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ABSTRACT

This work involves the determination of the critical size which we can define as the largest
particle which can float, and the critical density, which is the densest particle which can float
at specific radius and contact angle, it also includes calculation of height maxima and maximum
force acting on the particle under the same conditions. The calculations require not only the
limit of possible equilibrium confiqurations but also the stability of the particle. Also the
critical densities maximum force acting on sphere, and maximum heights, along with the
other forces acting on the particle were calculated for various contact angles and as reduced

value of R equals to 0.5. There is a linear relationship hetween contact angle and critical
density. \ :

INTRODUCTION

An understanding of the behaviour of a solid particle at a horizon-
tal fluid /liquid interface in a gravity field is important in several areas
of surface chemistry and physics; for example, flotation has long been
used as an efficient method for the concentration of minerals and sepa-
ration of particles. If the particle has higher or lower density than each
of the two immiscible fluids forming the interface, it will either pass
through the interface or float at it from restraint by capillary forces
acting on the particle. It is therefore useful to know the largest particle
or the critical density of the particle and the force acting on it, at spe-
cific radius and contact angle, which can float in equilibrium.

* The studies -of the equilibrium position of particles at fluids inter-
face have traditionally been undertaken by means of force analysis
which predict equilibrium when the net vertical force acting on the par-
ticle at the interface is zero. The theory of this force, which can be cal-
culated from the capillary theory of flotation, originated with the work

~of Nutt! and was further developed by Scheludko et al2?. The works of
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Giffard and Scriven*, Maru et al’; Hardland®; Huh and Mason’; Princen?®;
Rapacchietta and Neumann®'®, and Boucher and Kent'' may also be
regarded as part of this theory. Recently Boucher and Kent have con-
sidered the mechanical manipulation of the sphere, and described the
equilibrium configuration by using both numerical computation of me-
ridian curves and assoicated quantities and formal thermodynamic
analysis,

This work involves the determination of the critical size, which we
can define as the largest particle which can float, and the critical density,
which is the densest particle which can float, at specific radius and con-
tact angle. It also mcludes calculation of height maxima and maximum
force acting on the particle under the same conditions. The calculations
require not only the limit of possible equilibrium configurations but also
the stability of the particle. In the first part of this work critical densi-
ties, maximum force acting on sphere, and maximum heights, along whit
the other forces acting on the particle were calculated for various con-
tact angles and as reduced value of R equals to 0.5.

The Equilibrium Position of Solid Particles (Spheres) at Horizontal
Fluid Interfaces

When a solid particle, a sphere (which is assumed to be rigid and not
deformed in any way by the interface), under the influence of gravity,
may approach an interfacial region (interface) between two liquids, or
between a gas and a liquid, it may either take up an equilibrium position
at the interface or pass through the interface, depending on the size of
the particle, the density of the particle and the fluid phases, the inter-
facial tension and the contact angle at the fluid /fluid /solid boundary.
Figure 1 illustrates cne possible configuration of a system consisting of
a solid particle (sphere) at a fluid interface. The radius of the sphere is
R and its density is o°. The densities of the upper and the lower fluids
are o* and oP respectively. 79 is the distance of the three-phase coflu-
ence from z = 0 level, 0 is the contact angle measured through fluid
between tangents of sutface sB and Bu at the three phase line. The angle
{ is a position coordinate which locates the three-phase line on the solid
surface, { is the angle made between the vertical axis of rotational sym-
metry and the position of the three-phase confluence with respect to the
center of sphere. The three-phase confluence is at the position (x°, 79



INVESTIGATION OF CONDITIONS... 13

where the sphere of radius R makes a contact angle with the fluid /fluid
interface. The angle ¢ is the prameteter of the miniscas it is the angle
between the horizontal and the tangent of the meniscus at any point
on the profile.

