclidean 

distance equation was used to locate the nearest 

neighbor.  

 

The basic steps to be applied for classification with the 

k-NN algorithm are as follows: 

 

1. The number k is determined. 

2. The new data is evaluated individually with all the 

data in the training data set, and the distances 

between them are calculated by distance functions. 

3. The k data closest to the new data is selected. 

4. The class to which most of the selected data belongs 

is determined, and the new data is assigned to this 

class. 

In this study, the results were obtained for k=1 and k=3. 

 

2.4.3 Artificial Neural Network 

 

ANN is a topological structure created for a specific 

purpose inspired by the neuron functioning of the brain. 

The structure consisting of interconnected artificial 

neurons is widely used in various recognition,  
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prediction, and modeling fields, as well as the 

recognition and classification of biological signals. In 

ANN, learning is carried out with special training 

algorithms that imitate the learning mechanisms of 

biological systems [35]. 

 

In this study, various model trials were conducted while 

determining the ANN classifier model. In models with 

three hidden layers, the excess number of layers and the 

number of neurons in the layers increases the processing 

and learning ability of the artificial neural network but 

reduces the generalization ability of the network and 

causes overfitting. In models with a single hidden layer, 

the pattern in the data cannot be learned sufficiently and 

underfitting occurs. For this reason, a model with two 

hidden layers is preferred. Tests were made for the 

number of neurons in the network (45:45), (45:30), 

(30:15), (15:15) and (10:10). The most successful result 

(15:15) was obtained with the number of neurons and 

the hyperbolic tangent activation function. 

Backpropagation (BP) algorithm, which is the most 

frequently used training algorithm for multilayer 

feedforward networks, and Mean Error Squares the 

most frequently used performance function, are also 

preferred in this study. Levenberg–Marquardt learning 

algorithm, which creates a balanced system structure in 

the network structure and reduces the processing load, is 

preferred.   

 

3. Results and Discussion 

 

In this study, while classifying with the ANN method, 

80% of the data was used for training and 20% for 

testing. While using SVM and k-NN methods for 

classification, training and test groups were determined 

by applying 10 cross-validations to the data. Besides, 

we have iterated the whole classification method 10 

times, and average performance values have been 

calculated.  

 

The sensitivity, specificity, and accuracy parameters 

obtained with the proposed system are recorded in 

Tables 2, 3, and 4. Table 2 includes a comparison of 

MFCC-based features, Table 3 EMD-based features, 

and Table 4 WT-based features with different 

classifiers. Each classifier has its advantages and 

disadvantages. The k-NN algorithm has advantages such 

as no training required, being easy to perform, being 

analytically tractable, adaptable to local information, 

and resistant to noisy training data. There are also 

disadvantages, such as the need for a high amount of 

memory space, and the processing load and cost 

increase significantly as the data set and attribute size 

increase [40]. This method is crucial to selecting 

the k value from the optimal value; as the k value 

decreases, more sensitive results were obtained. The 

major advantages of ANN over traditional statistical  

 

techniques are that it requires fewer assumptions and 

can model nonlinear relationships depending on the 

choice of activation functions. Neural network models 

can learn to complex nonlinear relationships between 

independent and dependent variables, and they can 

make logical decisions in the face of similar events. The 

information is stored throughout the network, and some 

of the artificial nerve cells do not function, causing the 

loss of information. However, it has disadvantages, such 

as requiring excess computational overhead and having 

limited ability to identify possible causal relationships. 

Using trial and error in determining parameters such as 

the selection of activation function,  the number of 

hidden layers,and neurons is one of the most significant 

disadvantages [41]. SVM models provide good scaling 

for high-dimensional data and can be used for both 

linear and nonlinear applications similar to artificial 

neural networks. Also, there is less risk of overfitting. 

But choosing the appropriate kernel function is not 

straightforward [42].  

 

This study used ANN and SVM classifier models, 

determining the optimum selection of system 

parameters by trial-and-error methods creates a 

disadvantage. Furthermore, the fact that the data size is 

not too big and no training is required has provided an 

advantage for k-NN. The highest accuracy rate obtained 

using the MFCC and WT features were respectively 

98.8% and 82.7% with the k-NN classifier. The highest 

accuracy rate achieved using the EMD features is 88.9% 

with the ANN classifier.   Additionally, we observed 

that MFCCs provide the best results among all the 

feature extraction methods examined. MFCC analysis 

has been more successful in evaluating respiratory 

sounds because it is closer to the response of the human 

auditory system. MFCC can distinguish speakers with 

high accuracy by imitating the frequency selectivity of 

the human ear. The auditory perception-specific 

information captured by MFCCs reveals differences in 

respiratory sounds, and the use of these differences for 

diagnostic purposes has increased success. Providing a 

more successful analysis than FT and WT, the EMD 

method has been proven to have a mode mixing effect 

when applied to some respiratory sounds, as noted in 

earlier studies [20]. The mode mixing effect causes 

some frequency components of abnormal RS to occur in 

different IMFs, which has a negative effect on the 

success of the method. 