If the density of the solid sphere (p°) is intermediate in magnitude
between that of the lower fluid (p8), usually a liquid, and that of the vp-
per fluid (p%), often a gas, the solid particle will always take up an equi-
librium position and float, regardless of its size and shape, the interfa-
cial tension and the contact angle. In this case when p* > ¢® > o8
buoyancy effects are sufficient to ensure equilibrium at the interface.
This is only true when o® is intermediate between p® and p%, because, as
shown in Figure 1, the case o* > o° > p8 > is not physically realisable.
Such a system would be hydrodynamically unstable. However, when
the particle is denser than both fluids ¢° > o° > o® buoyancy effects are
not sufficient to ensure that the particle be supported at the interface.
In this case surface forces will begin to have an effect on the possible
equilibrium of the particle in the interfacial vegion. If the interfacial
properties of the system are such that the surface forces contribute po-
sitively to support the particle, then at least there is a possibility that
an appropriate particle will not pass through interface (« B) into fluid
(B). Systems of this kind are extremely important in the floatation of
minerals and emulsions stabilised by solid particles. Particularly in
floatation problems the eritical density and size of particles play an
essential role,

This work investigates the equilibrium position of a spherical par-
ticle at the interface region when p* > pB > o%, that is, when surface
phenomena are necessary to ensure the support of the particle at the

interface.

SPHERE FLOTATION

Laplace’s equation relates the pressure difference across the inter-
face with the shape of the interface which is given in terms of the twe
principle radii of curvature r, and r,

sy (L4 1) 8

1 2
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where. v is the surface tension.
From Pascal’s laws, the variation of pressure with displacement for a
holm is given by

AP = T 7% A pg @)

where Z9 is the elevation of the flmd /flud iiterface from the level z =
0; z = 0 is where P = 0. From equations (1) and (2) we obtain

Y (—1~ + ——1—) = ¥ Apgz ' 3)

T T,
In reduced terms!? equation (3) gives

1 1 _ '
TR @
where quantities of dimension L" have been divided by a%; a® = 2vy/ Apg.
For rotationally symmetric holms

ds X

Ri= g ad Ri= o -

where S is the meridian arc length and @ is the angle the meridian ma-
kes with the horizontal; ® = 180 4 ¢ (see Fig. 1) =ubst1tutmg the above
value of R, and R, into equatlon {4) we obtain

do Sin®
s TTx T T ©)

Equation (5) which is a first order differextial equation, cannot be sol-
ved in closed analytic form, but must be solved by numerical methods.
The most efficient and accurate method is to use Meon’s version'” of the
Runge-Kuffa (fourth order) procedure .

The solution by the numerical integration, gives a meridian curve
Z = 7 (X) with the arc length S as the independent variable. The meri-
dian angle @ is also calculated i.e. the output gives S, @, X and Z. For
sphere floatation only ®, X and Z are required. By direct numerical
methods the analysis of the conditions for sphere floatation would re-
quire extensive numerical computation, and it seems to be for just this
reason that such a study has not been made.
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There is however, an alternative approach which uses approximate
methods of known accuracy. One such approximation, termed a first
integral approximation gives Z as a function of X and ®. The approxi-
mation ist!

K,(v/2X)
2= 0LV " (1 + Cos®)? 6
R | y (©)
where K ise the meridian angle, X is the contact radius, and K, and K,
are the modified Bessel functions of the second time of zero and first
order. At the three phase confluence

K(v2x°) :
f— O VAL (] Cosd)1/2 7
7= R ors (I +Cos0) ™
The range of applicability and accuracy of the approximation givén in
equauion (6) have been studied in detail by comparison with accurate
numerical computation’®. In this work the above approximation will be
applied to sphere flotation problems.

Force -Analysis

When a solid particle of density p® is retained at equilibrium in the
interface, the net force acting on it must be zero. For the case of a sphere
to float unaided, the net force on the sphere must be zero, i.e., the body
forces of the sphere in the two fluids must be balanced. by the surface
forces whose origin is the interfacial (surface) tension Y.

The surface forces consist of two parts; the vertical compouent of
the surface tension and the pressure difference across the interface, both
acting at the thiee phase cofluence. Since the pressure in phase § is gre-
ater than that in phase «, both the resolved component of the surface
tension y and the pressure difference across the interface are actir.g to
support the particle i.e., the forces are acting in the upward direction.

.
Vertical component of surface tension = 27x0 y sin ¢

Force across mterface due to prossure difference = 4 (x9)? 29 Apg

Total upward force = f; = 2nx0v sin ¢ 4 m(x9)? 20 Aog . (8)
or, ir the reduced terms'?, F; = nX0 s ¢ -+ n(X0)2 Z6, (9
nowe =@ — 180° == 0 4§ — 180 and sin ¢ = — sin ®

also 79 is negative and hence F; is negative. The body force of the sp=
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here F (downward force) is taken as positive. The weight of the paiticle
gives rise to the secoud force term:

Body force of the sphere = V5% (o5 — p%) g 4 V%6 (o° — e®) g

where VS%, V.8 are the volume of the solid sphere in phases « and 8
respectively and o® is the deansity of the solid material forming the sphere.

If Vs is the total volume of sphere (= % 7 R?) then we have
£, = (V2 — Vo8) (° — o%) g + V8 (&* — o) g (10)

=V (e —p¥)g— VB (e —pYg

= V¢ ASpg — V2 Apg
in reduced terms!!, noting k* = (p* — p%) [(p% — p%) = A’ o //\p
' F, =  Vk* — V58 (11)

and Vb = %— n R* (1 — Cosy) (12)

In order to sphere float sum of upward and downward forces must be
zero that is

ext

F** = F +F, =0 (13)

abs .

substituting the values of forces from equation (9) and (11) into equati-
on (13)

ax® sin ® -+ w(x9? Z0 4+ Vk* — V8 =0 (14)

more generally if there is a net force on the sphere such that it must be
supported externally’,'?, then if

F' =F +F (15)
CXt
F = nx® sin ® + n(x9* 7z® + V° K* — V.6 (16)

abs
a volume, or more strictly a force, V*¢ is defined such that
V&0 — nyo sin O Hen(x?)® 49
so that equation (16) becomes
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F = V%0 1 VK* — Ve )

abs

The above equations give the general theory of the forces on spheres at

ext
interfaces. Flotation is the special case when the net force F il
. aos

The approximation given in equation (6 or 7) may now he applied to the
specific problem of sphere flotation.

Equation (7) gives 79 values, and hence if y© and ® are known,
then Z° may be calculated from equation (7) and consequently V&9 is
known: A sphere at an interface is characterised by three quantities: the
radius of the sphere R, the contact angle 6 and the reduced density K%,

s o
k% — gs—_‘;u (18)
These three values must be chosen for a particular system.
From Figure T,
®— ¢ 46 (19)
\ %% = R sind 20
7.9 is given by equation (7), and V.8 is given by equation (12) which de-

pends only on R and {. Hence { may be used as the independent variable
for the movement of the sphere through the interface. ¢ must be chosen

by trial and error until the value when F = — 0 is determined. The
abs

position of the sphere is defined by the angle ) (see Fig. 1).

An important quantity also obtainable from the approximate tre-
atment is the distance of the center of the sphere above or below the Z
= 0 level. Denoted by %, this distance is given by

7* = 79 4+ R Cos ¢ 21)
which, again depends only on R and ¢.

A small computer programme is used to calculate ®, %9, 78, 7

and ¥ for chosen values of R, § and K% with { as the independent

abs

variable.
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Results and Discussion

‘This investigation involves the calculation of @, %9, 7% 7* and

F* " for chosen values of R, 6 and k%, with ¢ as the independent vari-
abs B

able. The approximation is applied to calculate the results. Table I,

ext . .
contains the calculated values of @, 9, 7% 7* and F . for the spe-
abs .

t
Table 1. Calculated value of Xe, Ze’ 7% and Fez for
abs
Sphere Radius = 0.50000000
Contact Angle = 130.00000000
Red. Density of Sphere in Less Dense Phase = 3.83390000