 

The lack of large databases publicly available to 

develop algorithms and compare results is one of the 

field’s most significant problems [4]. It is quite difficult 

to compare the performance of the studies due to 

different classifier models, different respiratory sounds 

classified, and different feature vectors used in the 

classification. Table 5 shows the results of the standard 

parameters of various studies in this field. 
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Table 2. Classification Result of MFCC Features. 
 

MFCC Features 

Classifier Sensitivity Specificity Accuracy 

ANN 100 97 ± 3.3 98.7± 1.6 

SVM 97.7 ± 1.1 93.3± 1.1 95.7 ± 0.9 

k-NN ( k=3) 99.8 ± 0.6 93± 0.8 96.3 ± 0.6 

k-NN (k=1) 99.5 ± 0.9 97.5  ± 0.8 98.8 ± 0.6 

 

Table 3. Classification Result of EMD Features. 
 

EMD Features 

Classifier Sensitivity Specificity Accuracy 

ANN 93.5 ± 3.9 84 ± 6.3 88.9 ± 3.2 

SVM 78.2 ± 2.1 77.1 ± 1.8 77.9 ± 1.6 

k-NN ( k=3) 81 ± 1.4 76.7 ± 1.8 79.1  ± 1.6 

k-NN (k=1) 77.8 ± 1.8 74.3 ± 0.9 76.3  ± 1.2 

 

Table 4. Classification Result of Wavelet Features. 
 

WAVELET Features 

Classifier Sensitivity Specificity Accuracy 

ANN 83  ± 7.4 74.5  ± 5.2 79 ± 3.7 

SVM 77.9 ± 1.2 76.3 ±1.6 77.3± 1.3 

k-NN ( k=3) 82.1 ± 1.5 80.5 ± 1.9 81.6± 1.6 

k-NN (k=1) 83.2 ± 1 82 ± 1.2 82.7± 0.9 

 

4. Conclusion 
 

The CORSA systems provide vital information about 

the current state of the lung. The proposed system 

diagnoses the disease by separating the respiratory 

sounds as normal and abnormal. While EMD, MFCC, 

and WT feature extraction methods are used for disease 

diagnosis, ANN, SVM, and k-NN classifiers are used 

for classification. Since respiratory sounds are not 

stationary and linear, classical frequency analysis 

methods are not adequate in the analysis of these 

sounds. For extraction of good acoustic characteristics 

from respiratory sounds, it is required to examine these 

sounds over sufficiently short periods of time. WT and 

MFCC methods are preferred in this study because of 

enabling short-time analysis. MFCC is a representation 

of the short-time power spectrum of the sound signal. 

Signal cepstrum is obtained by inverse transforming of 

the logarithm of the signal spectral representation. The 

frequency bands in mel-frequency cepstral 

representation of the power cepstrum are equally spaced 

on the mel-scale approximating the human auditory 

perception.  
 

EMD analyses are non-linear and non-stationary data 

without the assumption of linearity or short-time 

stationarity. EMD process does not involve a fixed basis 

but rather has a signal-specific approach to decompose 

the signal. The application of the EMD method for 

respiratory sounds is a quite new method. In the 

previous studies, IMF coefficients are obtained by using 

only the inspiration stage of respiration.  In this study, 

both inspiration and expiration stages of respiration are 

used to obtain IMF coefficients. It is aimed to compare 

the EMD method with traditional feature extraction 

methods for respiratory sounds. In order to evaluate the 

performance of the coefficients obtained by different 

feature extraction methods, classification has been made 

with the statistical parameters.  EMD method gives 

more successful results than the WT method. EMD 

provides lower success compared to the MFCC method 

because the MFCC analysis is more successful in 

assessing respiratory sounds as it is closer to the 

response of the human auditory system.  

 

This comparative study shows that MFCC features are 

more successful in diagnosing respiratory sounds 

compared to the other features. The highest accuracy 

rate is obtained for the k-NN classifier with 98.8%. 
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Table 5. Some Results obtained with CORSA Systems 
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