DEG X z 7~ FORCE
160.00000 | 0.25000 | 0.11882 | 0.55183 | 2.29264
165.00000 | 0.28679 | 0.09473 | 0.50431 | 2.25302
170.00000 | 0.32130 | 0.06627 | 0.44929 | 2.18444
175.00000 | 0.35355 | 0.03443 | 0.38798 | 2.08735
180.00000 | 0.38302 | 0.00000 | 0.32140 | 1.96328
185.00000 | 0.40958 | -0.03636 | 0.25043 | 1.81486
190.00000 | 0.43301 | -0.07409 | 0.17591 | 1.64575
195.00000 | 0.45315 | -0.11271 | 0.09860 | 1.46053
200.00000 | 0.46985 | -0.15180 | 0.01921 | 1,26458
205.00000 | 0.48296 | -0.19095 | -0.06154 | 1.06384
210.00000 | 0.49240 | -0.22980 | -0.14298 | -0.86462
215.00000 | 0.49810 | -0.26800 | -0.22442 | 0.67334
220.00000 | 0.50000 | -0.30520 | -0.30520 | 0.49624
225.00000 | 0.49810 | -0.34106 | -0.38463 | 0.33916
230.00000 | 0.49240 | -0.37523 | -0.46206 | 0.20728
235.00000 | 0.48296 | -0.40737 | -0.53678 | 0.10487
240.00000 | 0.46985 | -0.43708 | -0.60809° | 0.03511
245.00000 | 0.45315 | -0.46397 | -0.67528 | -0.00001
250.00000 | 0.43301 | -0.48757 | -0.73757 | 0.00012
255.00000 | 0.40958 | -0.50739 | -0,79418 | 0.03481
260.00000 | 0.38302 | ~0.52283 | -0.84423 | 0.10198
265.00000 | 0.35355 | -0.53320 | -0.88675 | 0.19834
270.00000 | 0.32139 | -0.53765 | -0.92067 | 0.31949
275.00000 | 0.28679 | —0.53510 | -0.94468 | 0.46009
280.00000 | 0.25000 | -0.52417 | -0.95718 | 0.61417
285.00000 | 0.21131 | -0.50297 | -0.95612 | 0.77538
290.00000 | 0.17101 | -0.46878 | -0.93863 | 0.93731
205.00000 | 0.12041 | -0.41742 | -0.90039 | 1.09385
300.00000 | 0.08682 | —0.34166 | —0.83407 | 1.23960
305.00000 | 0.04358 | -0.22614 | —0.72424 | 1.37034
309.00000 | 0.00873 | -0.07109 | -0.57101 | 1.46250
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here of density k* = 3.8339 g and radius = (.5 at a contact angle of 130°,
The results in table 1 have been chosen from a large number of data that
have been computed to give an idea about the work in progress. Table
2 gives the reduced critical densities of solid spheres at different contact
angles. Table 3 contains { values for specific critical densities and con-
tact angles. Table 4 gives the F,, and 7%, for specified contact angles
and reduced densities. Again results in tables 2,3 and 4 were chosen as
an example to show the nature of the investigation in pro\gress.

Table 2. Contact angles and reduced critical densities for R = 0.5

0 == Contact angle k& = Reduced Critical Density
90° 2.6605
100° 2.9605
110° 3.27505
120° 3.5655
130° 3.8339
140° 4.0705
150° 4.2505
160° 4.4025

Table 3. ) values at F' — 0 for each critical density (k&) and contact angle (0)
a

bs

9 @ 3
90 2.6605 135
100 2.9605 130
110 3.27505 125
120 3.5655 12
130 3.8339 115
140 4.0705 115
150 4.2505 110
160 4.4025 105

Table 4. F* and Z*_ _ for each critical density (k&) and contact angles (§)

max

e k o Fmax Z Xmax
90 2.6605 2.13399 -0.79809
100 2.9605 2.02155 -0.83910
110 3.2750 2.25885 -0.88146
120 3.5655 2.28737 —-0.92057
130 3.8339 2.9350 —~0.95612
140 4.0705 2.27241 -0.99352
150 4.2505 2.21856 -1.02560
160 4.4025 2.14901 ~-1.05335
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Figures 2,3 and 4 gives the forces acting on the sphere as a function
of 7* at contact angles 100°, 130° and 150° respectively. Each figure
contains more than one curve and each curve represents a differont den-
sity k. As can be seen from the figures only one of the curves for given

ext .
R and 6 has a position where F  is zero. This curve corresponds
abs

to the critical density at specified radius and contact angle. Critical-
density curves show that there is only one equilibrium point (where

ext
F = o) where a sphere can float. Curves above the critical density

ext
[Fnbs
28 !
,k":a.ooo
i 2:4F
o
k'=2.9605
20F
K= 2.000
1 . . .
2 4 ‘5 [
-8k

. ext
Fig. 2 Dependence of F on Z¥ for R = 0.5;
aDs
0 = 100° and k% = 2.0000
2.9605
4.0000
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s
k =5.000
3 x=4000
2 k=38339
1k = 3,000
T
e
— b
xt
F:bs
. ext .
Fig. 3 Dependence of F 0. Z* for R = 0.5;
abDs
8 = 130° and k% = 3.0000
3.8339
4. 0000 ‘ .
5.0000

ext
curve do not have any point that F = o. This means that at spe-
abs

cified contact angles and radius, spheres with densities greater than the
reduced critical density cannot float at all. Curves below the critical-

t

X
density curve have two points where F  is equal to zero. At these
abs

points equilibrium is reached and the sphere can float, that is, at spe-
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o
k =5.000

k™= 4.500
K“= 4 2505

k = 3.000

t
Fig. 4 Dependence of F on 7~ for R = 0.5;
&3

ab:

6 = 150° and k* = 5.0000
4.5000
4.2505
3.0000

cified contact angle and radius, the sphere with a lower density than the
reduced critical density can always float. But it is not certain that, at
this point, which equilibrium position is stable. The force analysis pre-
dicts the equilibrium states of the system; however this analysis does
not easily clarify the stability of such states. Rapacchietto and Neu-
mann’® reported that secondary equilibrium states predicted by force
analysis is unstable because these states correspond to the equilibrium
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states for which the free energy of the system is a maximum. Each curve
of figures 2, 3 and 4 also gives the height maximum and the force maxi-
mum for specified contact angle and density. As is seen from the curves,
the force changes as density changes, the greater the density the greater
the maximum force. Figure 5 gives the plot of reduced critical density

i L 1 1 1 1 VI )

90 100 10 120 130 140 150 9 160

Fig. 5 Plot of reduced critical density (k&) vs. Contact angle (§) for R = 0.5

(k*) v.s. the contact angle. From this figure a linear relationship bet-
ween contact angle and critical density can be obtained. At the higher
contact angles some deviations occur from linearity. Spheres with den
sity above this line will not float at all. Spheres with density below this
line will float at the corresponding contact angle and radius. From the
k% v.s. 0 plot one can now predict the critical density for given contact
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‘angle and vice versa in this range. As a result of this investigation we
can predict the critical density, in the flotation problem, for a given
contact angle and vice versa, for a large range of contact angles.

Figure 6 shows the plot of contact angle versus §, when R = 0.5
and for critical values of k. Figure 7 is a plot of contact angle versus
y. For both plots { values are such that they correspond to when

ext ) ‘
F  is equal to zero. Both figures show that the change of { is small with
abs

respect to chenges of k* and contact angles. For a large range of contact
angle and eritical density | changes are only of the order of 30°.

180

160

140

120

100 -

H 1 i | i J

S0 100 10 120 130 140 150
' t
ylat FSS =0)

Fig. 6 Relationship between contact angle () and position coordinate (J) for R = 0.5 and cri-

ext
tical density, ¢ values are corresponded to F e 0.
abs
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48
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k
L4
$&or
36
32
2-81
1 L 1 1 L )
20 40 60 80 100 120 140 ¢ 160
ax
ylat E2 <o)
Fig. 7 Relationship between reduced critical density (k%) and position coordinate (J). ¢ values
) ext
are corresponded to F = 0.
aps
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PRINCIPAL SYMBOLS

R Radius of sphere
e Density of sphere ,
p% Density of upper {fluids /
o8 Density of lower fluids

6

Distance of the three-phase confluence from Z=0 level
6 Contact angle
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X9, Z% Donetes the position of the threc-phase confluence

Y Position coordinate (angle) which locates the three-phase
‘ line on the solid surface

T, T, Principle radii of curvature

v Surface tension ,

Ap Variation of pressure with displacement for a holm

S Meridien arc length ‘ k

o Angle the meridian makes with the horizontal

X, Z Reduced coordinates

Ky K,  Modified Bessel Functions of the second time’of zero and
first order.

f; Total upward force

F Upward force in the reduced term
Vs« Volume of sphere in the phase o
V5,8 Volume of sphere in the phase B

A\ Total valume of sphere

f, Total downward force

F Downward force in the reduced term

ext

Externall applied force

abs

K= Reduced density.
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OZET

Bu cahsma belirli yaricap ve temas agisinda yiizebilen en biiyiik parcacigm kritik bityiik-
liigii ve kritik yogunlugunun tesbiti ile ilgili olup ayn1 kogullarda parcaciga etki eden maksimum
kuvvet ve yiikseklik maksimasinin hesaplanmasim da igeriyor. Bu hesaplamalarda gerekli olan
kogulun sadece parcacifin miimkiin olan denge konumu degil aym zamanda kararh halidir. Ce-
sitli temas acilarinda yart cap R = 0,5 alinarak kritik yogunluk, kiiresel par¢acik iizerine etki
eden maksimum kuvvet, yiikseklik maksimas1 ve parcaak iizerine etki eden difer kuvvetler
hesaplandi. Temas acts1 ve kritik yogunluk arasinda degrusal bir iliski oldugu goriildi.
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